当前位置:文档之家› 相似三角形专题训练(普通难度教师版)

相似三角形专题训练(普通难度教师版)

相似三角形专题训练(普通难度教师版)
相似三角形专题训练(普通难度教师版)

相似三角形专题训练

一、单选题(共5题;共10分)

1.若,则等于()

A. B. C. D.

【答案】B

【解析】【解答】解:由比例的基本性质可知a= ,因此= .

故答案为:B.

【分析】首先用含b的式子表示出a,然后将a的值代入代数式即可求出答案.

2.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()

A. AB2=AC?BC

B. BC2=AC?BC

C. AC=BC

D. BC=AC

【答案】 D

【解析】【解答】解:∵点C是线段AB的黄金分割点且AC>BC,

∴,即AC2=BC?AB,故A、B错误;

∴AC= AB,故C错误;

BC= AC,故D正确;

故答案为:D.

【分析】根据线段的黄金分割的定义得出:黄金分割点将线段分割成的较长线段是较短线段与原线段的比例中项得出,从而即可一一判断得出答案.

3.如图,AB是半圆的直径,点C是弧AB的中点,点E是弧AC的中点,连结EB,CA交于点F,则的值为()

A. B. C. D.

【答案】 D

【解析】【解答】解:取AB中点O,连接OE、BC,OE与AC交于点M.

∵AB是半圆的直径, 点C是弧AB的中点,

∴∠ACB=90°,则△ABC是等腰直角三角形,

∵E为弧AC的中点,

∴OE⊥AC,AM=MC,

∴OE∥BC,△AMO是等腰直角三角形,

设OM=1,则AM=1,

∴AC=BC=2,OA= ,

∴OE= ,

∴EM=

∵OE∥BC,

∴△MEF∽△CBF,

∴,

故答案为:D.

【分析】取AB中点O,连接OE、BC,OE与AC交于点M,首先根据圆周角定理及弧、弦的关系判断出△ABC是等腰直角三角形,进而根据垂径定理得出OE⊥AC,AM=MC,然后由三角形的中位线定理得出OE∥BC,进而再判断出△AMO是等腰直角三角形,然后判断出△MEF∽△CBF,根据相似三角形对应边成

比例得出.

4.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前。其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长丈五尺.同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为()

A. 五丈

B. 四丈五尺

C. 一丈

D. 五尺

【答案】B

【解析】【解答】解:设竹竿长为x尺。由题意得:

解得x=45

即竹竿长为4丈5尺。

故答案为:B.

【分析】设竹竿长为x尺,根据相似三角形的对应边成比例列出方程,即可求解。

5.如图,P是ABCD内一点,连结P与ABCD各顶点,EFGH各顶点分别在边AP、BP、CP、DP 上,且AE=2EP,EF∥AB.若△PEF与△PGH的面积和为1,则ABCD的面积为()

A. 4

B. 6

C. 12

D. 18

【答案】 D

【解析】【解答】解:∵AE=2EP

∴AP=3EP

∵EF∥AB

∴△PEF∽△PAB

∴S△PEF:S△PAB=(PE:AP)2=9

即S△PAB=9S△PEF

同理S△PCD=9S△PGH

∴S△PAB+S△PCD=9

又∵S△PAB+S△PCD=S口ABCD

∴S口ABCD=18.

故答案为:D.

【分析】先根据相似三角形的判定和性质求出S△PAB+S△PCD=9,然后再利用S口ABCD=2(S△PAB+S△PCD)即可求解。

二、填空题(共4题;共4分)

6.两个等腰直角三角板如图放置,点D为AB的中点.若AG=3,CG=1,则点G、H之间的距离为

________。

【答案】

【解析】【解答】解:∵ AG=3,CG=1

∴AC=AG+CG=4

在等腰直角三角形ABC和等腰直角三角形DEF中,∠A=∠EDF=∠B=45°,AC=BC=4

∴AB=4

∴AD=BD=2

∴∠ADF=∠ADE+∠EDF,∠ADF=∠B+∠EDF

∴∠ADE=∠B

∴△ADG∽△BHD

解得BH=

∴CH=BC-BH=4-=

连接GH,在Rt△CGH中,GH=.

∴点G、H之间的距离为。

【分析】先求出两个等腰直角三角形的腰、底角以及底边,进而求出AD、BD的长,然后利用两角相等证得△ADG∽△BHD,进而利用相似三角形的对应边成比例求出BH的长,进而求出CH,然后在Rt△CGH中利用勾股定理求出GH的长即可。

7.如图,AB∥CD∥EF,直线l1、l2与这三条平行线分别交于点A、D、F和点B、C、E.若AD:DF=3:1,BE=10,则CE的长为________。

【答案】

【解析】【解答】解:∵AB∥CD∥EF

∴BC:BE=AD:DF=1:3

即BC:(10-BC)=1:3

∴BC=7.5

∴CE=BE-BC=10-7.5=2.5。

【分析】根据平行线分线段成比例定理列出比例方程求出BC的长,进而可求得CE的长。

8.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点.若DE=1,则DF的长为________.

【答案】1.5

【解析】【解答】∵DE=1,DC=3,

∴EC=3-1=2,

∵四边形ABCD是菱形,

∴AD∥BC,

∴△DEF∽△CEB,

∴,

∴,

∴DF=1.5,

故答案为:1.5.

【分析】先求得CE=CD-DE=2。利用菱形的性质得AD∥BC,从而得△DEF∽△CEB,利用相似三角形对应边成比例可得,据此可求得DF的长。

9.如果= ,那么的值是________.

【答案】

【解析】【解答】因为= ,所以,计算得到.

【分析】根据比例的基本性质可得4(x+y)=7y,变形为4x=3y,故可求出结果。

三、解答题(共1题;共5分)

10.如图,直线l1∥l2∥l3,直线AC依次交l1,l2,l3于A,B,C三点,直线DF依次交l1,l2,l3于D,E,F三点,若,DE=2,求EF的长.

【答案】解:∵l1∥l2∥l3,直线AC依次交l1、l2、l3于A、B、C三点,直线DF依次交l1、l2、l3于D、E、F三点,

∴,

∵,DE=2,

∴,

解得:DF=3.5,

∴EF=DF-DE=3.5-2=1.5

【解析】【分析】根据平行线分线段成比例定理得出,根据比例式即可求出DF的长,进而根据EF=DF-DE 即可算出答案.

四、综合题(共7题;共78分)

11.在Rt△ABC中,∠ACB=90°,AB=5,AC=3.矩形DEFG的顶点D、G分别在边AC、BC上,EF在边AB上。

(1)点C到AB的距离为________ 。

(2)如图①,若DE=DG,求矩形DEFG的周长。

(3)如图②,若矩形DEFG的周长是DE长的8倍,则矩形DEFG的周长为________ 。

【答案】(1)

(2)解:如图,过点(作CM⊥AB丁点M,交DG于点N

在Rt△ABC中,∠ACB=90°

勾股定理,得BC2=AB2-AC2

即BC=4

∴S△ACB= AC·BC= AB.CM,

∴CM=

∵四边形DEFG是矩形,

∴DG∥AB

∴MN=DE,CN⊥DG

∴△CDG∽△CAB

设DE=DG=x.则

解得x=

∴矩形DEFG的周长为

(3)

【解析】【分析】(1)先利用勾股定理求出BC的长,然后利用等面积法求出C到AB的距离;

(2)先利用“平行线法”证得△CDG∽△CAB,然后利用相似三角形的对应高的比等于相似比列出比例式,求出此正方形的边长,进而求出其周长;

(3)矩形DEFG的周长是DE长的8倍可知DG=3DE=3x,方法同(2)求出x,即可的矩形的长与宽,从而可求。

12.

(1)感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)

(2)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:

△ABP∽△PCD.

(3)拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE =45°,BC=6 ,BD=4,则DE的长为________.

【答案】(1)解:∵∠APD=90°,

∴∠APB+∠DPC=90°,

∵∠B=90°,

∴∠APB+∠BAP=90°,

∴∠BAP=∠DPC,

∵AB∥CD,∠B=90°,

∴∠C=∠B=90°,

∴△ABP∽△PCD;

(2)解:∵∠APC=∠BAP+∠B,∠APC=∠APD+∠CPD,

∴∠BAP+∠B=∠APD+∠CPD.

∵∠B=∠APD,

∴∠BAP=∠CPD.

∵∠B=∠C,

∴△ABP∽△PCD;

(3)

【解析】【解答】解:拓展:同探究的方法得出,△BDP∽△CPE,

∴,

∵点P是边BC的中点,

∴BP=CP=3 ,

∵BD=4,

∴,

∴CE=,

∵∠B=∠C=45°,

∴∠A=180°﹣∠B﹣∠C=90°,

即AC⊥AB且AC=AB=6,

∴AE=AC﹣CE=6﹣=,AD=AB﹣BD=6﹣4=2,

在Rt△ADE中,DE===.

故答案是:.

【分析】(1)已知∠APD=90°,利用平角的定义可得∠APB+∠DPC=90°;已知∠B=90°,根据直角三角形两锐角互余可得∠APB+∠BAP=90°,所以∠BAP=∠DPC;再根据AB∥CD,∠B=90°,则得∠C=∠B=90°,故可证△ABP∽△PCD;

(2)因为∠APC=∠BAP+∠B=∠APD+∠CPD和∠B=∠APD可得∠BAP=∠CPD.又∠B=∠C,故可得

△ABP∽△PCD;

(3)同(2)可得△BDP∽△CPE,利用相似三角形的对应边成比例可得,又BP=CP=3故可求得CE的长;然后证得△ADE是直角三角形,利用勾股定理可求出DE。

13.如图,在△ABC中,DE∥AC,DF∥AE,BD:DA=3:2,BF=6,DF=8,

(1)求EF的长;

(2)求EA的长.

【答案】(1)证明:∵DF∥AE,

∴=,即=,

解得,EF=4;

(2)解:∵DF∥AE,

∴=,即=,

解得,EA=.

【解析】【分析】(1)根据平行线分线段成比例定理得,据此可求EF的长,

(2)先由DF∥AE证得△BDF∽△BAE,利用相似三角形的对应边成比例得,据此可解。

14.如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=16,BD=8,

(1)求证:△ACD∽△BED;

(2)求DC的长.

【答案】(1)证明:∵∠C=∠E,∠ADC=∠BDE,

∴△ACD∽△BED

(2)解:∵△ACD∽△BED,

∴=,

又∵AD:DE=3:5,AE=16,

∴AD=6,DE=10,

∵BD=8,

∴=.

∴DC=.

【解析】【分析】(1)已知∠C=∠E,加上对顶角∠ADC=∠BDE,易证△ACD∽△BED;

(2)由AD:DE=3:5,AE=16,可得AD=6,DE=10;又根据△ACD∽△BED可得,故可

求得DC的长。

15.如图,在△ABC中,AD为∠BAC的平分线,点E在BC的延长线上,且∠EAC=∠B,以DE为直径的半圆交AD于点F,交AE于点M.

(1)判断AF与DF的数量关系,并说明理由.

(2)只用无刻度的直尺画出△ADE的边DE上的高AH(不要求写做法,保留作图痕迹).

(3)若EF=8,DF=6,求DH的长.

【答案】(1)解:AF=DF,理由如下:

∵AD平分∠BAC,∴∠BAD=∠CAD.又∵∠B=∠CAE,∴∠BAD+∠B=∠CAD+∠CAE.即∠ADE=∠DAE,

∴AE=DE,∵DE是直径,∴EF⊥AD,∴AF=DF

(2)解:如图:连接DM,DM交EF于G,作射线AG交DE于H,此时AH是高

(3)解:在△EFD中,EF=8,DF=6,由勾股定理得,DE=AE=10,∵AH是DE边上的高,∴∠AHD=90°,∵∠EFD=90°,∴∠AHD=∠EFD,∵∠ADH=∠EDF,∴△ADH∽△EDF,∴DH:DF=AD:DE,∴DH:

6=12:10,解得DH=

【解析】【分析】(1)AF=DF,理由如下:根据角平分线的定义得出∠BAD=∠CAD.又∠B=∠CAE,根据等式的性质得出∠BAD+∠B=∠CAD+∠CAE,即∠ADE=∠DAE ,根据等角对等边得出AE=DE,根据直径所对的圆周角是直角得出EF⊥AD,根据等腰三角形的三线合一得出AF=DF;

(2)如图:连接DM,根据直径所对的圆周角是直角得出DM⊥AE,DM交EF于G,根据三角形的三条高线相交于一点且两点确定一条直线得出,作射线AG交DE于H,此时AH是高;

(3)首先根据勾股定理得出DE=AE=10 ,然后判断出△ADH∽△EDF,根据相似三角形对应边成比例得出DH:DF=AD:DE ,由比例式即可算出DH的长.

16.已知:如图,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足为点D,E是BD的中点,联结AE并延长,交边BC于点F.

(1)求∠EAD的余切值;

(2)求的值.

【答案】(1)解:∵BD⊥AC,

∴∠ADE=90°,

Rt△ADB中,AB=13,cos∠BAC= ,

∴AD=5,由勾股定理得:BD=12,

∵E是BD的中点,

∴ED=6,

∴∠EAD的余切= =

(2)解:过D作DG∥AF交BC于G,

∵AC=8,AD=5,∴CD=3,

∵DG∥AF,

∴= ,

设CD=3x,AD=5x,

∵EF∥DG,BE=ED,

∴BF=FG=5x,

【解析】【分析】(1)在Rt△ADB中,根据余弦函数的定义,由cos∠BAC= ,得出AD=5,根据勾股定理得出BD的长,再根据中点的定义得出ED的长,最后根据正切函数的定义,由∠EAD的余切= 算出答案;

(2)过D作DG∥AF交BC于G,根据平行线分线段成比例定理得出= ,设CD=3x,AD=5x,根据三角形的中位线定理得出BF=FG=5x,从而即可求出的值.

17.在△ABC 中,∠BAC=90°,AB0).

(1)△PBM 与△QNM 相似吗?请说明理由;

(2)若∠ABC=60°,AB=4 cm.

①求动点Q 的运动速度;

②设△APQ 的面积为s(cm2),求S 与t 的函数关系式.(不必写出t 的取值范围)

(3)探求BP2、PQ2、CQ2三者之间的数量关系,请说明理由.

【答案】(1)解:△PBM∽△QNM.

理由:

∵MQ⊥MP,MN⊥BC,

∴∠PMN+∠PMB=90°,∠QMN+∠PMN=90°,

∴∠PMB=∠QMN.

∵∠B+∠C=90°,∠C+∠MNQ=90°,

∴∠B=∠MNQ,

∴△PBM∽△QNM

(2)解:∵∠BAC=90°,∠ABC=60°,

∴BC=2AB=8 cm.AC=12cm,

∵MN垂直平分BC,

∴BM=CM=4 cm.

∵∠C=30°,

①设Q点的运动速度为v(cm/s).

∵△PBM∽△QNM.

∴,

∴,

∴v=1,

答:Q点的运动速度为1cm/s.

②∵AN=AC-NC=12-8=4cm,

∴AP=4 - t,AQ=4+t,

∴S= AP?AQ= (4 - t)(4+t)=- t2+8 .(0<t≤4)当t>4时,AP=- t+4 =(4-t).

则△APQ的面积为:S= AP?AQ= (- t+4 )(4+t)= t2-8

(3)解:PQ2=CQ2+BP2.

理由:延长QM到D,使MD=MQ,连接PD、BD、BQ、CD,

∵M是BC边的中点,

∴BM=CM,

∴四边形BDCQ是平行四边形,

∴BD∥CQ,BD=CQ.

∴∠BAC+∠ABD=180°.

∵∠BAC=90°,

∴∠ABD=90°,

在Rt△PBD中,由勾股定理得:

PD2=BP2+BD2,

∴PD2=BP2+CQ2.

∵MQ⊥MP,MQ=MD,

∴PQ=PD,

∴PQ2=BP2+CQ2

【解析】【分析】(1)△PBM∽△QNM,理由如下:根据同角的余角相等得出∠PMB=∠QMN ,

∠B=∠MNQ,从而利用有两个角对应相等的两个三角形相似得出△PBM∽△QNM ;

(2)① 根据含30°角的直角三角形的边之间的关系得出BC=2AB=8 cm,AC=12cm,根据线段中点的定义得出BM=CM=4 cm ,进而再根据含30°的直角三角形的边之间的关系即可算出MN的长;设Q 点的运动速度为v(cm/s),根据相似三角形对应边成比例得出,由比例式即可算出v的

值;② 根据线段的和差算出AN的长,进而用含t的式子表示出AP,AQ的长,根据三角形的面积计算方法,分当0<t≤4 与t>4 两种情况建立出函数解析式;

(3)PQ2=CQ2+BP2,理由如下:延长QM到D,使MD=MQ,连接PD、BD、BQ、CD,首先判断出四边形BDCQ是平行四边形,根据平行四边形的性质及平行线的性质得出∠ABD=90°,在Rt△PBD中,由勾股定理PD2=BP2+BD2,故PD2=BP2+CQ2,根据中垂线的性质得出PQ=PD,所以PQ2=BP2+CQ2 .

相似三角形培优拔高题(精编文档).doc

【最新整理,下载后即可编辑】 第一讲 相似三角形 1、已知432z y x ==,且1032=+-z y x ,则z y x ++= 。 2、已知△ABC 中,AB=AC,∠BAC=120°,求AB:BC 的值。 3、若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB=10, 23==BQ AQ BP AP ,求线段PQ 的长。 4、若55432+==+c b a ,且2132=+-c b a ,试求a:b:c 。 5、△ABC 为等边三角形,点E 在BA 的延长线上,点D 在BC 边上,且ED=EC 。若△ABC 的边长为4,AE=2,则BD 的长 为 。 6、点D,E 分别在△ABC 的边AB ,AC 上,DE ∥BC ,点G 在边BC 上,AG 交DE 于点H ,点O 是线段AG 的中点,若 13=DB AD ,则 =OH AO

7、在正方形ABCD 中,P 是CD 的中点,连接AP 并延长交BC 的延长线于点E ,连接DE ,取DE 的中点Q ,连接PQ ,求证: PQ=PC. 8、四边形ABCD 与四边形A 1B 1C 1D 1相似,相似比为2:3,四边形A 1B 1C 1D 1与四边形A 2B 2C 2D 2相似,相似比为5:4,则四边形ABCD 与四边形A 2B 2C 2D 2相似且相似比为 。 9、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿 AE 将△ABE 向上折叠,使B 点落在AD 上的F 处。若 四边形EFDC 与矩形ABCD 相似,则AD= 10、已知∠1=∠2=∠3,求证:△ABC ∽△ADE 11、点C 、D 在线段AB 上,△PCD 是等边三角形

相似三角形练习题含解析

相似三角形练习题 一、选择题 1、下列各组图形中不是位似图形的是() A.B. C.D. 2、若2:3=7:x,则x=() A.2B.3C.3.5D.10.5 3、两个相似三角形的一组对应边分别为5cm和3cm,如果它们的面积之和为136cm2,则较大三角形的面积是() A.36cm2B.85cm2C.96cm2D.100cm2 4、如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为() A.(1,-2)B.(-2,1)C.()D.(1,-1) 5、如图,已知点A在反比例函数y=(x < 0)上,作Rt△ABC,点D是斜边AC的中点,连DB并延长交y轴于点E,若△BCE的面积为8,则k的值为( )

A .8 B .12 C .16 D .20 6、如图,平面直角坐标系中,直线y=-x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=-的图象交于点C,若BA:AC=2:1,则a的值为() A.2B.-2C.3D.-3 7、如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长等于( ) A .6 B .5 C .9 D .

8、如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于( ) A .5∶8 B .3∶8 C .3∶5 D .2∶5 9、如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③=; ④=AD?AB.其中单独能够判定△ABC∽△ACD的个数为( ) A .1 B .2 C .3 D .4 10、如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,动点P从 点B出发,沿着B-A-D在菱形ABCD的边上运动,运动到点D停止,点P′是点P 关于BD的对称点,PP′交BD于点M,若BM=x,△OPP′的面积为y,则y与x之 间的函数图象大致为()

相似三角形知识点讲解及专项练习

相似三角形知识点讲解及专项练习 相似三角形的判定方法总结: 1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似. 2. 三边成比例的两个三角形相似.(SSS ) 3. 两边成比例且夹角相等的两个三角形相似. (SAS) 4. 两角分别相等的两个三角形相似.(AA) 5. 斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A”型与“反X”型. 示意图 结论 E D C B A 反A 型: 如图,已知△ABC ,∠ADE =∠C ,则△ADE ∽△ACB (AA ),∴AE · AC =AD ·AB. 若连CD 、BE ,进而能证明△ACD ∽△ABE (SAS) O D C B A 反X 型: 如图,已知角∠BAO =∠CDO ,则△AOB ∽△DOC (AA ),∴OA ·OC =OD ·OB . 若连AD ,BC ,进而能证明△AOD ∽△BOC . “类射影”与射影模型 示意图 结论 相似三角形证明方法 模块一 相似三角形6大证明技巧 专题

类射影 如图,已知2AB AC AD =?,求证: BD AB BC AC = A B C D 射影定理 已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =?,2BC BH BA =?,2HC HA HB =? 通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。 在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 比例式的证明方法 模块二

初中数学相似三角形练习题附参考答案

经典练习题相似三角形 一.解答题(共30小题) 1.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC. 2.如图,梯形ABCD中,AB∥CD,点F在BC上,连DF与AB的延长线交于点G.(1)求证:△CDF∽△BGF; (2)当点F是BC的中点时,过F作EF∥CD交AD于点E,若AB=6cm,EF=4cm,求CD 的长. 3.如图,点D,E在BC上,且FD∥AB,FE∥AC.

求证:△ABC∽△FDE. 4.如图,已知E是矩形ABCD的边CD上一点,BF⊥AE于F,试说明:△ABF∽△EAD. 5.已知:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点. (1)求证:①BE=CD;②△AMN是等腰三角形; (2)在图①的基础上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立; (3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.

6.如图,E是?ABCD的边BA延长线上一点,连接EC,交AD于点F.在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对相似三角形给予证明. 7.如图,在4×3的正方形方格中,△ABC和△DEF的顶点都在边长为1的小正方形的顶点上. (1)填空:∠ABC=_________ °,BC= _________ ; (2)判断△ABC与△DEC是否相似,并证明你的结论.

8.如图,已知矩形ABCD的边长AB=3cm,BC=6cm.某一时刻,动点M从A点出发沿AB 方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问: (1)经过多少时间,△AMN的面积等于矩形ABCD面积的 (2)是否存在时刻t,使以A,M,N为顶点的三角形与△ACD相似若存在,求t的值;若不存在,请说明理由. 9.如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.

相似三角形培优训练含答案

相似三角形分类提高训练 一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动 点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C 沿射线AC方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作 EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒. (1)当t为何值时,AD=AB,并求出此时DE的长度; (2)当△DEG与△ACB相似时,求t的值. 2.如图,在△ABC中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C 移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它们都停止移动.设移动的时间为t秒. (1)①当t=2.5s时,求△CPQ的面积; ②求△CPQ的面积S(平方米)关于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中,ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分CDB交边BC 于点E,EM⊥BD,垂足为M,EN⊥CD,垂足为N. (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着 AB以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的 速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由.

相似三角形经典大题解析(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

专题:相似三角形的几种基本模型及练习

专题:相似三角形的几种基本模型 (1)如图:DE ∥BC ,则△ADE ∽△ABC 称为“平截型”的相似三角形. “A ”字型 “X ”(或8)字型 “A ” 字型 (2)如图:其中∠1=∠2,则△ADE ∽△ABC 称为“斜截型”的相似三角形. A B C D E 1 2A A B B C C D D E E 124 1 2 (3) “母子” (双垂直)型 射影定理: 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _; 由_____________ ,得____________ __,即______________ _。 “母子” (双垂直)型 “旋转型” (4)如图:∠1=∠2,∠B=∠D ,则△ADE ∽△ABC ,称为“旋转型”的相似三角形. (5)一线“三等角”型 “K ” 字(三垂直)型 (6)“半角”型 图1 :△ABC 是等腰直角三角形,∠MAN= 1 2∠BAC ,结论:△ABN ∽△MAN ∽△MCA ; 1 A E B C B E A C D 1 2B D 图2 图1 旋转 N M 60° 120° B A 45° D C B A

应用 1.如图3,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为 ( ) A .3 B .4 C .5 D .6 2.如图4,在△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC ,DE ∥BC ,那么在下列三角形中,与△ABC 相似的三角形是 ( ) A .△DBE B .△AED 和△BDC C .△ABD D .不存在 图3 图4 图5 3.如图5, □ABCD 中, G 是AB 延长线上一点, DG 交AC 于E, 交BC 于F, 则图中所有相似三角形有( )对。 A.4 对 B. 5对 C.6对 D. 7对 4.如图6,在△ABC 中,D ,E 分别是AB ,AC 上的点,在下列条件下:①∠AED =∠B ;②AD ∶AC =AE ∶AB ;③DE ∶BC =AD ∶AC .能判定△ADE 与△ACB 相似的是 ( )A .①② B .①③ C .①②③ D .① 5.如图7,在△ABC 中,点D ,E 分别是AB ,AC 的中点,则下列结论:①BC =2DE ;②△ADE ∽△ABC ; ③ AD AE =AB AC .其中正确的有 ( ) A .3个 B .2个 C .1个 D .0个 6.如图8,添加一个条件:_____________________________,使得△ADE ∽△ACB .(写出一个即可) 7.如图9,在四边形ABCD 中,AB ∥CD ,∠B =∠C =90°,点E 在BC 边上,AB =3,CD =2,BC =7.若△ABE 与△ECD 相似,则CE =___________. 图6 图7 图8 图9 8.如图10,已知∠C =∠E ,则不一定能使△ABC ∽△ADE 的条件是 ( ) A .∠BAD =∠CAE B .∠B =∠D C.B C DE =AC AE D.AB A D =AC AE 9.如图11,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =1 4CD ,下列结论:①∠BAE =30°, ②△ABE ∽△AEF ,③AE ⊥EF , ④△ADF ∽△ECF .其中正确的个数为 个。 图10 图11 A B C D E

初三数学相似三角形练习题集

资料范本 本资料为word版本,可以直接编辑和打印,感谢您的下载 初三数学相似三角形练习题集 地点:__________________ 时间:__________________ 说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容

相似三角形练习题 1.如图所示,给出下列条件: ①;②;③;④. 其中单独能够判定的个数为() A.1 B.2 C.3 D.4 2.如图,已知,那么下列结论正确的是() A.B.C.D. 3. 如图,已知等边三角形ABC的边长为2,DE是它的中位线,则下面四个结论: (1)DE=1,(2)△CDE∽△CAB,(3)△CDE的面积与△CAB的面积之比为 1:4.其中正确的有:() A.0个B.1个C.2个D.3个 4.若△ABC∽△DEF, △ABC与△DEF的相似比为1∶2,则△ABC与△DEF的周长比为() A.1∶4B.1∶2C.2∶1D.1∶ 5.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值() D B C A N M O

A.只有1个 B.可以有2个 C.有2个以上但有限 D.有无数个 6.如图,菱形ABCD中,对角线AC、BD相交于点O,M、N分别是边AB、AD 的中点,连接OM、ON、MN,则下列叙述正确的是() A.△AOM和△AON都是等边三角形 B.四边形MBON和四边形MODN都是菱形 C.四边形AMON与四边形ABCD是位似图形 D.四边形MBCO和四边形NDCO都是等腰梯形 7.如图,在方格纸中,将图①中的三角形甲平移到图② 中所示的位置,与三角形乙拼成一个矩形,那么,下面的平 移方法中,正确的是() A.先向下平移3格,再向右平移1格 B.先向下平移2格,再向右平移1格 C.先向下平移2格,再向右平移2格 D.先向下平移3格,再向右平移2格 8.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。已知这本书的长为20cm,则它的宽约为() A.12.36cm B.13.6cm C.32.36cm D.7.64cm 9.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O、准星A、目标B在同一条直线上,如图4所示,在射击时,小明有轻微的抖动,致使准星A偏离到A′,若OA=0.2米,OB=40米, AA′=0.0015米,则小明射击到的点B′偏离目标点B的长度BB′为 () A.3米B.0.3米C.0.03米D.0.2米 10、在比例尺为1︰10000的地图上,一块面积为2cm2的区域表示的实际面积是()

相似三角形培优专题讲义

相似三角形培优专题讲义 知识点一:比例线段有关概念及性质 (1)有关概念 1、两条线段的比:选用同一长度单位量得两条线段量得AB 、CD 的长度分别是m 、n ,那 么就说这两条线段的比是AB:CD =m :n 例:已知线段AB=2.5m,线段CD=400cm ,求线段AB 与CD 的比。 2.比例线段:四条线段a 、b 、c 、d 中,如果a 与b 的比等于c 与d 的比,即 d c b a =(或a :b= c : d ),那么,这四条线段a 、b 、c 、d 叫做成比例线段,简称比例线段。(注意:在求线段 比时,线段单位要统一,单位不统一应先化成同一单位,还要注意顺序。) 例:b,a,d,c 是成比例线段,其中a=2cm,b=3cm,c=6cm,求线段d 的长度。 (2)比例性质 1.基本性质: bc ad d c b a =?= (两外项的积等于两内项积) 2.反比性质: c d a b d c b a =?= (把比的前项、后项交换) 3.更比性质(交换比例的内项或外项): ()()()a b c d a c d c b d b a d b c a ?=?? ?=?=???=??, 交换内项,交换外项. 同时交换内外项 4.等比性质:(分子分母分别相加,比值不变.) 如果 )0(≠++++====n f d b n m f e d c b a ,那么 b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零. (3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.

中考相似三角形经典综合题

中考相似三角形经典综合题 1、如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从0点出发沿0C 向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒. (1)求线段BC的长; (2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围: (3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE1F1,使点E的对应点E1落在线 段AB上,点F的对应点是F1,E1F1交x轴于点G,连接PF、QG,当t为何值时,2BQ-PF= 3 3 QG? 2、在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E在OB上,且∠OAE=∠0BA. (Ⅰ)如图①,求点E的坐标; (Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′. ①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标; ②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).

3、如图,在△ABC中,∠C=90°,BC=3,AB=5.点P从点B出发,以每秒1个单位长度沿B→C→A→B的方向运动;点Q从点C出发,以每秒2个单位沿C→A→B方向的运动,到达点B后立即原速返回,若P、Q两点同时运动,相遇后同时停止,设运动时间为ι秒.(1)当ι=7时,点P与点Q相遇; (2)在点P从点B到点C的运动过程中,当ι为何值时,△PCQ为等腰三角形? (3)在点Q从点B返回点A的运动过程中,设△PCQ的面积为s平方单位. ①求s与ι之间的函数关系式; ②当s最大时,过点P作直线交AB于点D,将△ABC中沿直线PD折叠,使点A落在直 线PC上,求折叠后的△APD与△PCQ重叠部分的面积. 4、如图,点A是△ABC和△ADE的公共顶点,∠BAC+∠DAE=180°,AB=k·AE,AC=k·AD,点M是DE的中点,直线AM交直线BC于点N. (1)探究∠ANB与∠BAE的关系,并加以证明. (2)若△ADE绕点A旋转,其他条件不变,则在旋转的过程中(1)的结论是否发生变化?如果没有发生变化,请写出一个可以推广的命题;如果有变化,请画出变化后的一个图形,并证明变化后∠ANB与∠BAE的关系. 5.如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6,B ∠和C ∠都为锐角,M为AB一动点(点M与点A B 、不重合),过点M作MN BC ∥,交AC于点N,在AMN △中,设MN的长为x,MN上的高为h. (1)请你用含x的代数式表示h. (2)将AMN △沿MN折叠,使AMN △落在四边形BCNM所在平面,设点A落在平面 A B C E M D N

初中数学相似三角形专项练习题

初中数学相似三角形专项练习题 1 / 3 第18.1课时 相似三角形 一.填空题(基础) 1. 如图,ABC ?∽MNP ?,则它们的对应角分别是A ∠与∠___M__,∠B 与∠___N__, C ∠与∠___P__;对应边成比例的是________=_________=_________;若AB =2.7cm,cm MN 9.0=,cm MP 1=,则相似比=_________,=BC _________cm . B A G F E D C B A N P M (第2题) (第1题) 2. 如图,四边形ABCD 中,AD ∥EF ∥BC ,AC 交EF 于G .图中能相似的三角形共有 _______对,它们分别是_________、___________,小明通过这两对相似三角形推出了比例 式: AB BE AD FG =,对不对,为什么? 二.填空题 3. 如图,ABC ?和DEF ?的三边长分别为7、2、6和12、4、14,且两三角形相似,则A ∠与∠_____,∠B 与∠_____,C ∠与∠_____, ) ()()(AC DF AB ==。 (第5题) (第4题) (第3题) C G F E D C B A F E B A E F D C B A 4. 如图,ABC ?∽AEF ?,写出三对对应角:_________=_________,_________=________, ________=_________,并且 ) () ()()()(==AF ,若ABC ?与AEF ?的相似比是3:2,cm EF 8=,则________=BC 。 5. 如图,ABC ?中,点D 在BC 上,EF ∥BC ,分别交AB 、AC 、AD 于点E 、F 、 G , 图中共有______对相似三角形,它们是______________________________________.

相似三角形练习题精选

# 相似三角形练习题精选 相似三角形 例题: 1、(2007杭州)如图,用放大镜将图形放大,应该属于( ) A.相似 B.平移 C.对称 D.旋转 # 2、(2008天津)如图,已知△ABC 中,EF ∥GH ∥IJ ∥BC ,则图中相似三角形共有 对. 跟踪练习: 1、(2007韶关)如图1,CD 是Rt △ABC 斜边上的高,则图中相似三角形的对数有( ) 对 对 C. 2对 对 2、(2007上海)如图2,E 为平行四边形ABCD 的边BC 延长线上一点,连结AE ,交边CD 于点F .在不添加辅助线的情况下,请写出图中一对相似三角形: . 相似三角形的判定 例题: 1.下列各组图形有可能不相似的是( ). A .各有一个角是50°的两个等腰三角形 B .各有一个角是100°的两个等腰三角形 C .各有一个角是50°的两个直角三角形 D .两个等腰直角三角形 ~ 2、(2007永州)如图,添上条件:_______,则△ABC ∽△ADE 。 3. (2009新疆)如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC △相似的是( ) 4.(2010临沂) 如图,12∠=∠,添加一个条件使 得ADE ?∽ACB ? . 跟踪练习: 1.(2010陕西西安)如图,在ABC ?中,D 是AB 边上一点,连接CD ,要使ADC ?与 ~ ABC ?相似,应添加的条件是 。 (只需写出一个条件即可) 2、(2008 江西南昌)下列四个三角形,与左图中的三角形相似的是( ) 2 1E D C B A A. 图1 D C B A A B D \ F

相似三角形培优难题集锦(含答_案)

一、相似三角形中的动点问题 1.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC 方向以每秒3个单位的速度运动.过点D作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F, G是EF中点,连接DG.设点D 运动的时间为t秒. (1)当t为何值时,AD=AB,并 求出此时DE的长度; (2)当△DEG与△ACB相似时, 求t的值. 2.如图,在△ABC 中,ABC=90°,AB=6m,BC=8m,动点P以2m/s的速度从A点出发,沿AC向点C移动.同时,动点Q以1m/s的速度从C点出发,沿CB向点B移动.当其中有一点到达终点时,它 们都停止移动.设移动的时间为t 秒. (1)①当t=2.5s时,求△CPQ的 面积; ②求△CPQ的面积S(平方米)关 于时间t(秒)的函数解析式; (2)在P,Q移动的过程中,当△CPQ为等腰三角形时,求出t的值. 3.如图1,在Rt△ABC中 , ACB=90°,AC=6,BC= (1)当AD=CD时,求证:DE∥AC; (2)探究:AD为何值时,△BME与△CNE相似? 4.如图所示,在△ABC中, BA=BC=20cm,AC= 30cm,点P从A点出发, 沿着AB以每秒4cm的速 度向B点运动;同时点Q从C点出发,沿CA以每秒3cm的速度向A点运动,当P点到达B点时,Q点随之停止运动.设运动的时间为x. (1)当x为何值时,PQ∥BC? (2)△APQ与△CQB能否相似?若能,求出AP的长;若不能说明理由. 5.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P 沿AB边从A开始向点B以2cm/s的速度移动;点Q 沿DA边从点D开始向点A以1cm/s的速度移动.如果P、Q同时出发,用t(s)表示移动的时间(0<t <6)。 (1)当t为何值时,△QAP为等腰直角三角形?(2)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?

初中数学相似三角形的经典综合题

初中数学相似三角形的性质与应用经典试题 一、知识体系: 1.相似三角形的性质 ①相似三角形的对应角相等; ②相似三角形的对应边成比例; ③相似三角形对应边上的高之比,对应边上的中线之比,对应角的角平分线之比都等于相似比; ④相似三角形的周长之比等于相似比。 ⑤相似三角形的面积之比等于相似比的平方(2 k )。 二、典型例题: 例1:若△ABC∽△A′B′C′,且,, 3 4AB A B ,△ABC 的周长为15cm ,则△A′B′C′的周长为( ) A .18 B .20 C .154 D .80 3 针对练习: 1.已知△ABC∽△DEF,且△ABC 的三边长为3、4、5,若△DEF 的周长为6,那么下列不可能是△DEF 一边长的是( ) A .1.5 B .2 C .2.5 D .3 2.一直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值为( ) A .7 B .5 C .7或5 D .无数个 例2:(2014江苏南京,3)若△ABC ∽△A′B′C′,相似比为1:2,则△ABC 与△A′B′C′的面积的比为( ) A .1:2 B .2:1 C .1:4 D .4:1 针对练习: 1.两相似三角形的最短边分别是5cm 和3cm ,它们的面积之差为322 cm ,那么小三角形的面积为( ) A .102 cm B .142 cm C .162 cm D .182 cm 2.如图,DE ∥BC ,若AD =1,BD =2,则△ADE 与四边形DBCE 面积之比是 ▲ 。 3.如图,平行四边形ABCD 中,E 是CD 的延长线上一点,BE 与AD 交于点F ,CD =2DE ,若△DEF 的面积为a ,则平行四边形ABCD 的面积为 ▲ (用a 的代数式表示)。 4.如图,在四边形ABCD 中,E 是AD 上的一点,EC ∥AB ,EB ∥DC ,若△ABE 的面积为3,△ECD 的面积为1,则△BCE 的面积为 ▲ 。

相似三角形判定专项练习题

相似三角形判定专项练 习题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

1.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且 CF=3FD,△ABE与△DEF相似吗为什么 2.如图,在正三角形ABC中,D,E分别在AC,AB上,且,AE=EB.求 证:△AED∽△CBD. 3.如图,已知∠1=∠2,且AB?ED=AD?BC,则△ABC与△ADE相似吗说明理 由. 4.已知:如图,在△ABC中,∠C=90°,点D、E分别AB、CB延长线上的 点,CE=9,AD=15,连接DE.若BC=6,AC=8,求证:△ABC∽△DBE. 5.如图,点D在等边△ABC的BC边上,△ADE为等边三角形,DE与AC交于 点F.证明:△ABD∽△DCF 6.如图,CD、BE分别是锐角△ABC中AB、AC边上的高线,垂足为D、E. 证明:△ADC∽△AEB; 7.如图,在△ABC,AC⊥BC , D是BC延长线上的一点,E是AC上的一点,连 接ED,∠A=∠D.求证:△ABC∽△DEC.

8.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与 BE相交于点F.试说明△ABD≌△BCE; 9.如图,在△ ABC中,D是BC边上的中点,且AD=AC,DE⊥BC,交BA于点 E,EC与AD相交于点F.求证:△ABC∽△FCD. 10.如图,∠DEC=∠DAE=∠B,试说明:△DAE∽△EBA; 11.如图,在△ABC中,∠BAC=90°,D为BC的中点,AE⊥AD,AE交CB的延 长线于点E.求证:△EAB∽△ECA; 12.如图,已知:△ABC为等腰直角三角形,∠ACB=90°,延长BA至E,延 长AB至F,∠ECF=135°,求证:△EAC∽△CBF. 13.已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的 两点.若 P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出 发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点的三角形 与△BDC相似

【2021版 九年级数学培优讲义】专题16 相似三角形的性质

专题16 相似三角形的性质 阅读与思考 相似三角形的性质有: 1. 对应角相等; 2. 对应边成比例; 3. 对应线段(中线、高、角平分线)之比等于相似比; 4. 周长之比等于相似比; 5. 面积之比等于相似比的平方. 性质3主要应用于三角形内接特殊平行四边形的问题,性质5进一步丰富了面积的有关知识,拓展了我们研究面积问题的视角. 如图,正方形EFGH 内接于△ABC ,AD ⊥BC ,设BC a =,AD h =,试用a 、h 的代数式表示正方形的边长. H G E F D C B A 例题与求解 【例1】如图,已知□ABCD 中,过点B 的直线顺次与AC ,AD 及CD 的延长线相交于E ,F ,G ,若5BE =,2EF =,则FG 的长是 . (“弘晟杯”上海市竞赛试题) 解题思路:由相似三角形建立含FG 的关系式,注意中间比的代换. G E F D C B A

【例2】如图,已知△ABC 中,DE ∥GF ∥BC ,且::1:2:3AD DF FB =, 则:ADE DFGE S S △四边形:FBCG S =四边形( ) (黑龙江省中考试题) A.1:9:36 B.1:4:9 C.1:8:27 D. 1:8:36 解题思路:△ADE ,△AFG 都与△ABC 相似,用△ABC 面积的代数式分别表示△ADE 、四边形DFGE 、四边形FBCG 的面积. G E F D C B A 【例3】如图,在△ABC 的内部选取一点P ,过P 点作三条分别与△ABC 的三边平行的直线,这样所得的三个三角形t 1,t 2,t 3的面积分别为4,9和49,求△ABC 的面积. (第二届美国数学邀请赛试题) 解题思路:由于问题条件中没有具体的线段长,所以不能用面积公式求出有关图形的面积,可考虑应用相似三角形的性质. t 1 t 2 t 3 I P H G E F D C B A 如图所示,经过三角形内一点向各边作平行线(也称剖分三角形),我们可以得到: ① △FDP ∽△IPE ∽△PHG ∽△ABC ; ② 1HG IE DF BC AC AB ++=; ③ 2DE FG HI BC AC AB ++=; ④ 2ABC S =△. 上述性质,叙述简捷,形式优美,巧妙运用它们解某些平面几何竞赛题,简明而迅速,奇特而匠心独

相似三角形性质及其应用练习题

相似三角形性质及其应用 1.掌握相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比,相似三角形面积的比等于相似比的平方等性质,能应用他们进行简单的证明和计算。 2.掌握直角三角形中成比例的线段:斜边上的高线是两条直角边在斜边上的射影的比例中项;每一条直角边是则条直角边在斜边上的射影和斜边的比例中项,会用他们解决线段成比例的简单问题。 考查重点与常见题型 1. 相似三角形性质的应用能力,常以选择题或填空形式出现,如: 若两个相似三角形的对应角的平分线之比是1∶2,则这两个三角形的对应高线之比是---------,对应中线之比是------------,周长之比是---------,面积之比是-------------,若两个相似三角形的面积之比是1∶2,则这两个三角形的对应的角平分线之比是----------,对应边上的高线之比是-------- 对应边上的中线之比是----------,周长之比是--------------, 2. 考查直角三角形的性质,常以选择题或填空题形式出现,如: 如图,在Rt ΔABC 中,∠ACB=90°, CD ⊥AB 与D ,AC=6,BC=8, 则AB=--------,CD=---------, AD=---------- ,BD=-----------。, 3. 综合考查三角形中有关论证或计算能力,常以中档解答题形式出现。 预习练习 1. 已知两个相似三角形的周长分别为8和6,则他们面积的比是( ) 2. 有一张比例尺为1 4000的地图上,一块多边形地区的周长是60cm ,面积是250cm 2,则这个地区的实际周长-------- m ,面积是----------m 2 3. 有一个三角形的边长为3,4,5,另一个和它相似的三角形的最小边长为7,则另一个 三角形的周长为----------,面积是------------- 4. 两个相似三角形的对应角平分线的长分别为10cm 和20cm ,若它们的周长的差是60cm , 则较大的三角形的周长是----------,若它们的面积之和为260cm 2,则较小的三角形的面积为 ---------- cm 2 5. 如图,矩形ABCD 中,AE ⊥BD 于E ,若BE=4,DE=9,则矩形的面积是----------- 6.已知直角三角形的两直角边之比为12,则这两直角边在 斜边上的射影之比------------- 考点训练 1.两个三角形周长之比为95,则面积比为( ) (A )9∶5 (B )81∶25 (C )3∶ 5 (D )不能确定 2.Rt ΔABC 中,∠ACB=90°,CD ⊥AB 于D ,DE ⊥AC 于E ,那么和ΔABC 相似但不全等的三角形共有( ) (A)1个 (B)2个 (C)3个 (D)4个 3.在Rt ΔABC 中,∠C=90°,CD ⊥AB 于D ,下列等式中错误的是( ) (A )AD ? BD=CD 2 (B )AC ?BD=CB ?AD (C )AC 2 =AD ?AB (D )AB 2 =AC 2 +BC 2 4.在平行四边形ABCD 中,E 为AB 中点,EF 交AC 于G ,交AD 于F ,AF FD =13 则CG GA 的比值 是( ) (A )2 (B )3 (C )4 (D )5 5.在Rt ΔABC 中,AD 是斜边上的高,BC=3AC 则ΔABD 与ΔACD 的面积的比值是( ) (A )2 (B )3 (C )4 ( D )8

相似三角形的综合应用(培优提高)

相似三角形的应用 【学习目标】 1、探索相似三角形的性质,能运用性质进行有关计算. 2、通过典型实例认识现实生活中物体的相似,能运用图形相似的知识解决一些简单的实际问题(如何把实际问题抽象为数学问题). 【知识回顾】 一、相似三角形的性质 (1)对应边的比相等,对应角相等. (2)相似三角形的周长比等于相似比. (3)相似三角形的面积比等于相似比的平方...... . (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比. 二、相似三角形的应用: 1、利用三角形相似,可证明角相等;线段成比例(或等积式); 2、利用三角形相似,求线段的长等 3、利用三角形相似,可以解决一些不能直接测量的物体的长度.如求河的宽度、求建筑物的高度等. 【典型例题】 例1:如图,△ABC 是一块锐角三角形余料,边BC=120mm , 高AD=80mm , 要把它加工成矩形零件,使一边在BC 上,其余两个顶点分别在边AB 、AC 上, (1)若这个矩形是正方形,那么边长是多少? (2)若这个矩形的长是宽的2倍,则边长是多少? 【同步练习】如图,△ABC 是一块三角形余料,AB=AC=13cm ,BC=10cm ,现在要把它加工成正方形零件,使正方形的一边在△ABC 的边上,其余两个顶点分别在三角形另外两条边上.试求正方形的边长是多少? 例2:阅读以下文字并解答问题: 在“测量物体的高度” 活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高 A B C Q M D N P E

度.在同一时刻的阳光下,他们分别做了以下工作: 小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1). 小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米. 小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米. 小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m 的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m . (1)在横线上直接填写甲树的高度为 米. (2)求出乙树的高度(画出示意图). (3)请选择丙树的高度为( ) A 、6.5米 B 、5.75米 C 、6.05米 D 、7.25米 (4)你能计算出丁树的高度吗?试试看. 【同步练习】如图,有一路灯杆AB(底部B 不能直接到达),在灯光下,小明在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己得影长FG =4m ,如果小明得身高为1.6m ,求路灯杆AB 的高度. 图1 图2 图3 图4

中考相似三角形经典综合题解析资料

中考相似三角形经典综合题解析 1、(2013哈尔滨)如图,在平面直角坐标系中,点0为坐标原点,A点的坐标为(3,0),以0A为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从0点出发沿0C向C点运动,动点Q从B点出发沿BA向A点运动,P,Q两点同时出发,速度均为1个单位/秒。设运动时间为t秒. (1)求线段BC的长; (2)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F。设线段EF的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围: (3)在(2)的条件下,将△BEF绕点B逆时针旋转得到△BE1F1,使点E的对应点E1落在线 段AB上,点F的对应点是F1,E1F1交x轴于点G,连接PF、QG,当t为何值时,2BQ-PF= 3 3 QG? (1)解:如图l∵△AOB为等边三角形∴∠BAC=∠AOB=60。∵BC⊥AB ∴∠ABC=900∴∠ACB=300∠OBC=300 ∴∠ACB=∠OBC ∴CO=OB=AB=OA=3 ∴AC=6 ∴3 33 (2)解:如图l过点Q作QN∥0B交x轴于点N ∴∠QNA=∠BOA=600=∠QAN ∴QN=QA ∴△AQN为等边三角形 ∴NQ=NA=AQ=3-t ∴NON=3- (3-t)=t ∴PN=t+t=2t ∴OE∥QN.∴△POE∽△PNQ ∴OE PO QN PN = ∴ 1 32 OE t = - ∴ 31 22 OE t =- ∵EF∥x轴 ∴∠BFE=∠BCO=∠FBE=300 ∴EF=BE∴m=BE=OB-OE 13 22 t =+ (0

(3)解:如图2 11180120BE F BEF EBF EFB ∠=∠=-∠-∠= ∴∠AEG=600=∠EAG ∴GE 1 =GA ∴△AE’G 为等边三角形 111331 2222 QE BE BQ m t t t t =-=-=+-=- 111131 22 QE GA AE AB BE BQ t QE ∴===--=-= ∴∠l=∠2 ∠3=∠4 ∵∠l+∠2+∠3+∠4=1800∴∠2+∠3=900 即∠QGA=900 ∵EF ∥OC BF BE BC BO ∴ =333 332233 BF m BF m t ∴ =∴==+31 3322 BC CF -= - 3CP CO OP t =-=- 31 33322633 t CF t CP CB CA --∴=== ∵∠FCP=∠BCA ∴△FCP∽△BCA. 32 PF CP t PF AB CA -∴ =∴= ∵2BQ —PF=33QG ∴33312(33)2322t t t --=?-∴t=1∴当t=1 时,2BQ —PF= 3 3 QG 2、(2013?天津)在平面直角坐标系中,已知点A (﹣2,0),点B (0,4),点E 在OB 上,且∠OAE=∠0BA . (Ⅰ)如图①,求点E 的坐标; (Ⅱ)如图②,将△AEO 沿x 轴向右平移得到△A ′E ′O ′,连接A ′B 、BE ′. ①设AA ′=m ,其中0<m <2,试用含m 的式子表示A ′B 2+BE ′2,并求出使A ′B 2+BE ′2取得最小值时点E ′的坐标;

相关主题
文本预览
相关文档 最新文档