当前位置:文档之家› 举例说明黄酮的提取分离方法

举例说明黄酮的提取分离方法

举例说明黄酮的提取分离方法
举例说明黄酮的提取分离方法

举例说明黄酮的提取分离方法

组长:宁

组员:翟雪王璐璐子涵子惠罗春雨红成

1.提取方法

1.1热水提取法

热水提取法一般仅限于提取苷类. 在提取过程中要考虑加水量、浸泡时间、煎煮时间及煎煮次数等因素. 此工艺成本低、安全,适合于工业化大生产。以水做溶剂,同时提高浸提温度、延长浸提时间和增加液料比(60倍) ,可以明显提高芦丁的产率。

实例

桑叶:采用热水提取法测定桑叶中各有效成分含量,发现黄酮类化合物含量为1%以上,其中霜后桑叶黄酮类化合物含量最高为1.54% ,其次是晚秋桑叶,春季桑芽和后期桑叶含量最低。

甘草:过去甘草黄酮的提取主要为水提法,其主要原理通过甘草粉与水按一定配比,加热混合至80~95 ℃浸提甘草粉,利用甘草黄酮的水溶性进而提取甘草黄酮。此法虽然要求设备简单,但因提取杂质多、提取时间长、提取液存放易腐败变质、后续过滤操作困难、收率较低等缺点,现已不常使用。

1.2有机溶剂萃取法

其原理是利用黄酮类化合物与混入的杂质极性不同,选用不同的溶剂萃取。常用的有机溶剂有甲醇、乙醇、丙酮、乙酸乙酯等,一般采取乙醇为提取溶剂。高浓度的乙醇(如90 %~95 %) 适于提取苷元,浓度60 %左右的乙醇适于提取苷类。提取次数一般为2~4 次,提取方法有热

回流提取和冷浸提取两种方式。

实例

桑叶:使用乙醇提取桑叶中总黄酮的最佳工艺条件为:乙醇的浓度为70%,料液比为1:15,在80℃的条件下浸泡3h。使用多种有机溶剂提取发现桑叶中黄酮类化合物的最佳提取溶剂是60%丙酮。

西芹:使用无水乙醇为提取剂,按西芹鲜重与提取剂的比例(W/ V) 1∶2 ,在80 ℃下回流提取2~4h ,制备西芹总黄酮。

银杏叶:从银杏叶中提取总黄酮时, 随乙醇浓度的增加总黄酮提取率逐渐上升, 当乙醇浓度增至70% 时提取率最高, 之后反而下降, 故选用70% 的乙醇作浸提剂最佳。

生:生黄酮提取用40倍原料的90%甲醇溶液, 在60 ~ 65℃条件下提取4 h 为其优化组合, 而其试验组合中以用40倍原料的75%甲醇溶液,在60~ 65 ℃条件下提取2 h的提取效果最好。

1.3碱性水或碱性稀醇提取法

黄酮类化合物大多具有酚羟基, 易溶于碱水, 酸化后又可沉淀析出。其原因一是由于黄酮酚羟基的酸性, 二是由于黄酮母核在碱性条件下开环, 形成2′-羟基查耳酮, 极性增大而溶解。因此可用碱性水( 碳酸钠、氢氧化钠、氢氧化钙水溶液) 或碱性稀醇( 50 %乙醇) 浸出, 浸出液经酸化后析出黄酮类化合物。

实例

菊花:各取5g干菊花4份, ,在80℃恒温水浴分别以pH为8,9,10,11的NaOH溶液分两次温浸1h和0.5h。pH降低时.由于提取不完全.含量较低;pH为11时,虽然黄酮

含量较高,但含有的NaOH溶质较多,而造成分析结果出现干扰,因此pH-=10时的提取效果最好。

槐米:槐米粉碎, 加入5倍量的水, 用石灰水调pH 值8~ 9, 加入3% 的硼砂, 抽滤, 反复提取3次。滤液用稀盐酸调pH 值2~ 3, 静置6 h, 析出沉淀, 过滤, 滤渣干燥, 即得粗芦丁, 精制可得精制芦丁, 纯度可达99% 以上。

1.4 微波萃取法

微波萃取技术是物料吸收微波能后通过偶极子旋转和离子传导两种方式同时加热,加剧了体系中分子的碰撞频率,使黄酮分子容易从药材部扩散到萃取溶剂中,大大缩短了加热时间,提高了萃取效率,尤其适合极性分子的萃取。原理是利用不同组分吸收微波能力的差异, 使基体物质的某些区域或萃取体系中的某些组分

被选择性加热, 从而使得被萃取物质从基体或体系中分离, 进入到介电常数较小、微波吸收能力相对较差的萃取剂中, 并达到较高的产率。

实例

桑叶:微波萃取黄酮类成分的最佳工艺条件为: 70%乙醇12倍量,于60℃萃取20 min,其中提取溶剂对结果有显著影响。应用微波萃取法比传统醇提法分别高55%和32%。微波萃取法在提取时间、溶剂用量及得率等方面明显优于传统的醇提法,适于工业生产。

芦篙叶:用芦篙叶为原料提取黄酮类化合物。通过正交试验, 得出最优化提取条件为: 功率200W,时间10min, 料液比1g:25ml,pH 值10。提取次数为2次。在此条件下, 黄酮类化合物得率为2. 53%。并且, 随着料液比的增大, 提取率增大。但到一定程度时, 得率有所降低。可能是大量溶剂水吸收了微波导致提取温度降低的缘故。

藜蒿:利用微波辅助从藜蒿中提取黄酮类化合物的方法以75% 乙醇作为提取溶剂, 密封条件下, 功率200W, 料液比1g:25ml辐射时间20 s/次x3次, 提取率最高。1.5 超声波提取法

超声波提取是利用超声波空化作用加速植物有效成分浸出的提取。其基本原理是利用超声波的空化作用,破坏植物的细胞,使溶剂易于渗入细胞,同时超声波的强烈振动能给植物和溶剂传递巨大的能量,使它们做高速的运动,加速细胞物质的

释放和溶解以及有效成分的浸出,大大提高了提取效率.

实例

桑叶:从桑叶中提取总黄酮,实验显示超声波提取法能够提高醇浸提黄酮含量,其值约等于常规醇提含量的2倍左右,达到省时、高效的目的。进行三水平三因素的正交试验结果表明,温度40 ℃,时间35min ,料液比1/ 30 ,乙醇浓度60 %及回流lh为最佳提取工艺。

菊花:菊花用水浸泡,超声波提取,抽滤,将滤液定容,测定光密度值,然后查标准曲线计算总黄酮类物质的含量.超声波交实验结果表明,菊花中提取黄酮类

化合物的最佳条件为60%乙醇浸泡24h,物料比为1:20,超声波时间为45min,总黄酮类物质的提取量为7.86%.

甘草:利用超声波法从甘草中提取黄酮,通过对超声功率、超声时间、提取温度及固液比等因素的研究发现最佳提取条件为超声功率1 000 W,超声时间75

(25 ,25 ,25)min ,提取温度40 ℃,固液比1∶8 ;最佳提取条件下黄酮含量为3. 612 %。

1.6 超临界流体提取法

超临界流体提取技术系指以超临界流体为萃取剂,从液体或固体中萃取有效成分并进行分离的方法。可作为SF的物质很多,其中,二氧化碳是首选的超临界流体。随着国际上超临界流体提取技术迅速发展,用该技术提取植物中的活性成分愈加广泛。

实例

金银花:采用超临界CO2 萃取技术萃取金银花中总黄酮,考察压力、温度、时间和夹带剂对总黄酮提取率的影响, 并同热醇浸泡提取法、微波提取法和超声提取法的得率进行比较; 得到超临界CO2 萃取最佳条件为: 压力30Mpa、温度40℃、时间120min 和夹带剂用量4.5ml/ g 时, 提取得率最高。同热醇浸泡提取法、微波提取法和超声提取法相比,其总黄酮得率分别为8.92%、9.56%、9.32%、和10.24%; 超临界CO2 提取方法同其他方法相比, 得率高、时间短, 是一种合适的提取金银花中总黄酮的方法。

甘草:超临界CO2 萃取法对甘草粗黄酮提取率比常规溶制法高2. 2倍。采用

超临界萃取法从银杏叶中提取黄酮类化合物, 实验表明, 超临界CO2 法可有效

提取银杏叶中的黄酮类化合物, 其中黄酮含量达28%以上, 高于欧洲EGb761质量标准( 24% ); 且黄酮得率、回收率都较高(分别> 4%和> 64% ), 产品中无有害物质残留, 银杏叶中的有毒物质银杏酚酸的含量得到较好控制(<35x10^-6).

茵蒿:与溶剂提取法相比超临界二氧化碳萃取法具有操作简单、提取率高、后续分离易于进行、品质较高等特点。100 g原料, 当pH值为9~ 10的70%乙醇做夹带剂, 用量600m l、萃取压力30MPa、萃取温度55℃, CO2 流量20 L /h、萃取时间150 m in时, 茵蒿总黄酮的提取率最高, 为3. 875%。

1.7 双水相萃取分离法

双水相萃取技术( ATPE) 分离原理是物质在双水相体系中的选择性分配,它是利用待分离物质在两相间具有分配系数,通过温度诱导相分离实现分离目的。由于天然植物中所含的化合物众多, 而双水相萃取技术具有较高的选择性和专一性,因此利用这些技术有希望为从天然植物中提取有效药用成分开辟一条新的思路. 实例

黄芩(qin):利用双水相体系分离纯化黄芩苷,通过实验选择非离子表面活性剂

聚乙二醇(PEG)-K

2HPO

3

-H

2

O双水相体系的成相条件及温度,pH值,聚合物的分子

量等因素对黄芩苷得率的影响。结果发现黄芩苷在最佳分离条件下的萃取率为98.6%。证明按本文方法所形成双水相体系,操作简便,萃取率高,方法重现性好,可适用工业化生产。

根素: 采用聚乙二醇(PEG)/(NH4)2SO4双水相体系时,最大的分配系数可达148.2,最大收率99.09%。采用丙酮/K2HPO4双水相体系时,最大的分配系数可达36.7143,最大收率99.55%,根素大部分被分配在丙酮相(上相)中。研究根素在乙醇/硫酸铵两水相体系中的分配特性及其影响因素,在其最佳萃取条件时,最大的分配系数可达16.30,回收率94.33%,根素分配在上相。

1.8 大孔吸附树脂提取法

吸附树脂是近10 年来发展起来的一类有机分子聚合物吸附剂,其具有物理化学稳定性高、吸附选择性独特、不受无机物存在的影响、再生简便、解吸条件温和,

使用周期长、宜于构成闭路循环,节省费用等优点,现已广泛用于黄酮类物质的提取。

实例

银杏叶:应用D101 吸附树脂精制制得含黄酮约38%的GBE 产品。也有用ZTC 澄清剂沉降, 在酸性条件下吸附, 制得GBE 成品的黄酮含量稳定在26% 以上, 酯稳定在6% 以上。比较研究表明, AB - 8树脂对银杏叶黄酮是一种优良的吸附剂, 国首次报道了D101和聚酰胺树脂( 1B 1)混合使用纯化银杏叶黄酮醇苷,制得黄酮醇苷纯度大于24%的银杏叶提取物。

金菊双花:筛选金菊双花总黄酮的最佳提取与纯化工艺。结果最佳提取工艺为8倍量55% 乙醇、100%水浴、每次1 h回流提取2 次, 再结合D101大孔吸附树脂纯化, 水、30% 乙醇、70% 乙醇梯度洗脱, 收集70%乙醇洗脱部分浓缩干燥, 测定黄酮含量为62. 7% 。

枇杷叶:枇杷叶煎煮液经大孔树脂吸附, 用70% 乙醇洗脱, 洗脱液浓缩后用乙醇溶解, 沉淀去杂后减压浓缩, 经真空干燥, 得到黄色粉末, 其黄酮含量43% 以上。

1.9 超滤法提取

本法是以超滤膜两侧的压力差为驱动力, 凡含有两种或两种以上溶质的溶液, 通过滤膜分离流动时,其中分子体积小的溶质,经滤膜流出,而分子体积较大的溶质,不能通过滤膜而被截留.它可以有效的阤去提取液中蛋白质、多糖、高分子单宁以及部分原花色素等杂质。它的特点是在嘸温下进行、除杂效率高、分析过程中无相变、有效成分理化性能稳定,结果重复性好,准确性高, 超滤装置可反复使用,但同时对超膜的要求也相当高。

实例

洋葱皮:取洋葱皮粉末1g,按料液比l∶40加入体积分数为60%的乙醇溶液,在超声功率180W、提取温度50℃的提取条件下超声10min,抽滤,滤渣在相同条件下再次提取,合并滤液并过双层滤纸后制的黄酮类化合物提取液。

工艺流程:黄酮提取液→离心→抽滤→超滤→真空冷冻干燥→洋葱皮黄酮产品。得出结论:采用截留分子质量30000的超滤膜对黄酮提取液进行纯化,产品黄酮质量分数达到32.78%,黄酮迁移率达到91.73%。确定了截留分子质量30000膜的最佳超滤工艺:操作压力为0.2MPa,料液浓度为0.50mg/mL,超滤温度为30℃。

1.10酶解法

酶解法对于一些黄酮类物质被细胞壁包围不易提取的原料比较实用。其原理是用相应的酶充分破坏以纤维素为主的细胞壁结构及其细胞间相连的果胶,使植物中的果胶完全分解成小分子物质,减少提取的传质阻力,使植物中的黄酮类物质能充分释放出来。

实例

甘草:利用纤维素酶、果胶酶处理甘草提取甘草黄酮,研究发现复合酶法提取的最佳条件:以纤维素酶、果胶酶组成的复合酶,在40 ℃,pH 5. 0 的条件下酶解3 h ,提取率可达1. 66 % ,与微波法提取率相当。酶法提取与微波法提取相比,提取成本低,耗能低,为提取甘草黄酮提供了一种新方法。

芹菜:准确称取一定量芹菜干粉,放入三角瓶中,加蒸馏水混匀,设定酶解条件(不同酶类、加酶量、pH值、温度、时间、固液比),进行酶解提取,抽滤,得提取液,通过观察不同的酶对芹菜黄酮得率的影响,采用果胶酶、果胶酶与纤维素酶复合酶进行酶法浸提,芹菜黄酮的得率没有明显的提高;而采用单一的纤

维素酶,芹菜总黄酮得率大大提高。正交试验结果得出,酶法提取芹菜黄酮的最佳工艺条件为:采用纤维素酶,酶浓度为2U/mL,温度为55℃,pH为4.5,酶解时间为2.0h.

2.分离方法

2.1 聚酰胺柱层析法

聚酰胺柱层析法分离效果好, 样品容量大, 适于在制备分离工艺中应用。但洗脱速度慢, 死吸附较大( 损失有时高达30 %) , 常有低分子量酰胺的低聚物杂质混入, 装柱时用5 %甲醇或10 %盐酸预洗除去低聚物。

实例

1.以甲醇- 氯仿为洗脱剂, 用聚酰胺层析柱对各种黄酮甙类进行分离, 效果

好。

2. 利用硅胶层析柱( 氯仿- 甲醇作洗脱剂) 和聚酰胺层析柱( 水- 甲醇作洗脱

剂)配合分离, 从黄芩中分离出11 种黄酮类化合物。

3. 利用聚酰胺层析柱, 水和乙醇梯度洗脱, 从金钱草中分离到5 种黄酮类化合

物。

2.2 硅胶柱层析法

此法应用围最广, 非极性与极性化合物都能用, 适用于分离黄酮类、黄酮醇类、二氢黄酮醇类、二氢黄酮类、异黄酮类、黄酮苷元类. 少数情况下, 在加水活化后也可以用于分离极性较大的化合物, 如羟基黄酮醇类及其苷类等. 与硅胶混

存的微量金属离子, 应预先用浓盐酸处理, 以免干扰分离效果。

实例

1.硅胶主要用于分离极性较低的黄酮类化合物如异黄酮、黄烷类、二氢黄酮( 醇) 和高度甲基化或乙酰化的黄酮和黄酮醇。如用乙醚- 氯仿溶剂系统从野靛(dian)中分离异黄酮类。

2. 硅胶柱层析法分离大豆异黄酮苷元经丙酮萃取后,大豆异黄酮苷及其苷元约占总量的20%左右,染料木素约占其中的14.71%、黄豆黄素

3.73%、大豆素为11.58%;经硅胶柱二氯甲烷和乙酸乙酯的梯度洗脱,可以分离得到3种大豆异黄酮苷元异构体;经HPLC检测,3者的纯度均超过90%故用硅胶柱层析法可以成功地分离出染料木素黄豆黄素和大豆素3个大豆异黄酮苷元单体。

2.3葡聚糖凝胶柱层析法

葡聚糖凝胶( 主要有SephadexLH-20 型和Sephadex-G型) 是一种淋洗速度快、可以反复使用、没有损失的非常好的分离和纯化黄酮类化合物的填充材料。其中SephadexLH-20 的洗出液中不含杂质,适用于从纸色谱分析、硅胶及聚酰胺柱色谱中分离出来的黄酮类化合物糖甙配基及糖甙的最终纯化。葡聚糖凝胶在分离游离黄酮时,主要靠吸附作用,吸附程度取决于游离酚羟基的数目,游离酚羟基的数目越多越难以洗脱;在分离黄酮甙时,则分子筛的属性起主导作用,相对分子质量的大小或含糖的多少决定化合物被洗脱。

实例

1.如用甲醇作洗脱剂, 从SephadexLH-20 柱洗出下列物质先后顺序为: 刺槐甙

( 山萘酚-3-半鼠糖-7-鼠糖甙) 、芦丁( 双糖) 、槲(hu)皮甙( 单糖) 、芹菜素( 5, 7, 4′-三羟基黄酮) 、山萘酚( 3, 5, 7, 4′-四羟基黄酮) 、槲皮素( 3, 5, 7, 3′,4′-五羟基黄酮).

2. 对大豆异黄酮主要单体进行分离采用LH220 葡聚糖凝胶柱,用90 %甲醇作洗

脱剂,可得到含量高达95 %以上的大豆苷和染料木甘。

2.4吸附树脂分离法

大孔吸附树脂具有吸附快、吸附容量大、吸附选择性好、解吸条件温和、洗脱率高、物化稳定性高、不受无机物存在的影响、再生简单、使用周期长、易于构成闭路循环、节省费用等优点, 适宜工业化生产。

实例

1.弱极性AB-8 大孔树脂对根黄酮、银杏叶黄酮进行吸附分离, 提取物中黄

酮含量提高近1 倍。用D101 型树脂成功地纯化了银杏叶中的黄酮类化合物, 效果良好。

2.5膜分离纯化法

膜是具有选择性分离功能的材料,利用膜的选择性分离实现料液的不同组分的分离、纯化、浓缩的过程称作膜分离。它与传统过滤的不同在于,膜可以在分子围进行分离,并且这过程是一种物理过程,不需发生相的变化和添加辅助剂。

膜的孔径一般为微米级,依据其孔径的不同(或称为截留分子量) ,可将膜分为微滤膜、超滤膜、纳滤膜和反渗透膜等。

实例

膜分离技术在根黄酮上的应用采用瓷膜超滤系统,通过超滤过滤,在水提浸提液条件下,所得滤液质量相对较低,但加水量大幅减少,根黄酮收率可保持在98%以上。

2.6 高速逆流色谱分离纯化技术

高速逆流色谱分离纯化技术的原理是利用两相溶剂体系在高速旋转的螺旋管建立起一种特殊的单向性流体动力学平衡,当其中一相作为固定相,另一相作为流动相,在连续洗脱的过程中能保留大量的固定相,物质的分离依据其在两相中分配系数的不同而实现。与其他各种色谱分离技术的根本差别在于, 高速逆流色谱分离纯化技术不采用任何固态的支撑体(如柱填料、吸附剂、亲和剂、板床、筛膜等) ,因此完全排除了因不可逆吸附而引起的样品污染、变性、失活等,不仅使样品能够全部回收,回收的样品也能反映其本来的特性,特别适合于天然产物活性成分的分离、纯化。

实例

黄芩中总黄酮的提取及高速逆流色谱分离纯化实验得出提取黄酮乙醇浓度(60%)、溶剂用量(12倍,10倍),提取时间(2h,1h),提取二次为最佳提取工艺条件。用紫外分光光度法测定样品在本溶剂体系不同比例中的分配系数。称取适量(约2mg)总黄酮粗提物置于5mL试管中,分别加入已经达到平衡的上、下相溶剂各1mL,振荡使样品充分溶解,静置平衡,分取上、下层溶液,用紫外分光光度法测定溶剂体系上、下层所含总黄酮的浓度,求得二者样品在该溶剂系统中的分配系数(K)。根据试验结果,选择氯仿-甲醇-水-醋酸(4∶3∶3∶0.1,V/V)作为分离纯化黄芩中总黄酮的高速逆流色谱分离纯化技术两相溶剂体系。

2.7 pH梯度萃取

黄酮类化合物中有酚羟基的取代而显酸性, 并且由于羟基的数目和位置不同, 酸性强弱也不同, 利用这一特性, 将植物提取的总黄酮溶于有机溶剂中,依次按弱碱至强碱, 从稀碱至浓碱的水溶液的顺序进行萃取, 就可以将黄酮按较强酸性至较弱酸性的顺序分别萃取出来.

实例

将混合物溶于有机溶剂乙醚后, 依次用5%NaHCO3、5 %Na2CO3、0.2 %NaOH、5 %NaOH

中草药叶下花总黄酮提取方法

中草药叶下花总黄酮提取方法 作者:杨发忠,杨斌,杨德强,陈厚琴,代红娟,张丽,李东海 【摘要】目的对叶下花总黄酮的种类与提取方法进行初步研究。方法采用定性检测、光谱分析、单因素测定、正交实验等,研究黄酮种类,考察乙醇体积分数、温度、固液比、时间对提取率的影响。结果叶下花含黄酮、黄酮醇、二氢黄酮、二氢黄酮醇等多种黄酮类化合物;所考察的影响因素中,对总黄酮提取率影响程度大小顺序为乙醇体积分数>温度>时间>固液比。结论最佳提取条件为A1B2C3D3 (乙醇体积分数30%、温度65℃,提取时间180 min,固液比1∶80),在此提取条件下,提取量高达5.233%。 【关键词】叶下花总黄酮提取方法正交实验 Abstract:ObjectiveTo optimize the extraction conditions for the total flavonoids from Ainsliaea pertyoides Franch and to study the categories of the total flavonoids. MethodsThe methods of the chemical qualitative detection, the spectral analysis, single factor determination, orthogonal test were adopted to study the categories of the total flavonoids, and the effect of four factors, i.e. the volume fraction of ethanol, the temperature, the ratio of solid to liquid, the

竹叶黄酮的抗氧化活性研究

食 品 科 技 FOOD SCIENCE AND TECHNOLOGY 2011年 第36卷 第7期 提取物与应用 · 201 · 罗宇倩1,郭 辉1,胡林福2,施林巍2,钱俊青1* (1.浙江工业大学药学院,杭州 310014; 2.浙江竹类资源生物技术研究开发中心,安吉 313300) 摘要:为了有效利用竹叶中黄酮类物质,研究采用不同的方法(DPPH法、邻苯三酚自氧化法(325 nm)和 Fenton法)评价了竹叶黄酮的抗氧化活性,以Vc和茶多酚为阳性对照品。结果表明:竹叶黄酮清除超氧负离子自由基和DPPH自由基的能力比茶多酚强,其EC 50相应为11.7 μg/mL和18.3 μg/mL,分别是Vc的约1.2倍和3.4倍;竹叶黄酮在清除羟自由基效果与茶多酚相当,EC 50 为0.58 mg/mL,比Vc效果好。因此竹叶黄酮具有很强的抗氧化能力,值得深入研究其生理功能及开发利用价值。 关键词:竹叶;黄酮;抗氧化性 中图分类号:TS 202.3 文献标志码:A 文章编号:1005-9989(2011)07-0201-03 Antioxidant activity of ? avonoids from bamboo leaves LUO Yu-qian 1, GUO Hui 1, HU Lin-fu 2, SHI Lin-wei 2, QIAN Jun-qin 1* (1.College of Pharmacognosy of Zhejiang University of Technology Hangzhou 310014; 2.Biological Technology R&D Center of Bamboo Resources, Anji 313300) Abstract: The antioxidant activity of total flavonoids from bamboo leaves was determined by various assays, including DPPH radical-scavenging, self-oxidation of 1, 2, 3-phentriolassay method(325 nm) and Fenton reactions. The results showed that ? avonoids from bamboo leaves have very strong scavenging capabilities for superoxide anion and DPPH free radical, their EC 50 values are 11.7 μg/mL and 18.3 μg/mL respectively, and are approximately 1.2 times and 3.4 times as much as that of vitamin C respectively. The scavenging capability of bamboo leaves ? avonoids for hydroxyl radical is stronger than that of vitamin C, weaker than tea polyphenol, and its EC 50 is 0.58 mg/mL.Key words: bamboo leaves; ? avonoids; antioxidation 收稿日期:2010-11-07 ﹡通讯作者基金项目:浙江省制药工程重中之重开发基金项目。 作者简介:罗宇倩(1986—),女,湖南株洲人,硕士研究生,研究方向为天然药物的提取与纯化以及药理研究。 淡竹叶和淡竹沥是中医一味传统的清热解毒药,早已为我国人们所认识。竹叶中黄酮类物质是主要活性物质,含量平均在2%,主要为黄酮糖苷[1],分别是荭草苷、异荭草苷、牡荆苷和异牡荆苷,以及木犀草素苷、洋芹苷和黄酮苷类。竹叶黄酮具有明显的抗脂质过氧化[2-3]、清除羟自 由基和调节血脂功能及抗过敏、抗炎、抗菌、抗突变、抗肿瘤、抗溃疡、抗病毒、保护心血管疾病[4-5]及保肝等生理活性,是一类极具开发前景的天然有机抗氧化剂[1,6-8]。 我国竹叶资源丰富,因此充分开发利用竹叶中的黄酮类成分具有十分重要的现实经济意义。 竹叶黄酮的抗氧化活性研究

黄酮的提取实施方案

黄酮提取实验方案 1材料与仪器 1.1材料 1.2试剂 芦丁,无水乙醇,氢氧化钠,石油醚,硝酸铝,三氯化铁,三氯化铝,浓氨水,浓盐酸,镁粉,亚硝酸钠(以上均为国产分析纯),实验所用水均为蒸馏水。 1.3实验仪器 电热恒温水浴锅 电子天平(感量0.0001g) 722型光栅分光光度计 索氏提取器 量筒(100ml,10ml)25ml比色管移液管小试管白瓷板圆底烧瓶100m 容量瓶 锥形瓶 2实验原理 2.1提取原理 溶剂提取原理游离黄酮黄酮昔备注 乙辱溶解范围广+ + (甲醇)著■甘元均可溶(90-95%) (6M)甲醇毒性大 沸水多糖昔易于水+ 成本低、安全, 水溶性杂质多 臓性水或稀氢氧化钠溶出能力强 碱性乙醇酚强基的酸性 + +石灰水除杂质效果好

分离依据 之间的极性(分配系数K )差异 分离工艺 回收 回收 单糖瞽 多糖昔 誓元 爸游离黄酮的乙瞇液 2 黄酮与杂质 昔与昔元 昔元与昔元 )溶剂萃取法 2.2分离方法及原理 (二)pH 梯度萃取法 分离依据: 游离黄酮类化合物的酸性差异(见黄酮酸性规律) 分离工艺: 依次以 5%NiiH0h . 5%Na2C0 0. 2%N SL OH. 4%NaOH^取 5%NaHCO3< 5%Na2CO3液 0. 2KNaOH 液 4%NaOH 液 母液 (脂溶性杂石油駆液 乙豔液 乙酸乙酯 (脂溶性杂质)| | 丄酸化 水饱和正丁醇 母液 (水溶性杂质) 减压回收 原料的提取苹缩液(水溶液) 依次以石油耿、乙馳、 乙酸乙酯、水饱和正丁醇萃取

3 实验部分 3.1 原料的预处理 金星科厥类叶T除杂T水洗T晾干T粉碎 3.2 芦丁—标准溶液的配制 将芦丁在干燥箱里用120C条件下恒重1.5h,然后精确称取芦丁标准品O.OIg用85%勺乙醇溶液配制成100.00mL 的溶液,备用。 3.3 测定波长勺选择 精确移取芦丁标准溶液0.50mL, 置于25.00mL 勺比色管中,用质量分数为85%勺乙醇稀释到10.00mL 处,加人5%勺亚硝酸钠溶液0.80mL, 混匀,放置10min; 加入10%硝酸铝溶液0.80mL , 混匀,放置10min, 再加入4%勺氢氧化钠溶液10.00mL, 混匀,放置10min, 加入85%勺乙醇溶液至刻度,摇匀,10min后在460?560nm处测定吸光度,⑷(以试剂样品做空白)选择最大吸收波长。 3.4 芦丁标准曲线勺绘制 精确吸取芦丁标准溶液0.00、0.50、1.00、2.00、3.00、4.00 mL于6支25.00mL的比色管中,用质量分数为85%勺乙醇稀释到10.00mL 处,加人5%勺亚硝酸钠溶液0.80mL, 混匀,放置10min; 加入1 0%硝酸铝溶液0.80mL , 混匀,放置10min, 再加入4%的氢氧化钠溶液10.00mL, 混匀,放置10min,加入85%的乙醇溶液至刻度,摇匀,10min后于波长500nm处测定吸光度,(以第一瓶为空白溶液)然后以吸光度和芦丁溶液浓度做图,绘制标准曲线。 3.5 黄酮类化合物的特征性实验[5]-[6] 在一定条件下对提取的黄酮类化合物进行特征性实验,具体内容如 下: (1)盐酸一镁粉反应:取 1.00mL提取液于试管中加适量镁粉摇匀,再加入浓盐酸数滴(1次加入),观察其泡沫颜色。(2)三氯化铝反应:取提取液点在滤纸上,滴加1%三氯化铝乙醇溶液, 吹干,观察颜色变化。(3)三氯化铁反应:取几滴提取液于白瓷板上,滴加1%三氯化铁乙醇溶液, 观察其颜色。(4)浓氨水反应:取乙醇提取液点在滤纸上,将滤纸在浓氨水上方熏0.5min ,观察 其颜色变化。 3.6 单因素实验 2.6.1 较佳提取剂质量分数的确定 准确称取3g 处理好的金星厥科叶样品置于圆底烧瓶中,分别用无水乙醇、95%、85% 80%、 75%的乙醇60mL对3g金星厥科叶样品在水浴温度为80C下回流提取3h.提取完毕,用与提取剂的 质量分数相同的乙醇反复洗涤圆底烧瓶、滤纸包,将其定容于100:00mL 容量瓶中,然后精确吸取 0.50mL提取液置于25.00mL的比色管中,用与提取剂质量分数相同的乙醇稀释到10.00mL处,加人5%的亚硝酸钠溶液0.80mL,混匀,放置10min;加入10%硝酸铝溶液0.80mL ,混匀,放置10min,再加入4%的氢氧化钠溶液10.00mL, 混匀,放置10min, 加入85%的乙醇溶液至刻度,摇匀,10min 后 于波长500nm处测定其吸光度,同时做三组平行实验。

总黄酮的提取方法

总黄酮的提取方法 1、熔剂法热水提取法、碱性水或碱性稀醇提取法、有机溶剂提取法 2、微波提取法微波提取是利用不同结构的物质在微波场中吸收微波能力的差异,使基体物质中的某些区域或提取体系中的某些组分被选择性加热,从而使被提取物质从基体或体系中分离,进入介电常数较小,微波吸收能力相对差的提取剂[1]。这种方法的优点是对提取物具有较高的选择性、提取率高、提取速度快、溶剂用量少、安全、节能、设备简单 3、超声波提取法用超声波提取法提取黄酮类物质,是目前比较新的方法。原理是利用超声波在液体中的空化作用加速植物有效成分的浸出提取,另外,还利用其次效应,如机械振动、扩散、击碎等,使其加速被提取成分的扩散、释放。超声波提取法具有设备简单,操作方便,提取时间短,产率高,无需加热,同时有利于保护热不稳定成分,省时,节能,提取率高的优点。 4、超临界流体萃取法超临界流体萃取技术是利用超临界流体处于临界温度和临界压力以上,兼有气体和液体的双重特点,对物质具有良好的溶解能力,从而作溶剂进行萃取分离。可做超临界流体的物质很多,一般为低分子量的化合物,如CO2、C2H6、NH3、N2O 等。目前多采用CO2 做萃取剂,因为它具有密度大、溶解能力强、临界压力适中、临界温度接近常温、不影响萃取物的生理活性、无毒无味、化学性质稳定、生产过程中容易回收、无环境污染、价格便宜等一系列优点。但单一的CO2作萃取剂只对低极性、亲脂性化合物有较强的溶解能力,对大多数极性较强的组分则不起作用,因此,在其中加入夹带剂,通过影响溶剂的密度和溶质与夹带剂分子间的作用力来影响溶质在二氧化碳流体中的溶解度和选择性[15]。超临界流体萃取技术有许多传统分离技术不可比拟的优点:过程容易控制、达到平衡的时间短、萃取效率高、无有机溶剂残留、对热敏性物质不易破坏等[16]。但它所需要的设备规模较大,技术要求高,投资大,安全操作要求高,难以用于较大规模的生产。 5、酶法提取酶解法适用于被细胞壁包围的黄酮类物质,利用酶反应的高度专一性,破坏细胞壁,使其中的黄酮类化合物释放出来。黄剑波等[22]采用纤维素酶辅助法从甜茶中提取黄酮类化合物,黄酮类物质的提取率为91%,提取纯度为54%。王悦等[23]对桔皮细胞进行游离酶、固定化酶和常规法提取,黄酮得率分别是%,% 和%,和传统的方法相比,游离酶法的总黄酮得率提高了81%。

竹叶中黄酮提取分离及抗氧化活性研究

竹叶中黄酮提取分离及抗氧化活性研究 摘要:采用体积分数95%的乙醇浸提与超声波相结合的方法提取竹叶黄酮,并通过邻苯三酚自氧化法和Fenton反应测定其抗氧化性能。结果表明,竹叶黄酮的提取率为5.30%,粗提物中黄酮的含量为13.90%。0.2 mL 1 mg/mL竹叶黄酮对超氧阴离子自由基(O2-·)的清除率为17.39%;0.7 mL 1 mg/mL竹叶黄酮对羟基自由基(·OH)的清除率为58.20%,表明竹叶黄酮有优良的抗氧化活性。 关键词:竹叶;总黄酮;提取;抗氧化 Extraction of Flavonoids from Bamboo Leaves and Their Antioxidant Activity Abstract:Total flavonoids were extracted from bamboo leaves by 95% ethanol as solvent and ultrasonic. The oxidation activity of flavonoids in bamboo leaf was determined by the methods of pyrogallol autoxidation and Fenton reaction. The results showed that the extraction yield of flavonoids from bamboo leaf was 5.30%,and the content of flavonoids in the crude extract was 13.90%. The clearance rate of O2-· by 0.2 mL 1 mg/mL bamboo leaf flavonoids was 17.39%;while the clearance rate of ·OH by 0.7 mL 1 mg/mL bamboo beaf flavonoids was 58.20%,it showed that flavonoids in bamboo leaf had good antioxidant activity. Key words:bamboo leaf;total flavonoids;extraction;antioxidant activity 竹叶在中国有着悠久的食用和药用历史,其性淡、寒、味甘、微涩,具有清热利尿、明目解毒、止血、免疫调节、抗氧化、抗艾滋病和抑制肿瘤等功效,且无毒无害,可作为绿色食品进行开发。竹叶中含有丰富的黄酮类物质,总黄酮含量平均在10 mg/g左右。竹叶黄酮具有优良的抗溃疡、解痉、抗菌、消炎、降血脂、镇痛、利尿、降血清胆固醇和雌性激素、抗氧化等功效[1-7]。郑德勇等[8]报道从竹叶中提取的总黄酮对1,1-二苯基-2-三硝基苯肼自由基(DPPH·)具有显著的清除能力;张英等[9]和章荣华等[10]研究发现竹叶黄酮能显著提高衰老小鼠体内SOD和GSH-Px的活力,说明竹叶黄酮有优良和稳定的抗氧化活性。闽北是中国竹子之乡,但目前对竹叶的利用十分有限,大部分被废弃,未能得到充分的利用。本研究采用乙醇浸提和超声波提取相结合的方法从竹叶中提取总黄酮,并采用邻苯三酚自氧化法测定其清除超氧阴离子自由基(O2-·)的作用,用Fenton反应产生羟基自由基(·OH)使溴甲酚紫退色的方法测定竹叶黄酮清除羟基自由基的作用,为竹叶黄酮的开发利用提供参考。 1 材料与方法 1.1 材料与仪器 实验用竹叶采自福建省武夷山市,用蒸馏水洗净后80 ℃烘干,粉碎、过40目筛,烘干备用。

黄酮提取工艺

黄酮提取工艺 2-1 微波辅助提取金银花总黄酮工艺流程图 3.实验方法 3.1 标准曲线的制备 3.1.1最大吸收波长的选择方法 以亚硝酸钠、硝酸铝和氢氧化钠为显色剂,分别作各样品提取液以及芦丁标准品的吸收曲线,在510nm处均有1个强吸收峰,因此选择510nm为测定波长。 3.1.2对照品溶液的制备方法 精密称取芦丁对照品10.2mg置50mL容量瓶中,加适量甲醇溶解,并稀释至刻度,摇匀备用。 3.1.3 标准曲线的制备 精密量取对照品溶液0,1,2,3,4,5mL,分别置10mL容量瓶中,加入5%亚硝酸钠溶液0.3mL,振荡摇匀,放置6min;再加入10%硝酸铝0.3mL,振荡摇匀,放置6min;最后加入4%氢氧化钠试液4mL,加甲醇定容至刻度,摇匀,放置15min。采用分光光度法,在510nm处测定吸光度,以对照品量(mg/mL)为横坐标,吸光度为纵坐标,绘制标准曲线。

3.2 微波提取单因素实验方法 分别考察不同的微波辐射功率,辐射时间,乙醇浓度,固液比对提取效果的影响 3.3 提取工艺正交试验设计方法 系统考察微波提取法的工艺参数,根据已有的资料及实际情况,选用微波辐射功率(A),辐射时间(B),乙醇浓度(C),固液比(D)作为考察因素,以测得的浸提取样品中总黄酮含量为考察指标,选用L9(34)正交表设计,得到供试液。 3.4微波辅助提取法与乙醇回流法比较 比较两种提取方法的处理时间和液固比对总黄酮提取量的影响。传统乙醇回流法提取总黄酮的所需时间比微波辅助提取法提取长得多,且金银花总黄酮提取量比较低;而微波辅助提取的总黄酮较乙醇回流法高。比较此两种方法在最佳条件下的总黄酮含量。 3.5总黄酮含量测定方法 取0.5mL液,加入5%亚硝酸溶液0.3mL荡摇匀,放置6min加入10%硝酸铝0.3mL荡摇匀,放置6min入4%氢氧化钠试液4mL,30%(V/V)乙醇定容至刻度,摇匀,放置15min分光光度法,在510nm定吸光度值由标准曲线计算得总黄酮含量。 4. 结果 4.1 标准曲线绘制 表4-1 标准曲线表 编号 0 1 2 3 4 5 芦丁浓度 0 0.02 0.03 0.05 0.07 0.09 (mg/mL) 吸光度 0 0.206 0.381 0.548 0.738 0.911 (OD)

黄酮类化合物提取和分离方法研究进展

收稿日期:2007205225 作者简介:梁 丹(19852),女,河南鹿邑人,贵州大学农药学硕士研究生,研究方向为植物源农药. 第24卷第5期周口师范学院学报 2007年9月Vol.24No.5Jo urnal of Zhoukou Normal U niversity Sept.2007 黄酮类化合物提取和分离方法研究进展 梁 丹1,张保东2 (1.贵州大学农学院,贵州贵阳550025;2.周口师范学院继续教育学院,河南周口466001) 摘 要:黄酮类化合物具有多种生理活性,从天然产物中提取和分离黄酮类化合物,引起了人们的广泛关注,其提取和分离方法也不断地改进和发展.文章主要综述了近几年来不同的提取和分离方法在黄酮类化合物中的应用进展.随着科技的进步,黄酮类化合物的提取和分离方法将更加快速、高效、完善.关键词:黄酮;提取;分离;进展 中图分类号:O652 文献标识码:A 文章编号:167129476(2007)0520087203 黄酮类化合物是植物界分布广泛的天然酚类化 合物,植物中的黄酮大体上可分为“黄酮类”与“黄烷酮类”两大类物质,已知化学结构的黄酮类物质至少有4000余种.黄酮类化合物具有广泛的生理功能, 是许多中草药的有效成分,具有很高的药用价值,如有抗癌、抗肿瘤、抗心脑血管疾病、抗炎镇痛、免疫调节、降血糖、治疗骨质疏松、抑菌抗病毒、抗氧化、抗衰老、抗辐射等作用[1,2].黄酮类化合物还在食品、化妆品等行业中广泛应用.随着市场需求量的增加,经济效益的提高,黄酮类化合物提取和分离方法也在不断地改进和提高. 1 黄酮类化合物提取方法的研究进展 1.1 按所用溶剂不同分类 (1)热水提取法(以水作溶剂).热水一般仅限 于提取苷类.在提取过程中要考虑加水量、浸泡时间、煎煮时间及煎煮次数等因素.此工艺成本低、安全,适合于工业化大生产.郭京波等[3]以水做溶剂,同时提高浸提温度、延长浸提时间和增加液料比(60倍),可以明显提高芦丁的产率.(2)有机溶剂萃取法.乙醇和甲醇是提取黄酮类化合物的最常用溶剂.高浓度的醇(90%~95%)适合提取苷元,60%左右的醇适合提取苷类,提取的次数一般为2~4次[4].胡福良等[5]提取蜂胶液中黄 酮类化合物,以80%乙醇提取的总黄酮的含量最高.其他有机溶剂法是根据相似相溶原理,对不同性质的黄酮选择最佳的有机溶剂进行提取. (3)碱提取酸沉淀法.黄酮类成分大多具有酚羟 基,易溶于碱水(如碳酸钠、 氢氧化钠、氢氧化钙水溶液)和碱性稀醇.因此,可先用碱性水提取,碱性提取液加酸后黄酮苷类即可沉淀析出.提取时应控制酸碱的浓度,以免在强碱下加热时破坏黄酮类化合物的母核.当有邻二酚羟基时可加硼酸保护.此方法简 便易行,橙皮苷、 黄芩苷、芦丁等都可用此法提取.1.2  按提取条件不同分类(1)回流提取法.本法是加热回流提取黄酮类化合物的一种方法.所用回流剂一般有水、 醇及混合溶剂.此法操作简便,但效率不够高,一般很难一次性完全提出黄酮化合物,需要反复回流提取[6,7]. (2)索式提取法.该法是用索式提取器,多次提取黄酮,其溶剂可反复利用,操作方便,价格低廉且提取效率高,但此法所需时间较长.索式提取黄酮类 化合物的方法已广泛为人们所利用[8].(3)微波辅助提取法.该法是利用微波加热的特性对成分进行选择性提取的方法.此法具有快速、高效、高选择性、对环境无危害等特点.刘峙嵘等采用微波萃取银杏叶中黄酮类化合物及唐课文等采用微 波辅助法从黎蒿中提取黄酮类化合物,与传统溶剂萃取方法相比,微波萃取法更简单,而且具有萃取时间短、成本低、萃取效率高等优点[9,10].(4)超声提取法.该法是利用超声波浸提黄酮类 化合物的一种方法.其基本原理是利用超声波的空化作用,破坏植物的细胞,使溶剂易于渗入细胞内,同时超声波的强烈振动能给植物和溶剂传递巨大的

举例说明黄酮的提取分离方法

举例说明黄酮的提取分离方法 组长:崔宁 组员:翟雪王璐璐冯子涵赵子惠罗春雨刘红成 1.提取方法 1.1热水提取法 热水提取法一般仅限于提取苷类. 在提取过程中要考虑加水量、浸泡时间、煎煮时间及煎煮次数等因素. 此工艺成本低、安全,适合于工业化大生产。以水做溶剂,同时提高浸提温度、延长浸提时间和增加液料比(60倍) ,可以明显提高芦丁的产率。 实例 桑叶:采用热水提取法测定桑叶中各有效成分含量,发现黄酮类化合物含量为1%以上,其中霜后桑叶黄酮类化合物含量最高为1.54% ,其次是晚秋桑叶,春季桑芽和后期桑叶含量最低。 甘草:过去甘草黄酮的提取主要为水提法,其主要原理通过甘草粉与水按一定配比,加热混合至80~95 ℃浸提甘草粉,利用甘草黄酮的水溶性进而提取甘草黄酮。此法虽然要求设备简单,但因提取杂质多、提取时间长、提取液存放易腐败变质、后续过滤操作困难、收率较低等缺点,现已不常使用。 1.2有机溶剂萃取法 其原理是利用黄酮类化合物与混入的杂质极性不同,选用不同的溶剂萃取。常用的有机溶剂有甲醇、乙醇、丙酮、乙酸乙酯等,一般采取乙醇为提取溶剂。高浓度的乙醇(如90 %~95 %) 适于提取苷元,浓度60 %左右的乙醇适于提取苷类。提取次数一般为2~4 次,提取方法有热 回流提取和冷浸提取两种方式。 实例 桑叶:使用乙醇提取桑叶中总黄酮的最佳工艺条件为:乙醇的浓度为70%,料液比为1:15,在80℃的条件下浸泡3h。使用多种有机溶剂提取发现桑叶中黄酮类化合物的最佳提取溶剂是60%丙酮。 西芹:使用无水乙醇为提取剂,按西芹鲜重与提取剂的比例(W/ V) 1∶2 ,在80 ℃下回流提取2~4h ,制备西芹总黄酮。 银杏叶:从银杏叶中提取总黄酮时, 随乙醇浓度的增加总黄酮提取率逐渐上升, 当乙醇浓度增至70% 时提取率最高, 之后反而下降, 故选用70% 的乙醇作浸提剂最佳。 生姜:生姜黄酮提取用40倍原料的90%甲醇溶液, 在60 ~ 65℃条件下提取4 h 为其优化组合, 而其试验组合中以用40倍原料的75%甲醇溶液,在60~ 65 ℃条件下提取2 h的提取效果最好。 1.3碱性水或碱性稀醇提取法 黄酮类化合物大多具有酚羟基, 易溶于碱水, 酸化后又可沉淀析出。其原因一是由于黄酮酚羟基的酸性, 二是由于黄酮母核在碱性条件下开环, 形成2′-羟基查耳酮, 极性增大而溶解。因此可用碱性水( 碳酸钠、氢氧化钠、氢氧化钙水溶液) 或碱性稀醇( 50 %乙醇) 浸出, 浸出液经酸化后析出黄酮类化合物。 实例 菊花:各取5g干菊花4份, ,在80℃恒温水浴分别以pH为8,9,10,11的NaOH溶液分两次温浸1h和0.5h。pH降低时.由于提取不完全.含量较低;pH为11时,虽然黄酮

银杏叶中黄酮的提取原理及方法

银杏叶中黄酮提取及含量测定 一、实验目的 提取银杏叶中的总黄酮并测定其含量。 二、实验原理 银杏系银杏科银杏属落叶乔木,银杏叶中含有多种生理活性成分,其中黄酮类化合物是重要的生理活性物质,具有保肝护肝、预防治疗心血管疾病、抗氧化、抗衰老等作用。因此,将银杏叶作为高营养、保健功能价值的资源加以开发利用,这对于提高银杏叶综合利用率有重要意义。银杏叶黄酮类化合物的提取方法目前研究的有水浸取法,成本低但浸取率低;有机溶剂浸取法中,乙醇浸取的效率高且无毒,是目前采用较多的方法;韩玉谦等采用超临界流体萃取法,在70%乙醇溶液中加热回流法和CO2 超临界流体萃取法提取银杏叶中的活性成分,银杏黄酮回收率为84 . 4 % ,是常规萃取法回收率的2倍多;乙醇超声波浸取法, 黄酮提取率可达到8 6 . 7 %。银杏黄酮含量的测定常用分光光度法和高效液相色谱法。分光光度法自20世纪9 0年代以来一直是用来测定银杏黄酮的一种重要方法, 由于其成本低、便于操作等特点, 是一种快捷有效的方法[1]。本实验采用乙醇作溶剂进行索氏提取,建立了用Al(NO3)3显色法对芦丁标准品和银杏叶提取液进行光谱扫描测定银杏叶总黄酮含量的方法[2]。 三、实验仪器和试剂 材料:银杏叶粉末50g 试剂:标准芦丁样品,无水乙醇(600ml),50mlAl(NO3)3(0.1mol/L),乙醚,5%NaNO2溶液,10%AL(NO3)3,4%NaOH溶液。

仪器:紫外分光光度计、电子分析天平、水浴锅、烘箱、烧杯、容量瓶(100ml1个、50ml1个、10ml6个)、索氏提取器、减压蒸馏装置、锥形瓶、沸石等。 四、实验步骤 1.1提取银杏叶中总黄酮 (1)将银杏叶洗净, 在103℃下烘干至恒重,用研钵捣碎制得银杏叶粉(2)准确称取10.0g,置于索氏提取器中,按下列条件加热回流提取:乙醇浓度80%,料液比1:20(g/ml),回流温度85℃,回流时间2 h,平行进行1~3次实验。 (3)将圆底烧瓶中提取液倒入烧杯,加入一倍蒸馏水,再加入相同量的乙醚,混合均匀,倒入分液漏斗中,静置20min,分层后,收集下层液体。 (4)减压蒸馏,回收乙醇,得到淡黄色黏液,干燥得到银杏叶中总黄酮提取物。 1.2银杏叶中总黄酮含量测定 (1)芦丁标准溶液的配置:称取0.0100g芦丁标准品,放入烧杯中,加入80%的乙醇溶液使其溶解,置于100ml的容量瓶中,制成0.1g/L的芦丁标准溶液。定容,摇匀备用。 (2)绘制芦丁标准曲线:分别移取0,0.4 ,0.8,1.2,1.6,2.0 ml 芦丁对照品溶液,于6个10ml 容量瓶中,标记1~6,分别加入2.0、1.6、1.2、0.8、0.4、0ml的80%乙醇溶液,加入5%NaNO2溶液0.5ml,摇匀,放置6min,加入0.5ml10%AL(NO3)3,摇匀,放置6min,加入4%NaOH 溶液4.0ml,加入80%乙醇定容,摇匀,放置20min。在波长510nm处分

黄酮类化合物的提取纯化方法

黄酮类化合物的提取、药用价值和产品开发应用前景 任红丽2009090141 摘要:对黄酮类化合物的药用价值、提取工艺、分离方法等方面进行综述。在 药用价值方面,讨论了其抗抑郁作用、抗氧化与自由基消除活性作用、对化学性肝损伤的保护作用、抗肿瘤作用、抗骨质疏松作用、抗心肌缺血作用;在提取工艺方面,讨论了溶剂提取法、超声提取法、酶法、微波法等;及其开发应用,为今后黄酮类化合物的深入研究提供理论基础。 关键词:黄酮类化合物提取工艺药用价值 黄酮类物质是一类低分子天然植物成分,是自然界中存在的酚类物质[14],又称生物黄酮或植物黄酮,属植物次级代谢产物,广泛存在于各种植物的各个部位,尤其是花、叶,主要存在于芸香科、唇形科、豆科、伞形科、银杏科与菊科中。迄今,已有数百种不同类型的黄酮类化合物在植物中被发现,人工合成的黄酮类化合物也不断问世。最初这类物质仅用于染料方面,自20世纪20年代,槲皮素、芦丁等黄酮类物质用于临床后,才开始引起人们的关注,研究发现其中相当一部分具有显著的生理及药理活性,例如抗氧化、抗病毒、抗炎、调节血管渗透性,改善记忆,抗抑郁、抗焦虑、中枢抑制、神经保护等功能[2,12]诸多生理和药理特性使其广泛应用于食品、医药等领域。 1.提取纯化方法 1.1 传统提取方法 1.1.1 热水提取法 水是最廉价的提取溶剂,是地球最丰富的物质,无色无味无毒,对人体和环境无害,挥发性不大,具有真正的绿色环保意义。但用水作为提取溶剂时,从中药材中提取的黄酮类化合物中杂质含量较多,往往因泡沫或粘液很多,给进一步分离带来许多麻烦,而且浓缩也会很困难。此外,水提取物容易发霉发酵[22]。1.1.2 碱性水、碱性稀醇浸提法 中草药中黄酮类成分多为多酚类化合物,因其结构中具有酚羟基[7],故可用碱性水或碱性稀醇液来提取中草药中的黄酮类化合物。黄酮母核的多样性主要是由黄酮本身骨架、环系的变化、氧化程度和数量而定,当碱的浓度过高,加热时便破坏黄酮类化合物的母核。 1.1.3 有机溶剂热回流及冷浸提取法 根据杂质极性不同,可选用不同的有机溶剂(如石油醚、乙酸乙酯、氯仿、乙醇、甲醇、丙酮等),一般采取乙醇为提取溶剂[15]。

竹叶黄酮开题报告

1、本课题国内外研究动态,选题的依据和意义。 1.1 竹叶黄酮的提取工艺 黄酮类化合物的糖苷是多酚化合物,具有酚性化合物的特征,呈弱酸性,可溶于碱性溶液,但很多黄酮类化合物在溶于碱性溶液的同时有氧存在,其黄酮苷会发生降解反应。根据相似相溶原理,按黄酮类化合物的极性来选择所用溶剂,竹叶所含的有效活性物质主要为黄酮苷类,具有较大的极性和亲水性,故可选择热水、甲醇、乙醇、丙酮、正丁醇等溶剂进行提取。竹叶黄酮的提取方法传统上多用浸提和蒸馏,目前已采用一些高新技术提取和精制竹叶提取物,如CO,超临界提取、超声波提取等。提取原料选新鲜竹叶,最好是现用现取。 1.1.1溶剂提取法 水提法此法适用于黄酮苷类物质提取。具有成本低,对环境及人类无毒害,设备简单,适合工业化大生产,但提取率低,提取中杂质较多(如无机盐,蛋白质,糖类等),后续分离麻烦,现在很少单一使用此法。 有机溶剂提取法根据黄酮类化合物与杂质极性不同来选择适合的有机溶剂,常用有乙酸乙酯,丙酮,乙醇,甲醇,水或某些极性较大的混合溶剂。如甲醇一水(1:1)进行提取。竹叶中黄酮苷类易溶于水,甲醇,乙醇等强极性的溶剂中,故一般用浓度为60%左右的乙醇提取黄酮苷类。 陈彦等以水和乙醇水溶液为提取剂,对影响提取率的因素进行了优化,得出乙醇最佳提取浓度为75%。 1.1.2微波提取法 微波法原理是利用磁控管所产生的每秒亿次超高频率的快速震动,使材料内分子互碰撞、挤压,使得位于细胞内的有效成分从细胞壁周围自由流出,传递转移至萃取介质周围,在较低的温度下背萃取介质获取并溶解其中。此法具有提取率高,准确,快速,操作成本低,减少原料预处理费并于环境无害。微波射线穿透性好,在接近环境温度下抽提竹叶中所需的有效成分,对于热敏性成分的萃取非常有效。微波萃取作为一种新的顺应潮流的高新技术必将得到迅

银杏叶中黄酮提取方法

银杏叶黄酮的提取 一、溶剂提取法:国内外使用最广泛的方法,步骤多、周期长、产率低、产品中有机溶剂易残留。溶剂系统主要有乙醇,水溶液、丙酮-水溶液、NaOH-水溶液、NaOH-乙醇等。精提物常在粗提物制备基础上精制,常用液-液提取法、沉淀法和吸附.洗脱法。 以60%丙酮为起始溶剂粗提取,再脱脂、去银杏酚酸等15道工艺制成提取物。NaOH-水溶液提取效果最好,NaOH-乙醇溶液次之,正丁醇萃取水溶液中银杏黄酮苷,获得最佳萃取条件为萃取5 min温度60℃4次,萃取物中黄酮苷含量为57%。V水:V正丙醇=1:25最佳。银杏叶精提物树脂吸附纯化法以石油醚回流提取,再以80%乙醇回流提取,减压浓缩,新型澄清剂沉降,树脂分级吸附,pH值为3—4酸水和酸性25%乙醇洗涤,75%乙醇洗脱,喷雾干燥 将银杏叶洗净,于60℃烘干至恒重,粉碎,过50目筛。称取粉末25 g,置于索氏提取器中恒重,粉碎,过50目筛。称取粉末25 g,置于索氏提取器中加入60%乙醇至250.0 ml,80℃下回流提取3.0 h,蒸馏回收乙醇,并用活性炭脱色,得银杏叶黄酮提取物。乙醇浓度为50%一70%时,提取率随浓度增加提高,当浓度70%时提取率达最大。随水浴温度升高总黄酮提取率快速增加。当温度80℃时提取率达最大。提取时间为三小时为佳。 二、超临界流体萃取法(SFE法):利用临界或超临界状态的流体及被萃取的物质在不同蒸汽压力下所具有的不同化学亲和力和溶解能力进行分离纯化的操作。最佳萃取实验工艺条件为萃取压力15 MPa、乙醇浓度90%、萃取温度55℃,此时,黄酮类化合物萃取得率较理想. 三、高速逆流色谱技术提取法:是一种不用任何固定载体的液一液分配色谱技术W=70%的乙醇连续循环喷淋逆流6级萃取,m乙醇:m银杏叶=5:1,总萃取时间240min,萃取温度50~55度,萃取率99%以上。 四、微波提取法:微波提取法能对萃取体系中的不同组分进行选择性加热,受溶剂亲和力的限制较小,可供选择的溶剂较多及热效率较高,升温快速均匀,大大缩短了提取时间,提高了萃取效率。以水为介质的条件下,对银杏叶进行微波处理。 工艺流程银杏叶一干燥一粉碎一加入适量氢氧化钙溶液一微波预处理一加入适量碱水一调节pH和硼砂含量→恒温水浴浸提—过滤一定容 通过对提取温度、提取时间、液料比、微波功率、微波时间、解析剂比6个因素进行正交实验,优选得到最佳的萃取工艺条件为:提取温度80℃,提取时间60min,液料比.50:1,微波功率700W,微波时问180s,解析剂比7:l。 五、超声提取法:超声技术应用于天然活性产物的提取,具有速度快、提取率高、节省溶剂、节约能耗、不破坏有效成分的特点。最佳操作条件为超声波频率40kHz处理时间10min、静置时间12 h。以水为介质,在较低温度下 六、酶提取法: 加入淀粉部分水解产物及对葡糖基有转移作用的葡糖苷酶或转糖苷酶,使油溶性或难溶于水或不溶于水的有效成分转移到水溶性苷糖中,既提高了有效成分的提取率,又促进难溶于水或不溶于水的有效成分在体内的吸收. 在常规的醇一水浸提之前用纤维素酶对原料进行酶预处理(酶解时间为2h) 七、分子烙印技术:在极性溶剂中,以丙烯酞胺作功能单体,以强极性化合物槲皮素为模板,

黄酮类化合物的提取分离方法

一.黄酮类化合物的提取分离方法 按所用溶剂不同分类 (1)热水提取法(以水作溶剂)---------- 灵芝多糖热水提取 (2)有机溶剂萃取法-----------生产茶多酚工业试验、乳酸 (3)碱提取酸沉淀法.---------- 橙皮苷、黄芩苷、芦丁等都可用此法提取. 2.按提取条件不同分类 (1)回流提取法----------从苦楝树皮中提取苦楝素 (2)索式提取法----------柑橘属类黄酮 (3)微波辅助提取法----------采用微波辅助法从黎蒿中提取黄酮类化合物 (4)超声提取法----------提取山楂中黄酮类物质 (5)超滤法----------黄岑甙 (6)酶提取法----------采用纤维素酶对红景天进行酶解处理,可提高黄酮类物质的浸出率 (7)超临界流体提取法----------竹叶黄酮、从干姜片中提取挥发油 PH 梯度萃取法:石榴果皮褐变产物、葛花总异黄酮 高效液相色谱分析法:五味子、葛根 高速逆流色谱分离法:甘草、分离蜜环菌发酵液乙醇提取部位 柱色谱法 (1)硅胶柱色谱:姜黄素 (2)聚酰胺柱色谱:紫锥菊 (3)葡聚糖凝胶柱色谱:回心草、茵陈蒿 (4)大孔吸附树脂分离法:川草乌、三七总皂甙 二. 槐米中芸香苷(芦丁)的提取方法有哪些(设计) 方法:渗漉法、煎煮法、回流提取法 (1) 槐米粗粉20g 加约120ml 的%硼砂水溶液, 搅拌下加入石灰乳至pH8-9, 并保持该pH 值煮沸20分钟,四层纱布 趁热滤过,反复2次 提取液 药渣 浓盐酸调pH2~3 搅拌,静置放冷,滤过。 滤液 沉淀 热水或乙醇重结晶 芸香苷结晶 碱溶酸沉法提取分离槐米中芸香苷的流程图 (2)取30g 槐花米,置于250mL 烧杯中,加入%硼砂沸水200ml ,在搅拌下缓缓加入石灰乳调节pH=8~9,在此pH 下保持微沸20~30min ,趁热用棉花滤过,残渣再加水,同上法再煎一次,趁热抽滤。合并滤液,在60~70℃下用浓盐酸调至pH=4—5,静置。 提 碱 取 溶 分 酸 离 沉

竹叶黄酮的应用及市场概况

竹叶黄酮的应用及市场概况 一、竹子概述 竹子是禾本科( Gram ineae ) 竹亚科(Bambusoideae)多年生常绿植物,有着复杂的次生代谢。世界竹类植物约有70-80 属1 300多种,其中我国约有39属500余种。我国江南竹资源丰富,竹林面积约为720万公顷,主要分布在广东、广西、福建、浙江、湖南、江西、四川、江苏、贵州和云南等省份。 竹叶在我国有悠久的利用历史,是一味传统的清热解毒药。近年来对竹子的研究发现,竹叶中含有大量对人体有益的活性物质,包括黄酮酚酸类、生物活性多糖、氨基酸肽类、蒽醌类、萜类内酯等,其中酚酸类化合物、蒽醌类化合物、萜类内酯和生物碱等都有着较强的抑菌杀菌作用。竹叶中主要有效成份的含量为:总黄酮含量1. 18% ~ 2. 02%,总酚含量2. 21%~2. 86%,总糖含量14. 35%~24. 61%,水溶性糖含量7. 86%~11. 45%, 多糖6. 49%~14. 55%,蛋白质含量10. 24%~16. 68%,含氮量2. 13%~2. 65%。 淡竹叶2002年被卫生部列入“既是食品又是药品的物品名单”。 二、竹叶黄酮概述 又名竹叶抗氧化剂,英文名称antioxidant of bamboo leaves, 简称AOB,是从竹叶中提取出来的具有生理活性的生物黄酮,它是一种高效的生物抗氧化剂。AOB为黄色粉末或晶体,总黄酮糖苷含量在≥24%,总香豆素类内酯≥12%,包括黄酮类、内酯类和酚酸类化合物,是一组复杂的、而又具有相互协同增效作用的混合物。其中,黄酮类化合物主要是碳苷黄酮,四种代表化合物为:荭草苷、异荭草苷、牡荆苷和异牡荆苷,内酯类化合物主要是羟基香豆素及其糖苷,酚酸类化合物主要是肉桂酸的衍生物,包括绿原酸、咖啡酸和阿魏酸等。 竹叶抗氧化物是一种具有本土资源特色和自主知识产权的、安全高效经济的天然食品抗氧化剂,于2003年底通过国家评审,2004年4月被批准列入《中华人民共和国食品添加剂使用卫生标准》(GB2760—1996),允许的使用范围是:食用油脂、肉制品、水产品和膨化食品,最大使用量0.5g/kg。 竹叶黄酮于2014年12月20号公告被国家卫计委列入新食品原料。

纤维素酶法提取竹叶黄酮的传质动力学-

第27卷第5期高校化学工程学报No.5 V ol.27 2013 年10月 Journal of Chemical Engineering of Chinese Universities Oct. 2013文章编号:1003-9015(2013)05-0779-06 纤维素酶法提取竹叶黄酮的传质动力学 魏凤玉, 陈玮, 方菊, 宝呼和 (合肥工业大学化学工程学院, 安徽合肥 230009) 摘要:采用纤维素酶法提取竹叶中的总黄酮类化合物,讨论了温度、原料尺寸、转速及纤维素酶用量对传质速率的 影响,并用扫描电镜观察了水提和酶提取后样品的细胞结构变化。结果表明,竹叶黄酮的提取动力学符合平板型Fick 第 二定律,提取过程主要受内扩散控制;纤维素酶不改变传质动力学机理,它只破坏细胞壁,从而降低扩散阻力使溶质 的传质速率和表观扩散系数D′提高。实验还得到了D′与提取温度、竹叶几何尺寸之间的关系,在30~60℃,酶提时 的D′为 1.95×10-13~6.85×10-13m2?s-1,水提时的D′为 1.73×10-13~6.05×10-13m2?s-1;酶提时的活化能E a为11.853 kJ?mol-1,比水提时降低了9.59%。该研究为酶法提取竹叶黄酮的工艺设计及工业化应用提供了理论依据。 关键词:竹叶黄酮;纤维素酶辅助提取;传质动力学;有效扩散系数 中图分类号:TQ021.4;TQ028.96;Q55 文献标识码:A DOI:10.3969/j.issn.1003-9015.2013.05.009 Mass Transfer Kinetics of Flavonoids Extraction from Baantant Leaves with Cellulase-Assisted Aqueous Extractant WEI Feng-yu, CHEN Wei, FANG Ju, BAO Hu-he (School of Chemical Engineering, HeFei University of Technology, Hefei 230009, China) Abstract: In this study, cellulase-assisted aqueous extractant (CAE) and aqueous extractant (AE) were adopted separatively for the extraction of the total flavonoid compounds from bamboo leaves. The influence of temperature, raw material size, rotation speed of stirrer and cellulase dosage on the mass transfer rates of the flavonoid compounds was examined. In addition, the micro-structural changes of bamboo leaf cells after the CAE or AE process were observed by scanning electron microscopy (SEM). Results show that the Fick’s second law fits well with the experimental data and the extraction rate is controlled mainly by the inner diffusion process. The presence of cellulase has nearly no influence on the mass transfer mechanism, and can only damage the cell walls and reduce the resistance of diffusion. The mass transfer rate and apparent diffusion constant D′are increased accordingly. The relationship of D′ with the extraction temperature and the bamboo leaf size was deduced. D′ varies from 1.95×10-13 to 6.85×10-13m2?s-1 for CAE and from 1.73×10-13 to 6.05×10-13m2?s-1 for AE in a temperature range between 30 and 60℃. The activation energy E a is 11.853 kJ?mol-1 for CAE, which is 9.59% lower than that for AE. The results could provide valuable theory basis for the technical design and industrial application of using CAE process to extract the flavonoid compounds from bamboo leaves. Key words: bamboo flavonoids; cellulase-assisted aqueous extraction; mass transfer kinetics; apparent diffusion constant 1前言 竹叶黄酮具有优良的清除活性氧自由基能力及抑菌、抗肿瘤、降血脂等诸多生物活性作用[1]。目前,竹叶黄酮的提取方法主要有水提和醇提,但提取时间长、提取率较低,采用酶法辅助提取能显著提高其 收稿日期:2012-02-08;修订日期:2012-06-15。 基金项目:安徽高校省级自然科学研究重点项目(KJ2009a002);国家大学生创新性实验计划项目(091035947)。 作者简介:魏凤玉(1963-),女,江苏靖江市人,合肥工业大学教授,博士。通讯联系人:魏凤玉,E-mail:weifyliuj@https://www.doczj.com/doc/9713309469.html,

相关主题
文本预览
相关文档 最新文档