当前位置:文档之家› ansys多工况组合

ansys多工况组合

ansys多工况组合
ansys多工况组合

ANSYS荷载工况组合计算实例

?1相关命令

? 1.1 LCDEF

? 1.2LCFACT

? 1.3SUMTYPE

? 1.4LCOPER

? 1.5LCASE1

? 1.6LCWRITE

? 1.7其他命令

?2实例

在实际工程计算中,往往需要分析多种不同荷载组合总用下的结构响应,比如恒载、活荷载、风荷载等的组合,有些是荷载位置不同,有些则是荷载大小差异。

ANSYS做不同荷载工况组合分析,要么是每一种工况用单独的APDL进行运算,每个工况一套文件;要么就是利用分析结果,在一个计算文件中,用不同的荷载步定义荷载组合,再用工况组合功能来实现我们的分析目标。

下面总结一下实现荷载工况组合的方法

1.相关命令

1.1. LCDEF

LCDEF, LCNO, LSTEP, SBSTEP, KIMG 从结果文件中创建一个工况

其中常用参数为:

LCNO

工况编号,是1~99之间的一个数字,作为指针,将工况与计算文件中的荷载步和荷载子步联系起来

LSTEP

用于定义工况的荷载步

SBSTEP

用于定义工况的荷载子步,默认为荷载步的最后一个子步

KIMG

用于复数分析,0-用实部;1-用虚部

1.2.LCFACT

LCFACT, LCNO, FACT 定义工况的分项系数

其中,Lcno为工况编号,fact为分项系数

1.3.SUMTYPE

SUMTYPE, Label 为工况组合设置数据组合类型

Lable参数有两个选项,分别为

?COMP—Combine element component stresses only. Stresses such as average nodal stresses, principal stresses, equivalent stresses, and stress intensities are derived from the combined element component stresses. Default. 此选项为只将单元应力进行组合,节点平均应力、主应力、等效应力等则从组合后的单元应力中求解(不知道这样理解是否合适呢。。。) ?PRIN—Combine principal stress, equivalent stress, and stress intensity directly as stored on the results file. Component stresses are not available with this option.对主应力、等效应力、应力强度等直接根据结果文件进行组合。所以平时在计算主应力等结果时候多用次选项。

1.4.LCOPER

LCOPER, Oper, LCASE1, Oper2, LCASE2 对荷载工况进行操作

Oper

?ZERO—Zero results portion of database (LCASE1 ignored).结果数据库中为零的部分??SQUA—Square database values (LCASE1 ignored).数据结果取平方

?SQRT—Square root of database (absolute) values (LCASE1 ignored).结果数据开平方根?LPRIN—Recalculate line element principal stresses (LCASE1 ignored). Stresses are as shown for the NMISC items of the ETABLE command for the specific line element type.计算线性主应力

?ADD—Add LCASE1 to database values.将工况1增加到求解数据库中?SUB—Subtract LCASE1 from database values.将工况1从求解数据库中删除?SRSS—Square root of the sum of the squares of database and LCASE1.将求解数据库和工况1之和进行开平方

?MIN—Compare and save in database the algebraic minimum of database and LCASE1.将数据库和工况1中的代数比较小者存入现有数据库

?MAX—Compare and save in database the algebraic maximum of database and LCASE1.将数据库和工况1中的代数较大者存入现有数据库

?ABMN—Compare and save in database the absolute minimum of database and LCASE1 (based on magnitudes, then apply the corresponding sign).将数据库和工况1中绝对值较小者存入现有数据库

?ABMX—Compare and save in database the absolute maximum of database and LCASE1 (based on magnitudes, then apply the corresponding sign).将数据库和工况1中绝对值较大者存入现有数据库

1.5.LCASE1

First load case in the operation (if any). See LCNO of the LCDEF command. If ALL, repeat operations using all selected load cases .工况运算的第一个工况,由LCDEF命令指定,如果为all,则对所有已选择的工况重复命令。

Oper2

MULT—乘法运算: LCASE1*LCASE2

CPXMAX—此选项用于复数运算,将工况1作为实部,工况2作为虚部。This option does a phase angle sweep to calculate the maximum of derived stresses and equivalent strain for a complex solution where LCASE1 is the real part and LCASE2 is the imaginary part. The Oper field is not applicable with this option. Also, the LCABS and SUMTYPE commands have no effect on this option. The value of S3 will be a minimum. This option does not apply to derived displacement amplitude (USUM). Load case writing (LCWRITE) is not supported. See POST1

and POST26 – Complex Results Postprocessing in the Mechanical APDL Theory Reference for more information.

LCASE2

Second load case. Used only with Oper2 operations.

1.6.LCWRITE

LCWRITE, LCNO, Fname, Ext, —创建工况文件

其中lcno为工况编号,fname和ext分别为工况文件名称和后缀名

1.7.其他命令

?lCDEF,ERASE来删除所有的荷载工况指针和所有的荷载工况文件

?LCDEF,LCNO,ERASE删除指定的荷载工况指针LCNO(和相应的文件)。?LCDEF,STAT查看所有选定的荷载工况(LCSEL)的状态

?LCDEF,STAT ,ALL查看所有荷载工况的状态

?LCSEL, Type, LCMIN, LCMAX, LCINC 选择指定编号的工况

2.实例

首先要说明,这个悬臂梁实例本身没有任何工程意义,只是用来熟悉一下相关操作而已。为了便于理解,实例中只有两个荷载工况,分别为向上的集中力和向下的均布荷载,实际情况可能比实例中更复杂,就需要具体问题具体分析了。

/悬臂梁简单模型

finish

/clear

/prep7

et,1,188

mp,ex,1,2.1e5

mp,prxy,1,0.3

sectype,1,beam,I,,0

secdata,0.5,0.5,0.7,0.05,0.05,0.05

k,1,

k,2,10

k,3,,20

l,1,2

latt,1,1,1,,3,,1

lesize,all,1

lmesh,all

/solu

d,1,all

f,2,fy,100

lswrite,1

fdele,all,all

sfbeam,all,,pres,200,200 lswrite,2

allsel,all

outpr,all,all

lssolve,1,2,1 !对各荷载独立求解finish

/post1

/eshape,1

plnsol,s,1

对上述命令流进行改进,设置荷载组合:finish

/clear

/prep7

et,1,188

mp,ex,1,2.1e5

mp,prxy,1,0.3

sectype,1,beam,I,,0

secdata,0.5,0.5,0.7,0.05,0.05,0.05

k,1,

k,2,10

k,3,,20

l,1,2

latt,1,1,1,,3,,1

lesize,all,1

lmesh,all

/solu

d,1,all

f,2,fy,100

lswrite,1

fdele,all,all

sfbeam,all,,pres,200,200

lswrite,2

allsel,all

outpr,all,all

lssolve,1,2,1 !对各荷载独立求解

finish

/post1

/eshape,1

!plnsol,s,1

/post1

lcdef,1,1 !设定工况1=荷载步1,工况2=荷载步2

lcdef,2,2

!给两个工况设置不同的分项系数

lcfact,1,1.2

lcfact,2,1.4

lcase,1 !读入工况1,database=1

sumtype,prin !指定加操作的类型

lcoper,add,2 !荷载组合,database=database+2

lcoper,lprin !计算线性主应力

lcwrite,11 !把database结果写到工况11,即1.2倍竖向力+1.4倍均布荷载lcase,1 !还可以重新读入工况1,database=1

lcfact,1,2!重新定义分项系数

lcfact,2,1.5

sumtype,prin

lcoper,add,2 !荷载组合,database=database+2

lcoper,lprin !计算线性主应力

lcwrite,12 !把database结果写到工况11,即2倍竖向力+1.5倍均布荷载lcase,1!载入工况1

plnsol,s,1 !查看该工况下的结构响应

荷载工况1的SX计算结果

荷载工况2的SX计算结果

ansys荷载工况组合

若用ANSYS进行设计,往往要计算很多种工况组合,如果加载能分开加载独立计算然后结果叠加(仅限于弹性阶段)则效率可提高不少,下面推荐几个命令即可达到这种效果。

!★加自重——————————————————★1★

allsel,all

acel,0,0,0

fdele,all,all,all

sfadele,all,all,all

acel,,,10

lswrite,1

allsel,all

………………

lswrite,N_LOAD !可加其他荷载,自己定义

allsel,all

outpr,all,all

lssolve,1,N_LOAD,1 !对各荷载独立求解

fini

!荷载组合

/post1

allsel,all

lcase, 1 !读出自重荷载下的结构响应

lcoper,add,2 !加上荷载2

lcwrite,31 !作为工况组合31

当然可以用lcfact定义荷载的分项系数,再进行组合。

善用这些命令,对于设计(往往是很多工况组合)就比较方便了

对单层或二层框架进行弹性分析,需要考虑四种荷载

恒荷载,活荷载,风荷载和吊车荷载

1,几何模型(beam3和beam54)建立后,定义所需的element table,主要包括杆端力和最大应力,最小应力等。

然后保存数据库。分别施加四种荷载的标准值(不乘分项系数),并分别存成四个load step file。

2,使用solution->from ls files,求解四种荷载

3,荷载组合,命令流如下:

/post1

lcdef,1,1

lcdef,2,2

lcdef,3,3

lcdef,4,4 !定义四种工况,分别为四种荷载下的计算结果

lcfact,1,1.2

lcfact,2,1.4

lcfact,3,1.19

lcfact,4,1.4 !指定各工况的组合系数

lcase,1 !读入工况1,database=1

sumtype,prin !指定加操作的对象

lcoper,add,2 !荷载组合,database=database+2

lcoper,add,4 !荷载组合,database=database+4

lcoper,lprin !计算线性主应力

lcwrite,11 !把database结果写到工况11,即恒荷载+活荷载+吊车荷载的结果

lcase,1

lcfact,2,1.19

lcfact,4,1.19 !改变组合系数

sumtype,prin

lcoper,add,2

lcoper,add,3

lcoper,add,4

lcoper,lprin

lcwrite,12 !把database结果写到工况12,即恒荷载+活荷载+吊车荷载+风荷载的结果!... ...其他荷载组合

!之后使用lcase,n 就可调入工况n,并查看它的变形和内力

!可使用如下命令流得到工况11和12,13的较大者99,进而查看最大应力

lcase,11

lcase,min,12

lcase,min,13

lcwrite,98

lcase 98

!查看工况98的应力分布... ...

lcase,11

lcase,max,12

lcase,max,13

lcwrite,99

lcase 99

!查看工况99的应力分布... ...

以下为定义和读取荷载工况用到的一些命令:

LCDEF_从结果文件中的一列结果产生荷载工况

LCDEF, LCNO, LSTEP, SBSTEP, KIMG

LCNO:随意的指针数(1-99),要赋给LSTEP,SBSTEP和FILE命令指定的荷载工况。缺省为1加前一个值。

LLSTEP:要定义为荷载工况的荷载步的编号。缺省为1。

SBSTEP:子荷载步的编号。缺省为荷载步的最后一个子荷载步。

KIMG:仅用于复数分析0-用复数分析的实部1-用虚部

注意:通过建立一个指向结果文件中的一列结果的指针产生一个荷载工况。这个指针(LCNO)可以用在LCASE或LCOPER命令中来读荷载工况数据到数据库中。

lCDEF,ERASE来删除所有的荷载工况指针(和所有的荷载工况文件)。用

LCDEF,LCNO,ERASE来删除指定的荷载工况指针LCNO(和相应的文件)。当选项为ERASE 时,所有的指针都被删除,但是只有为缺省扩展名的文件(LCWRITE)被删除。写LCDEF,STAT看所有选定的荷载工况(LCSEL)的状态,写LCDEF,STAT ,ALL看所有荷载工况的状态。STAT命令可以用来列出所有荷载工况。看LCFILE如何建立一个指针指向荷载工况文件(由LCWRITE写)中一列结果。谐单元从一个荷载工况结果文件读入的数据贮存在零度位置。

命令流:

/SOLU

... ...

finish

/POST1

... ...

!!定义荷载工况1

LCDEF,1,1

!!形成后续工况组合可以调用的工况文件lcase1,工况号1

LCWRITE,1,'lcase1',' ',' '

FINISH

/SOLU

... ...

finish

/POST1

... ...

!!定义荷载工况2

LCDEF,2,1

!!形成后续工况组合可以调用的工况文件lcase2,工况号2

LCWRITE,2,'lcase2',' ',' '

FINISH

/SOLU

... ...

finish

/POST1

... ...

!!定义荷载工况3

LCDEF,3,1

!!形成后续工况组合可以调用的工况文件lcase3,工况号3 LCWRITE,3,'lcase3',' ',' '

FINISH

/POST1

!!从载荷工况文件创建载荷工况

LCFILE,1,'lcase1','l01',' '

LCFACT,1,1.2, !分项系数1.2

LCFILE,2,'lcase2','l02',' '

LCFACT,2,1.4, !分项系数1.4

LCFILE,3,'lcase3','l03',' '

LCFACT,2,1.3, !分项系数1.3

LCASE,1 !将载荷工况1读入内存

LCOPER,ADD,2, , , !组合:1.2*恒+1.4*活LCWRITE,12 !写当前载荷工况到文件jobname.12 LCASE,3 !将载荷工况3读入内存

LCOPER,ADD,12, , , !组合:1.2*恒+1.4*活+1.3地震

Midas:荷载工况与荷载组合-2015-04-21

Midas:荷载工况与荷载组合 荷载工况的荷载安全系数(荷载分项系数)(荷载组合系数):当分析桥梁结构时,根据"公路钢筋混凝土及预应力混凝土桥涵设计规范"(JTJ023-85),当汽车荷载效应占总荷载效应5%及以上时,荷载安全系数应提高5%;当汽车荷载效应占总荷载效应33%及以上时,荷载安全系数应提高3%;当汽车荷载效应占总荷载效应50%及以上时,荷载安全系数不再提高。目前按规范自动生成的荷载组合没有考虑提高的荷载安全系数,用户应根据需要将其进行相应调整。 施工阶段荷载工况:该项只有定义了施工阶段时才处于激活状态。 ST:只用定义为非施工阶段荷载类型的工况生成荷载组合。 CS:只用定义为施工阶段荷载类型的工况生成荷载组合。 ST+CS:同时考虑施工阶段中的荷载效应和使用阶段的荷载效应自动生成荷载组合。在此应注意的是在施工阶段中激活和钝化的荷载,在荷载工况定义中一定要定义为“施工阶段荷载”类型。 2.在施工阶段分析后,程序会自动生成一个Postcs阶段以及下列荷载工况:(Postcs阶段的模型和边界为在施工阶段分析控制对话框中定义的“最终施工阶段”的模型,荷载为该最终施工阶段上的荷载和在“基本”阶段上定义的没有定义为“施工阶段荷载”类型的所有其他荷载)。 恒荷载(CS):除预应力、收缩和徐变之外,在各施工阶段激活和钝化的所有荷载均保存在该工况下。 施工荷载(CS):当要查看恒荷载(CS)中的某个荷载的效应时,可在施工阶段分析控制对话框中的“从施工阶段分析结果:恒荷载(CS)工况中分离出荷载工况(施工荷载(CS))”中将该工况分离出来,分离出的工况效应将保存在施工荷载(CS)工况中。 合计(CS): 具有实际意义的效应的合计结果。在查看各种效应(反力、位移、内力、应力)时,在荷载工况/组合列表框中,在“合计(CS)”上面的工况均为有意义的工况效应,在“合计(CS)”下面的工况均为无意义的工况效应。

钢结构设计常用荷载组合

载荷工况(将基本组合的分项系数去掉即得标准组合):CASE1 1.35×1.0 恒荷+1.4×0.7活荷 CASE2 1.35×1.0 恒荷+1.4×0.7活荷+1.4×0.6风荷1 CASE3 1.35×1.0 恒荷+1.4×0.7活荷+1.4×0.6风荷2 CASE4 1.0×1.0 恒荷+1.4×1.0风荷1 CASE5 1.0×1.0 恒荷+1.4×1.0风荷2 CASE6 1.2×1.0 恒荷+1.4×1.0活荷 CASE7 1.2×1.0 恒荷+1.4×1.0活荷+1.4×0.6风荷1 CASE8 1.2×1.0 恒荷+1.4×1.0活荷+1.4×0.6风荷2 CASE9 1.2×1.0 恒荷+1.4×0.7活荷+1.4×1.0风荷1 CASE10 1.2×1.0 恒荷+1.4×0.7活荷+1.4×1.0风荷2 CASE11 1.0 恒荷+0.7活荷 CASE12 1.0 恒荷+0.7活荷+0.6风荷1 CASE13 1.0 恒荷+0.7活荷+0.6风荷2 CASE14 1.0 恒荷+1.0风荷1 CASE15 1.0 恒荷+1.0风荷2 CASE16 1.0 恒荷+1.0活荷 CASE17 1.0 恒荷+1.0活荷+0.6风荷1 CASE18 1.0 恒荷+1.0活荷+0.6风荷2 CASE19 1.0 恒荷+0.7活荷+1.0风荷1 CASE20 1.0 恒荷+0.7活荷+1.0风荷2 CASE21 1.2×1.0 恒荷+1.2×0.5活荷+1.4×0.2风荷1 CASE22 1.2×1.0 恒荷+1.2×0.5活荷+1.4×0.2风荷2 CASE23 1.0 恒荷+0.5活荷+0.2风荷1 CASE24 1.0 恒荷+0.5活荷+0.2风荷2 载荷组合(将基本组合的分项系数去掉即得标准组合):COMB1~20 即为:CASE1~20 COMB21 CASE21 + 1.3PUX COMB22 CASE22 + 1.3PUX COMB23 CASE21 + 1.3PUY COMB24 CASE22 + 1.3PUY COMB25 CASE21 + 1.3PUS COMB26 CASE22 + 1.3PUS COMB27 CASE21 + 1.3TAFS COMB28 CASE22 + 1.3TAFS COMB29 CASE21 + 1.3ELS COMB30 CASE22 + 1.3ELS

Midas civil荷载组合详解

主要根据公路桥涵设计通用规范(JTG D60-2004)编制。在结果>荷载组合对话框中选择“自动生成”功能。 a. 在荷载>移动荷载分析数据中定义移动荷载时,下面组合中的符号L 用ML 代替。b. 反应谱荷载工况的简称为ESP c. 在荷载>移动荷载分析数据中,将人群荷载按移动荷载定义,并在移动荷载工况中将其与其它汽车荷载子荷载工况进行组合时(在移动荷载工况中选择“组合”),在定义人群荷载子荷载工况时,系数应取0.8(根据通用规范 4.1.6 条第 1 项)。为了考虑人群荷载单独作用的情况(系数1.0 的情况),需要另外单独定义一个人群荷载移动工况。 d. 下面组合中考虑了可变荷载作用的不同时组合(JTG D60-2004 中表4.1.5) e. 不考虑汽车荷载的恒荷载+其他可变荷载的组合及组合值系数需用户另外添加(规范无规定)。 f. 永久荷载中既有对结构承载能力不利,又有对结构的承载能力有利的永久荷载时,需要用户另外添加组合或修改“永久荷载对结构的承载能力有利组合”中的系数。g. 在荷载组合自动生成对话框中选择“考虑弯桥制动力”时,当汽车制动力与离心力同时出现在荷载组合中时,制动力荷载的组合系数自动乘以0.7 的系数。 h. 程序会自动生成各状态组合的包络组合。i. 钢结构的组合依然沿用旧规范。j. 当有移动荷载作用时,在设计中实际采用的组合会更多(对每个荷载组合都会对弯矩最大时、剪力最大时、轴力最大时的情况进行验算)。k. 在荷载>静

力荷载工况中定义荷载名称,但没有具体定义荷载值时,荷载组合的自动生成功能将不包含该荷载工况名称。l. 预应力混凝土设计荷载组合在荷载组合的“混凝土”中定义。a) 永久荷载对结构的承载能力不利(120 个) 恒荷载组合(1 个): 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL 永久荷载+1 个可变作用(8 个): 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*(L+IL+CF) 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*LS 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*CRL 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.1*W 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*SF 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*IP 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0. 5*STL +1.4*(T+TPG) 1.2*D+1.2*PS+1.2*EV+1.4*EH+1.0*(SH+CR)+1.0*B+0.

自定义荷载工况和组合(新)

自定义荷载工况和组合 自定义荷载工况和组合功能,可把用户输入的一组荷载按照用户自定义的工况组合进行设计。 自定义荷载的类型有恒载、活载、消防车荷载,下一步增加风荷载、地震荷载和人防荷载类型。 对于活荷载使用自定义工况,主要解决四个方面的问题: 1、活荷载的不利布置问题,即可在自定义的活荷载工况之间设置设计需要的各种不利布置组合。 软件对于一般活荷载(即在荷载输入主菜单下输入的活荷载)的活荷不利布置的处理比较简单,只在各楼层内分别进行,楼层之间不考虑不利布置,只是叠加处理。在楼层之内也仅限于对梁杆件进行不利布置,按各房间单独布置活荷,再取包络和叠加的结果。没有考虑柱、墙和斜撑的不利布置。 YJK把活荷载可区分为一般活荷载和自定义活荷载,对于一般活荷载仍按照传统的简单组合方式计算,对于自定义工况活荷载,可以在用户输入的不同组的活荷载之间,由用户定义它的不利布置组合,从而适应活载较大等复杂情况的计算,如工业建筑常有的活荷载布置的状况。 2、活荷载折减 以前软件考虑的活荷载折减,是柱墙考虑其上楼层数的折减,它只适应荷载规范中规定的住宅、办公等类型活荷载折减。对于其它种类的活荷载可当作自定义活荷载输入,自定义荷载工况选择活荷载时,设置了重力荷载代表值系数、墙柱构件和梁构件活荷载折减系数参数,可对自定义的活荷载指定单独的墙柱构件活荷载折减系数和梁构件的活荷载折减系数,从而适应荷载规范中多种活荷载类型的折减。 3、自定义荷载工况组合时的荷载分项系数和组合系数 例如,荷载规范3.2.5规定,可变荷载的分项系数,一般情况下应取1.4,对标准值大于4kN/m2的工业房屋楼面结构的活荷载应取1.3。 可将标准值大于4kN/m2的工业房屋楼面结构的活荷载按照自定义活荷载工况输入,取该工况与其它活荷载工况为叠加或叠加+包络组合关系,然后在组合系数表中人工修改相应的系数。 一、建模中设置自定义工况菜单 在建模的主菜单中设置“自定义工况”菜单,用来输入用户自定义的荷载工况,这样建模的一级菜单为轴线网格、构件布置、楼板布置、荷载输入、自定义工况、楼层组装、空间结构共七项。

Ansys 荷载组合

Ansys 荷载组合 1,几何模型(beam3和beam54)建立后,定义所需的element table,主要包括杆端力和最大应力,最小应力等。 然后保存数据库。分别施加四种荷载的标准值(不乘分项系数),并分别存成四个load step file。 2,使用solution->from ls files,求解四种荷载 3,荷载组合,命令流如下: /post1 lcdef,1,1 lcdef,2,2 lcdef,3,3 lcdef,4,4 !定义四种工况,分别为四种荷载下的计算结果 lcfact,1,1.2 lcfact,2,1.4 lcfact,3,1.19 lcfact,4,1.4 !指定各工况的组合系数 lcase,1 !读入工况1,database=1 sumtype,prin !指定加操作的对象 lcoper,add,2 !荷载组合,database=database+2 lcoper,add,4 !荷载组合,database=database+4 lcoper,lprin !计算线性主应力 lcwrite,11 !把database结果写到工况11,即恒荷载+活荷载+吊车荷载的结果 lcase,1 lcfact,2,1.19 lcfact,4,1.19 !改变组合系数 sumtype,prin lcoper,add,2 lcoper,add,3 lcoper,add,4 lcoper,lprin lcwrite,12 !把database结果写到工况12,即恒荷载+活荷载+吊车荷载+风荷载的结果 !... ...其他荷载组合 !之后使用lcase,n 就可调入工况n,并查看它的变形和内力

关于midas的荷载组合 - G4_ MIDAS

关于midas的荷载组合 - G4. MIDAS - 中华钢结构论坛引用 退出 | 短消息 | 会员 | 搜索 | 我的话题 | 控制面板 | 帮助 中华钢结构论坛? G4. MIDAS ?? 上一主题 | 下一主题?? 打印 | 推荐 | 订阅 | 收藏关于midas的荷载组合 wanqiao 积分 27 帖子 36 #12005-12-29 14:34 在前处理中已经定义了荷载组合工况,但是在后处理中当选择查看内力时候却没有已经定义好的荷载组合工况?这种情况如何解释? manifold 积分 1006 帖子 683 #22005-12-29 15:18

在postcs阶段,凡定义为施工阶段荷载类型的工况,是不可见的。 wanqiao 积分 27 帖子 36 #32005-12-29 16:26 问题是我是定义在前处理阶段中,这种问题做何解释? linquanzh 积分 2286 帖子 1185 #42005-12-29 17:28 如果是定义了施工阶段大的荷载那么: 关于施工阶段分析时,自动生成的CS:恒荷载、CS:施工荷载、CS:合计 做施工阶段分析时程序内部将在施工阶段加载的所有荷载,在分析结果中会

将其归结为 CS:恒荷载。 如果用户想查看如施工过程中某些荷载(如吊车荷载)对结构的影响的话,则需在分析之前,在分析/施工阶段分析控制数据 对话框的下端部分,将该荷载从分析结果中的 CS:恒荷载中分离出来。被分离出来的荷载将被归结为 CS:施工荷载。分析结果中的CS:合计,为CS:恒荷载、CS:施工荷载及钢束、收缩、徐变等荷载的合计。但不包括收缩和徐变的一次应力,因为它们是施工过程中发生变化的。将荷载类型定义为施工阶段荷载(CS)的话,则该荷载只在施工阶段分析中会被使用。对于完成施工阶段分析后的成桥模型,该荷载不会发生作用,不论是否被激活。 关于施工阶段分析时,自动生成的postCS阶段。postCS阶段的模型和边界条件与最终施工阶段的相同,postCS阶段的荷载为定义为非施工阶段荷载类型(在荷载工况中定义荷载类型)的所有荷载工况中的荷载,包括施工阶段中没有使用过的荷载。对于与其它成桥后作用的荷载进行荷载组合,须在postCS中进行。在生成荷载组合时将CS:合计定义为如LCB1的话,则postCS中的LCB1的结构状态即为施工阶段完了后的成桥状态。 楼主可以将文件发上来大家共同探讨一下。 wei1012 积分 65 帖子 77 #52005-12-29 19:42 我最近也有个关于荷载组合的问题 桥梁为预应力混凝土连续刚构桥,我现在想做正常使用阶段的应力验算。 我采用的荷载组合为“恒载(一期、二期)+收缩、徐变(一次、二次)+汽车+人群+钢束一次+钢束二次+整体降温(或者升温)” 现在算出来的混凝土箱梁应力有很多部位都在4000kN/m2左右,显然是超标(混凝土采用C50、C60),请问各位帮忙找找原因。

midas时程荷载工况中几个选项的说明

时程荷载工况中几个选项的说明 动力方程式如下: 在做时程分析时,所有选项的设置都与动力方程中各项的构成和方程的求解方法有关,所以在学习时程分析时,应时刻联想动力方程的构成,这样有助于理解各选项的设置。另外,正如哲学家所言:运动是绝对的,静止是相对的。静力分析方程同样可由动力方程中简化(去掉加速度、速度项,位移项和荷载项去掉时间参数)。 0.几个概念 自由振动: 指动力方程中P(t)=0的情况。P(t)不为零时的振动为强迫振动。 无阻尼振动: 指[C]=0的情况。 无阻尼自由振动: 指[C]=0且P(t)=0的情况。无阻尼自由振动方程就是特征值分析方程。 简谐荷载: P(t)可用简谐函数表示,简谐荷载作用下的振动为简谐振动。 非简谐周期荷载: P(t)为周期性荷载,但是无法用简谐函数表示,如动水压力。 任意荷载: P(t)为随机荷载(无规律),如地震作用。随机荷载作用下的振动为随机振动。 冲击荷载: P(t)的大小在短时间内急剧加大或减小,冲击后结构将处于自由振动状态。 1.关于分析类型选项 目前有线性和非线性两个选项。该选项将直接影响分析过程中结构刚度矩阵的构成。 非线性选项一般用于定义了非弹性铰的动力弹塑性分析和在一般连接中定义了非线性连接(非线性边界)的结构动力分析中。当定义了非弹性铰或在一般连接中定义了非线性连接(非线性边界),但是在时程分析工况对话框中的分析类型中选择了“线性”时,动力分析中将不考虑非弹性铰或非线性连接的非线性特点,仅取其特性中的线性特征部分进行分析。 只受压(或只受拉)单元、只受压(或只受拉)边界在动力分析中将转换为既能受压也能受拉的单元或边界进行分析。 如果要考虑只受压(或只受拉)单元、只受压(或只受拉)边界的非线性特征进行动力分析应该使用边界条件>一般连接中的间隙和钩来模拟。 2.关于分析方法选项 目前有振型叠加法、直接积分法、静力法三个选项。这三个选项是指解动力方程的方法。关于振型叠加法、直接积分法可以参考一些动力方程方面的书籍。 振型叠加法是将多自由度体系的动力反应问题转化为一系列单自由度体系的反应,然后再线性叠加的方法。其优点是计算速度快节省时间,但是由于采用了线性叠加原理,原则上仅适用于分析线弹性问题,当进行非线性动力分析时或者因为装有特殊的阻尼器而不能满足阻尼正交(刚度和质量的线性组合)时是不能使用振型叠加法的。 直接积分法是将时间作为积分参数解动力方程式的方法,又称为时域逐步积分法。直接

ansys荷载工况组合

若用ANSYS进行设计,往往要计算很多种工况组合,如果加载能分开加载独立计算然后结果叠加(仅限于弹性阶段)则效率可提高不少,下面推荐几个命令即可达到这种效果。 !★加自重——————————————————★1★ allsel,all acel,0,0,0 fdele,all,all,all sfadele,all,all,all acel,,,10 lswrite,1 allsel,all ……………… lswrite,N_LOAD !可加其他荷载,自己定义 allsel,all outpr,all,all lssolve,1,N_LOAD,1 !对各荷载独立求解 fini !荷载组合 /post1 allsel,all lcase, 1 !读出自重荷载下的结构响应 lcoper,add,2 !加上荷载2 lcwrite,31 !作为工况组合31 当然可以用lcfact定义荷载的分项系数,再进行组合。 善用这些命令,对于设计(往往是很多工况组合)就比较方便了 /post1 lcdef,1,1 lcdef,2,2 lcdef,3,3 lcdef,4,4 !定义四种工况,分别为四种荷载下的计算结果 lcfact,1,1.2 lcfact,2,1.4 lcfact,3,1.19 lcfact,4,1.4 !指定各工况的组合系数 lcase,1 !读入工况1,database=1 sumtype,prin !指定加操作的对象 lcoper,add,2 !荷载组合,database=database+2

lcoper,add,4 !荷载组合,database=database+4 lcoper,lprin !计算线性主应力 lcwrite,11 !把database结果写到工况11,即恒荷载+活荷载+吊车荷载的结果 lcase,1 lcfact,2,1.19 lcfact,4,1.19 !改变组合系数 sumtype,prin lcoper,add,2 lcoper,add,3 lcoper,add,4 lcoper,lprin lcwrite,12 !把database结果写到工况12,即恒荷载+活荷载+吊车荷载+风荷载的结果 !... ...其他荷载组合 !之后使用lcase,n 就可调入工况n,并查看它的变形和内力 !可使用如下命令流得到工况11和12,13的较大者99,进而查看最大应力 lcase,11 lcase,min,12 lcase,min,13 lcwrite,98 lcase 98 !查看工况98的应力分布... ... lcase,11 lcase,max,12 lcase,max,13 lcwrite,99 lcase 99 !查看工况99的应力分布... ... 以下为定义和读取荷载工况用到的一些命令: LCDEF_从结果文件中的一列结果产生荷载工况 LCDEF, LCNO, LSTEP, SBSTEP, KIMG LCNO:随意的指针数(1-99),要赋给LSTEP,SBSTEP和FILE命令指定的荷载工况。缺 省为1加前一个值。 LLSTEP:要定义为荷载工况的荷载步的编号。缺省为1。 SBSTEP:子荷载步的编号。缺省为荷载步的最后一个子荷载步。 KIMG:仅用于复数分析0-用复数分析的实部1-用虚部 注意:通过建立一个指向结果文件中的一列结果的指针产生一个荷载工况。这个指针(LCNO)可以用在LCASE或LCOPER命令中来读荷载工况数据到数据库中。

ansys荷载工况组合 Load Case

ansys荷载工况组合 Load Case ansys荷载工况组合 (转自新浪微博——majun的博客) 若用ANSYS进行设计,往往要计算很多种工况组合,如果加载能分开加载独立计算然后结果叠加(仅限于弹性阶段)则效率可提高不少,下面推荐几个命令即可达到这种效果。 !★加自重——————————————————★1★ allsel,all acel,0,0,0 fdele,all,all,all sfadele,all,all,all acel,,,10 lswrite,1 allsel,all ……………… lswrite,N_LOAD !可加其他荷载,自己定义 allsel,all outpr,all,all lssolve,1,N_LOAD,1 !对各荷载独立求解 fini !荷载组合 /post1 allsel,all lcase, 1 !读出自重荷载下的结构响应 lcoper,add,2 !加上荷载2 lcwrite,31 !作为工况组合31 当然可以用lcfact定义荷载的分项系数,再进行组合。 善用这些命令,对于设计(往往是很多工况组合)就比较方便了

对单层或二层框架进行弹性分析,需要考虑四种荷载 恒荷载,活荷载,风荷载和吊车荷载 1,几何模型(beam3和beam54)建立后,定义所需的element table,主要包括杆端力和最大应力,最小应力等。 然后保存数据库。分别施加四种荷载的标准值(不乘分项系数),并分别存成四个load step file。 2,使用solution->from ls files,求解四种荷载(LSSOLVE,1,4,1,) 3,荷载组合,命令流如下: /post1 lcdef,1,1 lcdef,2,2 lcdef,3,3 lcdef,4,4 !定义四种工况,分别为四种荷载下的计算结果 lcfact,1,1.2 lcfact,2,1.4 lcfact,3,1.19 lcfact,4,1.4 !指定各工况的组合系数 lcase,1 !读入工况1,database=1 sumtype,prin !指定加操作的对象 lcoper,add,2 !荷载组合,database=database+2 lcoper,add,4 !荷载组合,database=database+4 lcoper,lprin !计算线性主应力 lcwrite,11 !把database结果写到工况11,即恒荷载+活荷载+吊车荷载的结果 lcase,1 lcfact,2,1.19 lcfact,4,1.19 !改变组合系数 sumtype,prin lcoper,add,2 lcoper,add,3

Midas 各力和组合的解释(包括钢束一次 二次)资料讲解

M i d a s各力和组合的解释(包括钢束一次 二次)

Midas 各力和组合的解释 (帮助“01荷载组合”里截取) 提示:在施工阶段分析后,程序会自动生成一个Postcs阶段以 及下列荷载工况。 Postcs阶段的模型和边界为在施工阶段分析 控制对话框中定义的“最终施工阶段”的模型,荷载为该最终 施工阶段上的荷载和在“基本”阶段上定义的没有定义为“施 工阶段荷载”类型的所有其他荷载。 恒荷载(CS): 除预应力、收缩和徐变之外,在各施工阶段激活和钝化的所有荷载均保存在该工况下。 施工荷载(CS):当要查看恒荷载(CS)中的某个荷载的 效应时,可在施工阶段分析控制对话框中的 “从施工阶段分析结果的CS:恒荷载工况中分离出 荷载工况(CS:施工荷载)”中将该工况分离出来,分 离出的工况效应将保存在施工荷载(CS)工况中。 钢束一次(CS):钢束张拉力对截面形心的内力引起的 效应。 反力: 无。 位移: 钢束预应力引起的位移(用计算 的等效荷载考虑支座约束计算的实际 位移) 内力: 用钢束预应力等效荷载的大小 和位置计算的内力(与约束和刚度无关) 应力: 用钢束一次内力计算的应力 钢束二次(CS):超静定结构引起的钢束二次效应(次内 力引起的效应)。 反力: 用钢束预应力等效荷载计算的 反力 位移: 无。 内力: 因超静定引起的钢束预应力等 效荷载的内力(用预应力等效节点荷载

考虑约束和刚度后计算的内力减去钢 束一次内力得到的内力) 应力: 由钢束二次内力计算得到的应 力 徐变一次(CS):引起徐变变形的内力效应。徐变一次 和二次是MIDAS程序内部为了计算方便创造的名称。 反力: 无意义。 位移: 徐变引起的位移(使用徐变一次 内力计算的位移) 内力: 引起计算得到的徐变所需的内 力(无实际意义---计算徐变一次位移 用) 应力: 使用徐变一次内力计算的应力 (无实际意义) 徐变二次(CS):徐变变形引起的实际徐变内力效应。 反力: 徐变二次内力引起的反力 内力: 徐变引起的实际内力 应力: 使用徐变二次内力计算得到的 应力 收缩一次(CS):引起收缩变形的内力效应。收缩一次 和二次是MIDAS程序内部为了计算方便创造的名称。 反力: 无意义 位移: 收缩引起的位移(使用收缩一次 内力计算的位移) 内力:引起计算得到的收缩所需的内力 (无实际意义---计算收缩一次位移用) 应力: 使用收缩一次内力计算的应力 (无实际意义) 收缩二次(CS):收缩变形引起的实际收缩内力效应。

荷载工况组合详解

荷载工况组合详解 1、基本组合是属于承载力极限状态设计的荷载效应组合,它包括以永久荷载效应控制组合和可变荷载效应控制组合,荷载效应设计值取两者的大者。两者中的分项系数取值不同,这是新规范不同老规范的地方,它更加全面地考虑了不同荷载水平下构件地可靠度问题。在承载力极限状态设计中,除了基本组合外,还针对于排架、框架等结构,又给出了简化组合。 2、标准组合、频遇组合和准永久组合是属于正常使用极限状态设计的荷载效应组合。 标准组合在某种意义上与过去的短期效应组合相同,主要用来验算一般情况下构件的挠度、裂缝等使用极限状态问题。在组合中,可变荷载采用标准值,即超越概率为5%的上分位值,荷载分项系数取为1.0。可变荷载的组合值系数由《荷载规范》给出。 频遇组合是新引进的组合模式,可变荷载的频遇值等于可变荷载标准值乘以频遇值系数(该系数小于组合值系数),其值是这样选取的:考虑了可变荷载在结构设计基准期内超越其值的次数或大小的时间与总的次数或时间相比在 10%左右。频遇组合目前的应用范围较为窄小,如吊车梁的设计等。由于其中的频遇值系数许多还没有合理地统计出来,所以在其它方面的应用还有一段的时间。 准永久组合在某种意义上与过去的长期效应组合相同,其值等于荷载的标准值乘以准永久值系数。它考虑了可变荷载对结构作用的长期性。在设计基准期内,可变荷载超越荷载准永久值的概率在50%左右。准永久组合常用于考虑荷载长期效应对结构构件正常使用状态影响的分析中。最为典型的是:对于裂缝控制等级为2级的构件,要求按照标准组合时,构件受拉边缘混凝土的应力不超过混凝土的抗拉强度标准值,在按照准永久组合时,要求不出现拉应力。 3、荷载分项系数的取值问题 新的荷载规范中恒载的分项系数在实际工作中怎么取?什么时候取1.35什么时候取1.2? 1.2恒+1.4活 1.35恒+0.7*1.4活 抗浮验算时取0.9 砌体抗浮取0.8 1.35G+0.7*1.4Q>1.2G+1.4Q G/Q>2.8 所以当恒载与活载的比值大于2.8时,取1.35G+0.7*1.4Q 否则,取1.2G+1.4Q 对一般结构来说,1.楼板可取1.2G+1.4Q 2.屋面楼板可取1.35G+0.7*1.4Q 3.梁柱(有墙)可取1.35G+0.7*1.4Q

承受多荷载工况的大跨度空间结构模型设计与制作

《承受多荷载工况的大跨度空间结构模型设计与制作》 1.命题背景 目前大跨度结构的建造和所采用的技术已成为衡量一个国家建筑水平的重要标志,许多宏伟而富有特色的大跨度建筑已成为当地的象征性标志和著名的人文景观。 本次题目,要求学生针对静载、随机选位荷载及移动荷载等多种荷载工况下的空间结构进行受力分析、模型制作及试验。此三种荷载工况分别对应实际结构设计中的恒荷载、活荷载和变化方向的水平荷载(如风荷载或地震荷载),并根据模型试验特点进行了一定简化。选题具有重要的现实意义和工程针对性。通过本次比赛,可考察学生的计算机建模能力、多荷载工况组合下的结构优化分析计算能力、复杂空间节点设计安装能力,检验大学生对土木工程结构知识的综合运用能力。 2.赛题概述 竞赛赛题要求参赛队设计并制作一个大跨度空间屋盖结构模型,模型构件允许的布置范围为两个半球面之间的空间,如图 1 所示,内半球体半径为 375mm,外半球体半径 550mm。 (a) 平面图(b)剖面图(c)3d 图 图 1 模型区域示意图(单位:mm) 模型需在指定位置设置加载点,加载示意图如图 2 所示。模型放置于加载台上,先在8个点上施加竖向荷载(加载点位置及编号规则详见4.1及4.3),具体做法是:采用挂钩从加载点上引垂直线,并通过转向滑轮装置将加载线引到加载台两侧,采用在挂盘上放置

砝码的方式施加垂直荷载。在 8 个点中的点 1 处施加变化方向的水平荷载,具体做法是:采用挂钩从加载点上引水平线,通过可调节高度的转向滑轮装置将加载线引至加载台一侧,并在挂盘上放置砝码用于施加水平荷载。施加水平荷载的装置可绕通过点 1 的竖轴旋转,用于施加变化方向的水平荷载。具体加载点位置及方式详见后续模型加载要求。 图 2 加载 3d 示意图 (注:本图的模型仅为参考构型,只要满足题目要求的结构均为可行模型) 3.模型方案及制作要求 3.1. 理论方案要求 (1)理论方案指模型的设计说明书和计算书。计算书要求包含:结构选型、结构建模及计算参数、多工况下的受荷分析、节点构造、模型加工图(含材料表)。文本封面要求注明作品名称、参赛学校、指导老师、参赛学生姓名、学号;正文按设计说明书、方案图和计

ansys多工况组合

ANSYS荷载工况组合计算实例 ?1相关命令 ? 1.1 LCDEF ? 1.2LCFACT ? 1.3SUMTYPE ? 1.4LCOPER ? 1.5LCASE1 ? 1.6LCWRITE ? 1.7其他命令 ?2实例 在实际工程计算中,往往需要分析多种不同荷载组合总用下的结构响应,比如恒载、活荷载、风荷载等的组合,有些是荷载位置不同,有些则是荷载大小差异。 ANSYS做不同荷载工况组合分析,要么是每一种工况用单独的APDL进行运算,每个工况一套文件;要么就是利用分析结果,在一个计算文件中,用不同的荷载步定义荷载组合,再用工况组合功能来实现我们的分析目标。 下面总结一下实现荷载工况组合的方法 1.相关命令 1.1. LCDEF LCDEF, LCNO, LSTEP, SBSTEP, KIMG 从结果文件中创建一个工况 其中常用参数为: LCNO 工况编号,是1~99之间的一个数字,作为指针,将工况与计算文件中的荷载步和荷载子步联系起来 LSTEP 用于定义工况的荷载步 SBSTEP 用于定义工况的荷载子步,默认为荷载步的最后一个子步 KIMG 用于复数分析,0-用实部;1-用虚部 1.2.LCFACT LCFACT, LCNO, FACT 定义工况的分项系数 其中,Lcno为工况编号,fact为分项系数 1.3.SUMTYPE SUMTYPE, Label 为工况组合设置数据组合类型 Lable参数有两个选项,分别为

?COMP—Combine element component stresses only. Stresses such as average nodal stresses, principal stresses, equivalent stresses, and stress intensities are derived from the combined element component stresses. Default. 此选项为只将单元应力进行组合,节点平均应力、主应力、等效应力等则从组合后的单元应力中求解(不知道这样理解是否合适呢。。。) ?PRIN—Combine principal stress, equivalent stress, and stress intensity directly as stored on the results file. Component stresses are not available with this option.对主应力、等效应力、应力强度等直接根据结果文件进行组合。所以平时在计算主应力等结果时候多用次选项。 1.4.LCOPER LCOPER, Oper, LCASE1, Oper2, LCASE2 对荷载工况进行操作 Oper ?ZERO—Zero results portion of database (LCASE1 ignored).结果数据库中为零的部分??SQUA—Square database values (LCASE1 ignored).数据结果取平方 ?SQRT—Square root of database (absolute) values (LCASE1 ignored).结果数据开平方根?LPRIN—Recalculate line element principal stresses (LCASE1 ignored). Stresses are as shown for the NMISC items of the ETABLE command for the specific line element type.计算线性主应力 ?ADD—Add LCASE1 to database values.将工况1增加到求解数据库中?SUB—Subtract LCASE1 from database values.将工况1从求解数据库中删除?SRSS—Square root of the sum of the squares of database and LCASE1.将求解数据库和工况1之和进行开平方 ?MIN—Compare and save in database the algebraic minimum of database and LCASE1.将数据库和工况1中的代数比较小者存入现有数据库 ?MAX—Compare and save in database the algebraic maximum of database and LCASE1.将数据库和工况1中的代数较大者存入现有数据库 ?ABMN—Compare and save in database the absolute minimum of database and LCASE1 (based on magnitudes, then apply the corresponding sign).将数据库和工况1中绝对值较小者存入现有数据库 ?ABMX—Compare and save in database the absolute maximum of database and LCASE1 (based on magnitudes, then apply the corresponding sign).将数据库和工况1中绝对值较大者存入现有数据库 1.5.LCASE1 First load case in the operation (if any). See LCNO of the LCDEF command. If ALL, repeat operations using all selected load cases .工况运算的第一个工况,由LCDEF命令指定,如果为all,则对所有已选择的工况重复命令。 Oper2 MULT—乘法运算: LCASE1*LCASE2 CPXMAX—此选项用于复数运算,将工况1作为实部,工况2作为虚部。This option does a phase angle sweep to calculate the maximum of derived stresses and equivalent strain for a complex solution where LCASE1 is the real part and LCASE2 is the imaginary part. The Oper field is not applicable with this option. Also, the LCABS and SUMTYPE commands have no effect on this option. The value of S3 will be a minimum. This option does not apply to derived displacement amplitude (USUM). Load case writing (LCWRITE) is not supported. See POST1

Midas 各力和组合的解释(包括钢束一次 二次)

Midas 各力和组合的解释 (帮助“01荷载组合”里截取) 提示:在施工阶段分析后,程序会自动生成一个Postcs阶段以及 下列荷载工况。 Postcs阶段的模型和边界为在施工阶段分析控制对话框中 定义的“最终施工阶段”的模型,荷载为该最终施工阶段上的荷 载和在“基本”阶段上定义的没有定义为“施工阶段荷载”类型的 所有其他荷载。 恒荷载(CS): 除预应力、收缩和徐变之外,在各施工阶段激活和钝化的所有荷载均保存在该工况下。 施工荷载(CS):当要查看恒荷载(CS)中的某个荷载的效 应时,可在对话框中的“从施工阶段分析结果的CS: 恒荷载工况中分离出荷载工况(CS:施工荷载)”中将该工 况分离出来,分离出的工况效应将保存在施工荷载(CS) 工况中。 钢束一次(CS):钢束张拉力对截面形心的内力引起的效 应。 反力: 无。 位移: 钢束预应力引起的位移(用计算 的等效荷载考虑支座约束计算的实际 位移) 内力: 用钢束预应力等效荷载的大小 和位置计算的内力(与约束和刚度无关)

应力: 用钢束一次内力计算的应力 钢束二次(CS):超静定结构引起的钢束二次效应(次内力引起的效应)。 反力: 用钢束预应力等效荷载计算的 反力 位移: 无。 内力: 因超静定引起的钢束预应力等 效荷载的内力(用预应力等效节点荷载 考虑约束和刚度后计算的内力减去钢 束一次内力得到的内力) 应力: 由钢束二次内力计算得到的应 力 徐变一次(CS):引起徐变变形的内力效应。徐变一次和二次是MIDAS程序内部为了计算方便创造的名称。 反力: 无意义。 位移: 徐变引起的位移(使用徐变一次 内力计算的位移) 内力: 引起计算得到的徐变所需的内 力(无实际意义---计算徐变一次位移用) 应力: 使用徐变一次内力计算的应力 (无实际意义)

设计要求及荷载效应组合

第3讲 高层建筑结构设计要求及荷载效应组合 与一般结构相同,设计高层建筑结构时,分别计算各种荷载作用下的内力和位移,然后从不同工况的荷载组合中找到最不利内力及位移,进行结构设计。 应当保证在荷裁作用下结构有足够的承裁力及刚度,以保证结构的安全和正常使用。结构抗风及抗震对承载力及位移有不同的要求,较高的结构抗风还要考虑舒适度要求,抗震结构还要满足延性要求等。下面将分别进行介绍。 1、承载力验算 高层建筑结构设计应保证结构在可能同时出现的各种外荷载作用下,各个构件及其连接均有足够的承载力。我国《建筑结构设计统一标准》规定构件按极限状态设计,承载力极限状态要求采用由荷载效应组合得到的构件最不利内力进行构件截面承裁力验算。结构构件承载力验算的一般表达式为: 持久设计状况、短暂设计状况无地震作用组合时:R S ≤0γ 有地震作用组合时:RE E E R S γ/≤

承载力抗震调整系数

2、侧移限制 1)使用阶段层间位移限制 结构的刚度可以用限制侧向变形的形式表达,我国现行规范主要限制层间位移: ()[]h u h u //max ?≤? 在正常使用状态下,限制侧向变形的主要原因有:要防止主体结构开裂、损坏;防止填充墙及装修开裂、损坏;过大的侧向变形会使人有不舒适感,影响正常使用;过大的侧移会使结构产生附加内力(?-P 效应)。在正常使用状态下(风荷载和小震作用),h u /?的限值按下表选用。

2)结构薄弱层的弹塑性层间位移的简化计算 弹塑性层间位移按下列公式计算 e p p u u ?=?η 或y y p y p u u u ?= ?=?ξημ 楼层屈服强度系数是指:楼房等建筑的各层按构件实际配筋和材料强度标准值计算的楼层受剪承载力和按罕遇地震作用标准值计算的楼层弹性地震剪力的比值;对排架柱,指按实际配筋面积、材料强度标准值和轴向力计算的正截面受弯承载力与按罕遇地震作用标准值计算的弹性地震弯矩的比值。 楼层屈服强度系数表示建筑的实际承载强度相对于其设计时罕遇地震的对建筑的作用力的大小。《高层建筑混凝土结构技术规程》中规定:7~9度时楼层屈服强度系数小于0.5的框架结构,应该进行罕遇地震作用下的薄弱层弹塑性变形验算。(详见《高层建筑混凝土结构技术规程》2010版3.7.4条) 下列结构应进行弹塑性变形验算: (1)7~9度时层屈强系数小于0.5的框架结构;(2)甲类建筑和9度抗震设防的乙类建筑结构;(3)采用隔振和效能减震设计的结构;(4)高度大于150m 的结构。

etabs 荷载工况,组合及加载

第八章荷载工况、荷载组合及施加荷载 ETABS对于施加荷载的处理方法是首先要定义荷载工况,然后给各个荷载工况中指定荷载。ETABS中的荷载工况包括静力荷载工况、反应谱工况、时程工况、静力非线性Pushover工况、施工顺序加载工况。静力荷载工况又细分为恒荷载工况、活荷载工况、地震荷载工况、风荷载工况、雪荷载工况等。ETABS可以按照相关国家的规范自动生成设计荷载组合,同时也允许工程师自己定义需要的设计荷载组合。 本章将介绍静力荷载工况、反应谱工况、风荷载、设计荷载组合的定义方法、荷载的施加以及荷载的显示输出。 8.1荷载工况定义 ETABS定义荷载工况的特点在于其灵活性与科学性。工程师可以对荷载工况的任意参数进行修改,人为控制荷载的定义。这就要求工程师对于荷载工况的每一项参数深刻理解。这对工程师对于结构分析的整体把握是有帮助的。 本节将主要介绍静力荷载工况、反应谱工况、活荷载折减以及荷载组合的定义方法。 8.1.1定义静力荷载工况 进行结构分析之前,首先要定义荷载工况。ETABS中对于荷载工况的数目没有限制。如果希望单独查看某些荷载作用下的结构内力、变形等,则可以将这些荷载单独定义为一个荷载工况。 点击定义>静荷载工况命令,弹出定义静荷载工况名对话框(图8-1)。 图8-1 定义静载工况名对话框 荷载

点击 在这一对话框中完成结构分析中静力荷载工况的定义。在荷载区域中下面列表部分是已经定义了的荷载工况。第一列荷载是荷载工况的名称。荷载工况的名称可以任意设定,最好有物理意义。但是需要注意不能用“MODE”一词,因为ETABS默认已经存在“MODE”工况为振型分析工况。例如,定义X方向的风荷载工况可以命名为WINDX。第二列类型是荷载工况的荷载类型。ETABS 内部设定了关键字。DEAD(恒荷载)、SUPER DEAD(附加恒荷载)、LIVE(活荷载)、REDUCE LIVE(折减活荷载)、QUAKE(自动地震荷载)、WIND(自动风荷载)、SNOW(雪荷载),OTHER (其它)。荷载类型的设定方法是点击类型下拉框,选择相应的荷载类型。ETABS自动生成荷载组合时,将根据荷载类型为各个荷载工况设定荷载组合系数。这里SUPER DEAD(附加恒荷载)、REDUCE LIVE(折减活荷载)不适合中国规范。 如果将荷载工况类型定义为OTHER时,这一荷载工况将不参与任何荷载组合。所以,对于工程师准备自己定义荷载组合的荷载工况,可以将荷载工况类型定义为OTHER。第三列自重乘数是该荷载工况中自动包含自重的系数,其值为0~1。如果在某一荷载工况中,设置了非零的自重系数,

相关主题
文本预览
相关文档 最新文档