当前位置:文档之家› 三角函数与解三角形的综合练习题

三角函数与解三角形的综合练习题

三角函数与解三角形的综合练习题

三角函数与解三角形的综合练习题

1在ABC ?中,角,,A B C 的对边分别为,,a b c ,tan 37C =.

(1)求cos C ;(2)若52CB CA ?=

,且9a b +=,求c .

2在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.已知a+b=5,c =7,且.2

72cos 2sin 42

=-+C B A (1) 求角C 的大小; (2)求△ABC 的面积.

3已知向量)cos 2sin 7,cos sin 6(),cos ,(sin αααααα-+==b a ,设函数b a f ?=)(α.

(Ⅰ)求函数)(αf 的最大值;

(Ⅱ)在锐角三角形ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,()6f A =, 且ABC ?的面积为3,232b c +=+,求a 的值.

4.已知ABC ?中,,,a b c 分别为角,,A B C 的对边,1sin(2)22C π-

=,且222a b c +<。 (1)求角C 的大小; (2)求

a b c +。

三角函数解三角形综合

1.已知函数f(x)=sin(ωx)﹣2sin2+m(ω>0)的最小正周期为3π,当x∈[0,π]时,函数f(x)的最小值为0. (1)求函数f(x)的表达式; (2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A﹣C),求sinA的值. 解:(Ⅰ). 依题意:函数. 所以. , 所以f(x)的最小值为m.依题意,m=0. . (Ⅱ)∵,∴ .. 在Rt△ABC中,∵, ∴. ∵0<sinA<1,∴. 2.已知函数(其中ω>0),若f(x)的一条对称轴离最近的对称中心的距离为. (I)求y=f(x)的单调递增区间; (Ⅱ)在△ABC中角A、B、C的对边分别是a,b,c满足(2b﹣a)cosC=c?cosA,则f(B)恰是f(x)的最大值,试判断△ABC的形状. 【解答】解:(Ⅰ)∵ , =, ∵f(x)的对称轴离最近的对称中心的距离为,

∴T=π,∴,∴ω=1,∴. ∵得:, ∴函数f(x)单调增区间为; (Ⅱ)∵(2b﹣a)cosC=c?cosA,由正弦定理, 得(2sinB﹣sinA)cosC=sinC?cosA2sinBcosC=sinAcosC+sinCcosA=sin(A+C), ∵sin(A+C)=sin(π﹣B)=sinB>0,2sinBcosC=sinB, ∴sinB(2cosC﹣1)=0,∴,∵0<C<π,∴,∴, ∴.∴, 根据正弦函数的图象可以看出,f(B)无最小值,有最大值y max=1, 此时,即,∴,∴△ABC为等边三角形. 3.已知函数f(x)=sinωx+cos(ωx+)+cos(ωx﹣)﹣1(ω>0),x∈R,且函数的最小正周期为π: (1)求函数f(x)的解析式; (2)在△ABC中,角A、B、C所对的边分别是a、b、c,若f(B)=0,?=,且a+c=4,试求b的值. 【解答】解:(1)f(x)=sinωx+cos(ωx+)+cos(ωx﹣)﹣1 ==. ∵T=,∴ω=2. 则f(x)=2sin(2x)﹣1; (2)由f(B)==0,得. ∴或,k∈Z. ∵B是三角形内角,∴B=. 而=ac?cosB=,∴ac=3.

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

高考数学压轴专题2020-2021备战高考《三角函数与解三角形》分类汇编附解析

【最新】数学《三角函数与解三角形》复习资料 一、选择题 1.设函数())cos(2)f x x x ??=+++(||)2 π ?<,且其图像关于直线0x =对 称,则( ) A .()y f x =的最小正周期为π,且在(0,)2 π 上为增函数 B .()y f x =的最小正周期为 2π,且在(0,)4 π 上为增函数 C .()y f x =的最小正周期为π,且在(0,)2 π 上为减函数 D .()y f x =的最小正周期为2π,且在(0,)4 π 上为减函数 【答案】C 【解析】 试题分析:())cos(2)f x x x ??=+++2sin(2)6 x π ?=++,∵函数图像关于直 线0x =对称, ∴函数()f x 为偶函数,∴3 π ?=,∴()2cos 2f x x =,∴22 T π π= =, ∵02 x π << ,∴02x π<<,∴函数()f x 在(0, )2 π 上为减函数. 考点:1.三角函数式的化简;2.三角函数的奇偶性;3.三角函数的周期;4.三角函数的单调性. 2.已知函数sin(),0 ()cos(),0 x a x f x x b x +≤?=?+>?的图像关于y 轴对称,则sin y x =的图像向左平移 ( )个单位,可以得到cos()y x a b =++的图像( ). A . 4 π B . 3 π C . 2 π D .π 【答案】D 【解析】 【分析】 根据条件确定,a b 关系,再化简()cos y x a b =++,最后根据诱导公式确定选项. 【详解】 因为函数()()(),0 ,0 sin x a x f x cos x b x ?+≤?=?+>??的图像关于y 轴对称,所以

高中数学三角函数、解三角形知识点

三角函数、解三角形 1.弧长公式:r l α= 扇形面积公式:22 121r lr S α== 2.同角三角函数的基本关系式: 平方关系:1cos sin 2 2 =+αα 商数关系:sin tan cos α αα = 3.三角函数的诱导公式: 诱导公式(把角写成απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) 公式一()()()?????=?+=?+=?+απααπααπαtan 2tan cos 2cos sin 2sin k k k 公式二()()()?????=+=+=+ααπααπααπtan tan cos -cos -sin sin 公式三()()()?? ? ??=-=-=-ααααααtan -tan cos cos -sin sin 公式四()()()?????=-=-=-ααπααπααπtan -tan cos -cos sin sin 公式五???????=??? ??-=??? ??-ααπααπsin 2cos cos 2sin 公式六???????=??? ??+=?? ? ??+ααπααπsin -2 cos cos 2sin 4.两角和与差的正弦、余弦、正切公式: βαβαβαcos sin cos sin )sin(+=+ βαβαβαcos sin cos sin )sin(-=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαtan tan 1tan tan )tan(-+= + β αβαβαtan tan 1tan tan )tan(+-=- 5.二倍角公式: a a a cos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=a a a a a a a a 2tan 1tan 22tan -= 6.辅助角公式: sin cos a b αα+ )α?+( 其中sin tan b a ???= = = ). 比如: x x y cos 3sin += ) cos ) 3(13sin ) 3(11( )3(12 2 2 2 22x x ++ ++= )cos 23sin 21(2x x += )3 sin cos 3cos (sin 2ππx x +=)3sin(2π+=x 7.正弦定理: 2sin sin sin a b c R C ===A B (R 为△ABC 外接圆的半径) 8.余弦定理:2 2 2 2cos a b c bc =+-A ,2 2 2 2cos b a c ac =+-B ,2 2 2 2cos c a b ab C =+- 推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222 cos 2a b c C ab +-=.

三角函数-解三角形的综合应用

学思堂教育个性化教程教案 数学科教学设计 学生姓名教师姓名刘梦凯班主任日期时间段年级课时教学内容 教学目标 重点 难点 教学过程 命题点二解三角形 难度:高、中、低命题指数:☆☆☆☆☆ 1.(2015·安徽高考)在△ABC中,AB=6,∠A=75°,∠B=45°,则 AC=________. 2.(2015·广东高考改编)设△ABC的内角A,B,C的对边分别为a,b, c.若a=2,c=2 3,c os A= 3 2 且b<c,则b=________. 3.(2015·北京高考)在△ABC中,a=3,b=6,∠A= 2π 3 ,则∠B= ________. 4.(2015·福建高考)若△ABC中,A C=3,A=45°,C=75°,则 BC=________. 5.(2015·全国卷Ⅰ)已知a,b,c分别为△ABC内角A,B,C的对边, sin2B=2sin A sin C. (1)若a=b,求cos B;[来源:学科网ZXXK] (2)设B=90°,且a=2,求△ABC的面积. 教 学 效 果 分 析

教学过程 6.(2015·山东高考)△ABC中,角A,B,C所对的边分别为a,b,c. 已知cos B= 3 3 ,sin(A+B)= 6 9 ,ac=23,求sin A和c的值. 7.(2015·全国卷Ⅱ)△ABC中,D是BC上的点,AD平分∠BAC,BD= 2DC. (1)求 sin B sin C ; (2)若∠BAC=60°,求∠B. 8.(2015·浙江高考)在△ABC中,内角A,B,C所对的边分别为a,b, c,已知tan ? ? ?? ? π 4 +A=2. (1)求 sin 2A sin 2A+cos2A 的值; (2)若B= π 4 ,a=3,求△ABC的面积.[来源:学科 教 学 效 果 分 析

初三锐角三角函数知识点与典型例题

锐角三角函数: 知识点一:锐角三角函数的定义: 一、 锐角三角函数定义: 在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA= , ∠A 的余弦可表示为cosA= ∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 【特别提醒:1、sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有,这些比值只与 有关,与直角三角形的 无关 2、取值范围 】 例1.如图所示,在Rt △ABC 中,∠C =90°. 第1题图 ①斜边)(sin = A =______, 斜边)(sin = B =______; ②斜边 ) (cos =A =______, 斜边 ) (cos =B =______; ③的邻边A A ∠= ) (tan =______, ) (tan 的对边 B B ∠= =______. 例2. 锐角三角函数求值: 在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______, sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______. 例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3. 求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR . 典型例题: 类型一:直角三角形求值

1.已知Rt △ABC 中,,12,43 tan ,90==?=∠BC A C 求AC 、AB 和cos B . 2.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?= ∠4 3sin AOC 求:AB 及OC 的长. 3.已知:⊙O 中,OC ⊥AB 于C 点,AB =16cm ,?=∠5 3 sin AOC (1)求⊙O 的半径OA 的长及弦心距OC ; (2)求cos ∠AOC 及tan ∠AOC . 4. 已知A ∠是锐角,17 8 sin =A ,求A cos ,A tan 的值 对应训练: (西城北)3.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为 A . 55 B .255 C .12 D .2 (房山)5.在△ABC 中,∠C =90°,sin A=5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 类型二. 利用角度转化求值: 1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点. DE ∶AE =1∶2. 求:sin B 、cos B 、tan B .

三角函数与解三角形知识点总结

1. 任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异 于原点),它与原点的距离 是0r =>,那么sin ,cos y x r r αα== , ()tan ,0y x x α=≠ 三角函数值只与角的大小有关,而与终边上点P 的位置无关。 2.三角函数在各象限的符号:(一全二正弦,三切四余弦) + + - + - + - - - + + - sin α cos α tan α 3. 同角三角函数的基本关系式: (1)平方关系:2 222 1 sin cos 1,1tan cos αααα +=+= (2)商数关系:sin tan cos α αα = (用于切化弦) ※平方关系一般为隐含条件,直接运用。注意“1”的代换

4.三角函数的诱导公式 诱导公式(把角写成 απ ±2 k 形式,利用口诀:奇变偶不变,符号看象限) Ⅰ)?????=+=+=+x x k x x k x x k tan )2tan(cos )2cos(sin )2sin(πππ Ⅱ)?????-=-=--=-x x x x x x tan )tan(cos )cos(sin )sin( Ⅲ) ?? ???=+-=+-=+x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅳ)?????-=--=-=-x x x x x x tan )tan(cos )cos(sin )sin(πππ Ⅴ)???????=-=-ααπααπsin )2cos(cos )2sin( Ⅵ)??? ????-=+=+α απααπsin )2cos(cos )2sin( 5.特殊角的三角函数值

三角函数与解三角形

课程标题三角函数与解三角形 求三角函数得定义域实质就就就是解三角不等式(组)、一般可用三角函数得图象或三角函数线确定三角不等式得解、列三角不等式,既要考虑分式得分母不能为零;偶次方根被开方数大于等于零;对数得真数大于零及底数大于零且不等于1,又要考虑三角函数本身得定义域; 求三角函数得值域得常用方法:1、化为求得值域; ,引入辅助角,化为求解方法同类型。 2、化为关于(或)得二次函数式; ,设,化为二次函数在上得最值求之; 周期问题一般将函数式化为(其中为三角函数,)、 ) ②y=tanx图象得对称中心(,0) (二)主要方法: 1、函数得单调增区间可由 解出,单调减区间可由解出; 周期 2、函数得单调减区间可由 解出,单调增区间呢。(自己导出)周期 3、函数得单调增区间可由 解出。(无增区间,重点掌握) 周期 课堂练习: 1.已知函数得定义域为,值域为,求常数得值 (化为求得值域)、 2、函数得单调递减区间就就是 3、函数得单调增区间为 2、函数,、 (Ⅰ)求函数得最小正周期;(Ⅱ)求函数在区间上得最小值与最大值、(化为求得值域)、 3、函数得一个单调增区间就就是 ???? 4、若函数,则就就是 最小正周期为得奇函数最小正周期为得奇函数 最小正周期为得偶函数最小正周期为得偶函数 5、函数得最大值 6、当函数得最大值为时,求得值、

7、函数得最大值就就是 8、已知函数,、 (1)求得最大值与最小值;(2)f(x)得最小正周期。 (3)若不等式在上恒成立,求实数得取值范围、 解三角形 正弦定理:, 余弦定理: 推论:正余弦定理得边角互换功能 ① ,, ②,, ③== ④ (4)面积公式:S=ab*sinC=bc*sinA=ca*sinB 课堂练习: 1、在中,角得对边分别为,已知,则( ) A、1 ?B.2 C、???D、 2、在△ABC中,AB=3,BC=,AC=4,则边AC上得高为( ) A、B、 C、D、 3、在ΔABC中,已知a=,b=,B=45°,求角A,角C得大小及边c得长度。 4、得内角A、B、C得对边分别为a、b、c,若a、b、c成等比数列,且,则() A、 B、 C、D、 【填空题】 5、在中,分别就就是、、所对得边。若,,,则__________ 6、在锐角△ABC中,边长a=1,b=2,则边长c得取值范围就就是_______、 7、已知锐角得面积为,,则角得大小为( ) ?A、75°?B、60° ?C、45°D、30° 8、在△中,若,则等于、 9、在中,已知,则得大小为 ( ) ??? 【解答题】 10、在中,分别就就是三个内角得对边、若,,求得面积、 11、如图,就就是等边三角形,就就是等腰直角三角形,∠=,交于,、 ?(1)求∠得得值; (2)求、 12、在中,角A、B、C所对得边分别为a,b,c,且满足

必修四三角函数与解三角形综合测试题(基础含答案)

必修四三角函数与解三角形综合测试题 (本试卷满分150分,考试时间120分) 第Ⅰ卷(选择题 共40分) 一.选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若点P 在3 2π的终边上,且OP=2,则点P 的坐标( ) A .)3,1( B .)1,3(- C .)3,1(-- D .)3,1(- 2.已知=-=-ααααcos sin ,4 5cos sin 则( ) A .47 B .169- C .329- D .32 9 3.下列函数中,最小正周期为 2 π的是( ) A .)32sin(π-=x y B .)32tan(π-=x y C .)62cos(π+=x y D .)6 4tan(π+=x y 4.等于则)2cos(),,0(,31cos θππθθ+∈=( ) A .924- B .924 C .9 7- D .97 5.函数y =sin (π4 -2x )的单调增区间是 ( ) A.[kπ-3π8 ,kπ+π8 ](k ∈Z ) B.[kπ+π8 ,kπ+5π8 ](k ∈Z ) C.[kπ-π8 ,kπ+3π8 ](k ∈Z ) D.[kπ+3π8 ,kπ+7π8 ](k ∈Z ) 6.将函数x y 4sin =的图象向左平移12 π个单位,得到)4sin(?+=x y 的图象,则?等于( ) A .12π- B .3π- C .3 π D .12π 7.οοοο50tan 70tan 350tan 70tan -+的值等于( ) A .3 B .33 C .33- D .3- 8.在△ABC 中,sinA >sinB 是A >B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 9.ABC ?中,π= A ,BC =3,则ABC ?的周长为( )

人教中考数学锐角三角函数-经典压轴题附详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

三角函数与解三角形-专题复习

专题一 三角函数与解三角形 一、任意角、弧度制及任意角的三角函数 1、弧度制的定义与公式: 定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角. 弧度记作rad. 公式 角的弧度数公式 r =α 角度与弧度的换算 ①rad 180 1π=? ② 弧长公式 扇形面积公式 2、任意角三角函数(正弦、余弦、正切)的定义 第一定义:设是任意角,它的终边与单位圆交于点P(x,y),则 第二定义:设 是任意角,它的终边上的任意一点 P(x,y),则 . 考点1 三角函数定义的应用 例1 .已知角α的终边在直线043=+y x 上,则=++αααtan 4cos 5sin 5 . 变式:(1)已知角α的终边过点)30sin 6,8(? --m P ,且5 4 cos - =α,则m 的值为 . (2)在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________. (3)4tan 3cos 2sin 的值( ) A .小于0 B .大于0 C .等于0 D .不存在 考点2 扇形弧长、面积公式的应用 例 2.已知扇形的半径为10cm,圆心角为? 120,则扇形的弧长为 面积为 . 变式:已知在半径为10的圆O 中,弦AB 的长为10,则弦AB 所对的圆心角α的大小 为 ,α所在的扇形弧长 为 ,弧所在的弓形的面积S 为 .

二、同角三角函数的基本关系及诱导公式 1、1cos sin 2 2=+αα α αcos tan = 2、三角函数的诱导公式 例1.已知α是三角形的内角,且.5 cos sin =+αα (1)求αtan 的值; (2)把α α22sin cos 1 +用αtan 表示出来,并求其值. 变式:1、已知α是三角函数的内角,且3 1 tan -=α,求ααcos sin +的值. 2、已知.34tan -=α(1)求α αααcos 2sin 5cos 4sin +-的值;(2)求αααcos sin 2sin 2 +的值. 3.若cos α+2sin α=-5,则tan α=________.

最新解三角形知识点归纳(附三角函数公式)

高中数学必修五 第一章 解三角形知识点归纳 1、三角形三角关系:A+B+C=180°;C=180°—(A+B); 2、三角形三边关系:a+b>c; a-b,则90C <;③若2 2 2 a b c +<,则90C >. 11、三角形的四心: 垂心——三角形的三边上的高相交于一点 重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12同角的三角函数之间的关系 (1)平方关系:sin2α+cos2α=1 (2)倒数关系:tanα·cotα=1 (3)商的关系:α α ααααsin cos cot ,cos sin tan ==

高考真题:三角函数及解三角形综合

三角函数的概念、诱导公式与三角恒等变换 6.(2019浙江18)设函数()sin ,f x x x =∈R . (1)已知[0,2),θ∈π函数()f x θ+是偶函数,求θ的值; (2)求函数22[()][()]124 y f x f x ππ =+ ++ 的值域. 解析(1)因为()sin()f x x θθ+=+是偶函数,所以,对任意实数x 都有 sin()sin()x x θθ+=-+, 即sin cos cos sin sin cos cos sin x x x x θθθθ+=-+, 故2sin cos 0x θ=, 所以cos 0θ=. 又[0,2π)θ∈,因此π2θ= 或3π2 . (2)2 2 22ππππsin sin 124124y f x f x x x ? ???????????=+++=+++ ? ? ? ???????????? ????? ππ1cos 21cos 213621cos 2sin 222222x x x x ??? ?-+-+ ? ? ??????=+=-- ? ??? π123x ? ?=+ ?? ?. 因此,函数的值域是[1- +. 27.(2018江苏)已知,αβ为锐角,4 tan 3 α= ,cos()5αβ+=-. (1)求cos2α的值; (2)求tan()αβ-的值. 【解析】(1)因为4tan 3α= ,sin tan cos ααα=,所以4 sin cos 3 αα=. 因为22sin cos 1αα+=,所以29 cos 25 α= ,

因此,27cos22cos 125 αα=-=- . (2)因为,αβ为锐角,所以(0,π)αβ+∈. 又因为cos()αβ+=,所以sin()αβ+=, 因此tan()2αβ+=-. 因为4tan 3α=,所以22tan 24 tan 21tan 7 ααα==--, 因此,tan 2tan()2 tan()tan[2()]1+tan 2tan()11ααβαβααβααβ-+-=-+==-+. 28.(2018浙江)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过 点3 4(,)55 P --. (1)求sin()απ+的值; (2)若角β满足5 sin()13 αβ+= ,求cos β的值. 【解析】(1)由角α的终边过点34(,)55P --得4 sin 5α=-, 所以4 sin()sin 5απα+=-=. (2)由角α的终边过点34(,)55P --得3 cos 5 α=-, 由5sin()13αβ+=得12 cos()13 αβ+=±. 由()βαβα=+-得cos cos()cos sin()sin βαβααβα=+++, 所以56cos 65β=-或16 cos 65 β=-. 29.(2017浙江)已知函数22 ()sin cos cos f x x x x x =--()x ∈R . (Ⅰ)求2( )3 f π 的值; (Ⅱ)求()f x 的最小正周期及单调递增区间. 【解析】(Ⅰ)由2sin 32π=,21 cos 32 π=-,

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

三角函数与解三角形(师)

三角函数与解三角形 一、 y=Asin (ωx+φ)函数的图像与性质重难点突破 二、经验分享 【知识点1 用五点法作函数y=Asin (ωx+φ)的图象】 用“五点法”作sin()y A x ω?=+的简图,主要是通过变量代换,设z x ω?=+,由z 取3 0,,,,222 π πππ来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象. 【知识点2 由y=sinx 得图象通过变换得到y=Asin (ωx+φ)的图象】 1.振幅变换: sin y A x x R =∈,(A>0且A≠1)的图象可以看作把正弦曲线上的所有点的纵坐标伸长(A>1)或缩短 (0≠,且的图象,可看作把正弦曲线上所有点的横坐标缩短()1ω>或伸长()01ω<<到原来的1 ω 倍(纵坐标不变).若0ω<则可用诱导公式将符号“提出”再作图.ω决定了函数的周期. 3.相位变换: 函数()sin y x x R ?=+∈,(其中0?≠)的图象,可以看作把正弦曲线上所有点向左(当?>0时)或向右(当?<0时)平行移动?个单位长度而得到.(用平移法注意讲清方向:“左加右减”). 一般地,函数()sin()0,0y A x A x R ω?ω=+>>∈,的图象可以看作是用下面的方法得到的: (1) 先把y=sinx 的图象上所有的点向左(?>0)或右(?<0)平行移动?个单位; (2) 再把所得各点的横坐标缩短()1ω>或伸长()01ω<<到原来的 1 ω 倍(纵坐标不变); (3) 再把所得各点的纵坐标伸长(A>1)或缩短(0

三角函数及解三角形知识点总结

1. 任意角的三角函数的定义: 设〉是任意一个角,p (x, y )是〉的终 边上的任意一点(异于原点),它与原点的距离是「“x 2r 2.o , 位置无关。 2. 三角函数在各象限的符号:(一全二正弦,三切四余弦) + L i + —— L + _ - + ------ ■ —— + - ■ sin : cos : tan : 3. 同角三角函数的基本关系式: 4. 三角函数的诱导公式 k 二.一 诱导公式(把角写成2 …形式,利用口诀:奇变偶不变,符 (2)商数关 系: tan-E 屮一、 cos 。(用于切化弦) (1)平方关 系: 2 2 2 sin 工 cos ■■ -1,1 tan : 1 cos 2: ※平方关系一般为隐含条件,直接运用。注意“ 1”的代换 si …y,cos 」 那么 r 三角函数值只与角的大小有关,而与终边上点

5. 特殊角的三角函数值 度 0s 30c A 45“ A 60“ 90 120c A 135“ 150s 180c 270° 360 弧 31 JI JI 2n 3兀 5兀 JI 3兀 2兀 度 6 4 3 2 3 4 6 2 si n 。 0 1 竝 迈 1 旦 1 0 1 2 2 2 2 2 2 cosa 亦 1 1 念 力 1 2 _1 1 2 2 2 2 2 号看象限) sin (2k .亠 x ) = sin x cos (2k ■亠 x ) = cosx [)tan (2k ,亠 x )二 tanx sin ( -x ) - - sin x cos (-x ) =cosx H )tan (-x ) - - tanx m ) |sin (,亠 x ) = -sin x cos (m ) = - cosx tan (二 x ) IV ) Sin (兀 _x ) =sin x cos (兀—x ) = —cosx tan (兀一 sin (— -〉)= cos ..z sin (二:)=cos : V ) -?) = sin :

锐角三角函数专项复习经典例题

1、平面内,如图17,在□ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90?得到线段PQ . (1)当10DPQ ∠=?时,求APB ∠的大小; (2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号); (3)若点Q 恰好落在□ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 2、如图所示,我国两艘海监船A ,B 在南海海域巡航,某一时刻,两船同时收到指令,立即前往救援遇险抛锚的渔船C ,此时,B 船在A 船的正南方向5海里处,A 船测得渔船C 在其南偏东45°方向,B 船测得渔船C 在其南偏东53°方向,已知A 船的航速为30海里/小时,B 船的航速为25海里/小时,问C 船至少要等待多长时间才能得到救援?(参考数据:sin53°≈,cos53°≈,tan53°≈,≈1.41) 3、如图,港口B 位于港口A 的南偏东37°方向,灯塔C 恰好在AB 的中点处,一艘海轮位于港口A 的正南方向,港口B 的正西方向的D 处,它沿正北方向航行5km 到达E 处,测得灯塔C 在北偏东45°方向上,这时,E 处距离港口A 有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) B A P C D Q 备用图17 A B C D P Q

4、如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度. 5、一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米. 6、如图,某小区①号楼与?号楼隔河相望,李明家住在①号楼,他很想知道?号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算?号楼的高度CD. 7、某学校教学楼(甲楼)的顶部E和大门A之间挂了一些彩旗.小颖测得大门A距甲楼的距离AB是31cm,在A处测得甲楼顶部E处的仰角是31°. (1)求甲楼的高度及彩旗的长度;(精确到0.01m) (2)若小颖在甲楼楼底C处测得学校后面医院楼(乙楼)楼顶G处的仰角为40°,爬到甲楼楼顶F处测得乙楼楼顶G处的仰角为19°,求乙楼的高度及甲乙两楼之间的距离.(精确到0.01m) (cos31°≈0.86,tan31°≈0.60,cos19°≈0.95,tan19°≈0.34,cos40°≈0.77,tan40°≈0.84)

高考专题; 三角函数、解三角形综合问题

题型练3大题专项(一) 三角函数、解三角形综合问题 1.(优质试题浙江,18)已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P. (1)求sin(α+π)的值; (2)若角β满足sin(α+β)=,求cos β的值. 2.(优质试题北京,理15)在△ABC中,a=7,b=8,cos B=-. (1)求A; (2)求AC边上的高. 3.△ABC的内角A,B,C的对边分别为a,b,c.已知△ABC的面积为. (1)求sin B sin C; (2)若6cos B cos C=1,a=3,求△ABC的周长. 4.已知函数f(x)=4tan x sin cos. (1)求f(x)的定义域与最小正周期;

(2)讨论f(x)在区间上的单调性. 5.已知函数f(x)=a cos2a sin ωx-a(ω>0,a>0)在一个周期内的图象如图所示,其中点A为图象上的最高点,点B,C为图象与x轴的两个相邻交点,且△ABC是边长为4的正三角形. (1)求ω与a的值; (2)若f(x0)=,且x0∈,求f(x0+1)的值. 6.在平面直角坐标系xOy中,已知向量m=,n=(sin x,cos x),x∈. (1)若m⊥n,求tan x的值; (2)若m与n的夹角为,求x的值.

题型练3大题专项(一) 三角函数、解三角形综合问题 1.解(1)由角α的终边过点P, 得sin α=-,所以sin(α+π)=-sin α= (2)由角α的终边过点P,得cos α=-, 由sin(α+β)=,得cos(α+β)=± 由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α,所以cos β=-或cos β= 2.解(1)在△ABC中,∵cos B=-,∴B, ∴sin B= 由正弦定理,得, ∴sin A= ∵B,∴A,∴A= (2)在△ABC中,sin C=sin(A+B)=sin A cos B+sin B cos A= 如图所示,在△ABC中,过点B作BD⊥AC于点D. ∵sin C=,∴h=BC·sin C=7, ∴AC边上的高为 3.解(1)由题设得ac sin B=,即c sin B= 由正弦定理得sin C sin B= 故sin B sin C= (2)由题设及(1)得cos B cos C-sin B sin C=-, 即cos(B+C)=- 所以B+C=,故A= 由题设得bc sin A=,即bc=8. 由余弦定理得b2+c2-bc=9,即(b+c)2-3bc=9,得b+c= 故△ABC的周长为3+

相关主题
文本预览
相关文档 最新文档