当前位置:文档之家› 流体力学第六章 流动阻力及能量损失

流体力学第六章 流动阻力及能量损失

流体力学第六章 流动阻力及能量损失
流体力学第六章 流动阻力及能量损失

第六章流动阻力及能量损失

本章主要研究恒定流动时,流动阻力和水头损失的规律。对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。

第一节流态判别

一、两种流态的运动特征

1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。

1.层流观看录像1-层流

层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。

特点:

(1)有序性。水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。

(2)粘性占主要作用,遵循牛顿内摩擦定律。

(3)能量损失与流速的一次方成正比。

(4)在流速较小且雷诺数Re较小时发生。

2.紊流观看录像2-紊流

紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。

特点:

(1)无序性、随机性、有旋性、混掺性。

流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。

(2)紊流受粘性和紊动的共同作用。

(3)水头损失与流速的1.75~2次方成正比。

(4)在流速较大且雷诺数较大时发生。

二、雷诺实验

如图6-1所示,实验曲线分为三部分:

(1)ab段:当υ<υc时,流动为稳定的层流。

(2)ef段:当υ>υ''时,流动只能是紊流。

(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。

图6-1

图6-2

观看录像3观看录像4观看录像5实验结果(图6-2)的数学表达式

层流:m1=1.0, h f=k1v , 即沿程水头损失与流线的一次方成正比。

紊流:m2=1.75~2.0, h f =k2v1.75~2.0,即沿程水头损失h f与

流速的1.75~2.0次方成正比。

层流:

紊流:

三、层流、紊流的判别标准——临界雷诺数

临界雷诺数

上临界雷诺数:层流→紊流时的临界雷诺数,它易受外界干扰,数值不稳定。

下临界雷诺数:紊流→层流时的临界雷诺数,是流态的判别标准,它只取决于水流边界的形状,即水流的过水断面形状。变直径管流中,细断面直径d1,粗断面直径d2=2d1,则粗细断面雷诺数关系是。

圆管流

(5-1)

层流

紊流

明渠流

(5-2)

式中:R——水力半径,R=A/P;

A——过水断面面积;

P——湿周,即断面中固体边界与流体相接触部分的周

长。

录像6

例:某段自来水管,d=100mm,v=1.0m/s。水温10℃,(1)试判断管中水流流态?(2)若要保持层流,最大流速是多少?

解:(1)水温为10℃时,水的运动粘度,由下式计算得:

则:

即:圆管中水流处在紊流状态。

(2)

要保持层流,最大流速是0.03m/s。

问题:怎样判别粘性流体的两种流态——层流和紊流?

用下临界雷诺数Re c来判别。当雷诺数Re

动为层流,Re>Re c时,流动为紊流。当为圆管流时,=

2300,当为明渠流时。(R为水力半径)

问题:为何不能直接用临界流速作为判别流态(层流和紊流)的标准?

因为临界流速跟流体的粘度、流体的密度和管径(当为圆管流时)或水力半径(当为明渠流时)有关。而临界雷诺数则是个比例常数,对于圆管流为2300(2000),对于明渠流为575(500),应用起来非常方便。

思考题

1.雷诺数与哪些因数有关?其物理意义是什么?当管道流量一定时,随管径的加大,雷诺数是增大还是减小?

2.为什么用下临界雷诺数,而不用上临界雷诺数作为层流与紊流的判别准则?

3.当管流的直径由小变大时,其下临界雷诺数如何变化?1答案:

雷诺数与流体的粘度、流速及水流的边界形状有关。

Re=惯性力/粘滞力,随d增大,Re减小。

2 答:上临界雷诺数不稳定,而下临界雷诺数较稳定,只与水流的过水断面形状有关。

3答:不变,临界雷诺数只取决于水流边界形状,即水流的过水断面形状。

第二节不可压缩流体恒定圆管层流

一、恒定均匀流沿程损失的基本方程

1.恒定均匀流的沿程水头损失

图6-3

在均匀流中,有v1=v2,图6-3列1-1断面与2-2断面的能量方程(4-15),得:

(6-3)

说明:(1)在均匀流情况下,两过水断面间的沿程水头损失等于两过水断面间的测压管水头的差值,即液体用于克服阻力所消耗的能量全部由势能提供。

(2)总水头线坡度J沿程不变,总水头线是一倾斜的直线。

2.均匀流基本方程式

取断面1及2间的流体为控制体:

(6-4)均匀流基本方程式

(6-5)式中R=A/P为水力半径。

适用范围:适用于有压或无压的恒定均匀层流或均匀紊流。观看动画7

二、切应力分布

如图6-4(a)所示一水平恒定圆管均匀流,R=r0/2,则由式(6-5)可得

(6-6)

同理可得:(6-7)

所以圆管层流的切应力分布为(6-8)

或(6-9)

物理意义:圆管均匀流的过水断面上,切应力呈直线分布,管壁处切应力为最大值τ0,管轴处切应力为零(图6-4(b))。

图6-4

问题:圆管层流流动过流断面上切应力分布为:

A.在过流断面上是常数;

B.管轴处是零,且与半径成正比;

C.管壁处是零,向管轴线性增大;

D. 按抛物线分布。

三、流速分布

牛顿内摩擦定律

图6-4(b)

积分得:

又边界上r=r0时,u=0代入得:

1.圆管层流的流速分布

(6-10)

物理意义:圆管层流过水断面上流速分布呈旋转抛物面分布。

2.最大流速

圆管层流的最大速度在管轴上(r=0):

(6-11)

3.断面平均流速

(6-12)

即圆管层流的平均流速是最大流速的一半。

问题:在圆管流中,层流的断面流速分布符合:

A.均匀规律;

B.直线变化规律;

C.抛物线规律;

D. 对数曲线规律。

问题:圆管层流,实测管轴线上流速为4m/s,则断面平均流速为:

A. 4m/s;

B. 3.2m/s;

C. 2m/s;

D. 1m/s。

四、沿程损失

圆管层流的沿程水头损失可由式(6-12)求得:

(6-13)

式中:——沿程阻力系数。

物理意义:圆管层流中,沿程水头损失与断面平均流速的一次方成正比,而与管壁粗糙度无关。

适用范围:1.只适用于均匀流情况,在管路进口附近无效。

2.推导中引用了层流的流速分布公式,但可扩展到紊

流,紊流时l值不是常数。

填空:圆管层流,实测管轴线上流速为4m/s,则断面平均流速为m/s。

例1 ρ=0.85g/cm3的油在管径100mm,v=0.18cm2/s的管中以v=6.35cm/s的速度作层流运动,求

(1)管中心处的最大流速;(2)在离管中心r=20mm处的流速;

(3)沿程阻力系数λ;(4)管壁切应力τ0及每km管长的水头损失。

解 :(1)求管中心最大流速,由式(6-12)得

(2)离管中心r=20mm处的流速,由式(6-10)得

(3)沿程阻力系数

先求出Re

(层流)

(4)切应力及每千米管长的水头损失

例 2 应用细管式粘度计测定油的粘度,已知细管直径d=6mm,测量段长l=2m ,如图6-5。实测油的流量Q=77cm3/s,水银压差计的读值h p=30cm,油的密度ρ=900kg/m3。

试求油的运动粘度和动力粘度。

解: 列细管测量段前、后断面能量方程(4-15)

设为层流

图6-5

校核状态

,为层流。

五、圆管流的起始段

图6-6中起始段长度l’:从进口速度接近均匀到管中心流速到达最大值的距离。

图6-6

式中α,b为系数,随入口后的距离而改变。

在计算h f时,若管长l>>l′,则不考虑起始段,否则要加以考虑分别计算。

思考题

1.圆管层流的切应力、流速如何分布?

答:直线分布,管轴处为0,圆管壁面上达最大值;旋转抛物面分布,管轴处为最大,圆管壁面处为0。

2.如何计算圆管层流的沿程阻力系数?该式对于圆管的进口段是否适用?为什么?

答:否;非旋转抛物线分布

3.为什么圆管进口段靠近管壁的流速逐渐减小,而中心点的流速是逐渐增大的?

答:连续性的条件的要求:流量前后相等(流量的定义)

第三节紊流理论基础

一、紊流的特点

无序性:流体质点相互混掺,运动无序,运动要素具有随机性。

耗能性:除了粘性耗能外,还有更主要的由于紊动产生附加切应力引起的耗能。

扩散性:除分子扩散外,还有质点紊动引起的传质、传热和传递动量等扩散性能。

观看录像4观看录像2

二、紊流切应力表达式

1.紊流运动要素的脉动及其时均化

时间平均流速:流体质点的瞬时速度始终围绕着某一平均值而不断跳动(即脉动),这一平均值就称作时间平均流速(图6-7)。

图6-7

(6-14)

紊流度N可以表示紊动的程度:

§脉动量的特点:

脉动量的时均值为零,即。

各脉动量的均方值不等于零,即。

想一想:紊流的瞬时流速、时均流速、脉动流速、断面平均

流速有何联系和区别?

答案:

瞬时流速,为某一空间点的实际流速,在紊流流态下随时间脉动;

时均流速,为某一空间点的瞬时速度在时段T内的时间平均值;

脉动速度与时均速度的叠加等于瞬时速度;

断面平均速度v,为过流断面上各点的流速(紊流是时均速度)的断面平均值。

2.紊流切应力

紊流流态下,紊流切应力:

(6-15)

矩形断面风洞中测得的切应力数据如图6-8:

图6-8

说明:

1)在雷诺数较小时,脉动较弱,粘性切应力占主要地位。2)雷诺数较大时,脉动程度加剧,紊流附加切应力加大,在已充分发展的紊流中,粘性切应力与紊流附加切应力相比忽略不计。

3)沿断面切应力分布不同,近壁处以粘性切应力为主(称

粘性底层)。

想一想:紊流时的切应力有哪两种形式?它们各与哪些因素有关?各主要作用在哪些部位?

答:粘性切应力——主要与流体粘度和液层间的速度梯度有关,主要作用在近壁处。附加切应力——主要与流体的脉动程度和流体的密度有关,主要作用在紊流核心处脉动程度较大地方。

a.粘性切应力τv:

从时均紊流的概念出发,各液层之间存在着粘性切应力:

式中: ——时均流速梯度。

b.紊流附加切力τt:

液体质点的脉动导致了质量交换,形成了动量交换和质点混掺,从而在液层交界面上产生了紊流附加切应力τt:

的推导观看动画8

由动量定律可知:

动量增量等于紊流附加切应力△T产生的冲量(图6-9),即:

由质量守恒定律得:

图6-9

符号相反

由此可得二元紊流切应力表达式

(6-16)

注意:紊流附加切应力是由微团惯性引起的,只与流体密度和脉动强弱有关,而与流体粘性无直接关系。

判断:紊流附加切应力与粘性切应力均与流体的密度和脉动

强度有关。你的回答:对错

3.紊流动量传递理论——普兰特混合长度理论

紊流附加切应力中,脉动流速均为随机量,不能直接计算,无法求解切应力。所以1925年德国力学家普兰特比拟气体分子自由程的概念,提出了混合长理论。

a.普兰特假设:

(1)不可压缩流体质点在从某流速的流层因脉动u y'进入另一流速的流层时,在运动的距离L1(普兰特称此为混合长度)内,微团保持其本来的流动特征不变。

在混合长度L1内速度增量:

(2)普兰特假设脉动速度与时均流速差成比例,即:

(6-17)

式中:——亦称混合长度,但已无直接物理意义。在紊流的固体边壁或近壁处,普兰特假设混合长度正比于质点到管壁的径向距离,即:

(6-18)

式中:k——由实验决定的无量纲常数。例如圆管层流k=0.4。

y——至壁面的距离。

考考你:普兰特混合长度理论借用了气体中的概念。

b.紊流切应力的表达式

(6-19)

式中:——涡流粘度,是紊动质点间的动量传输的一种性质。η不取决于流体粘性,而取决于流体状况及流体密度。

——运动涡流粘度,ε不是流体的一种属性,而取决于混合长度及流速梯度等紊流特性。

判断:涡流粘度和动力粘度都与流体的粘滞性有关。你的回答:对错

三、紊流的基本方程

对N-S方程(3-12)和连续性方程(3-9)进行时间平均即可得出紊流的时均流动方程。

连续性方程

(6-20)

N-S方程(x方向)

(6-21)式中:

——由于脉动产生的附加法应力

—由于脉动产生的附加切应力统称为雷诺应力

它们是紊流传输项,也是造成紊流动量交换及质点混掺的主要原因。在紊流边界层外侧或紊流扩散中,雷诺应力远远超过粘性切应力。

四、紊流流速分布

1. 粘性底层,紊流核心(圆管)的概念(图6-10)

粘性底层(viscous sublayer):圆管作紊流运动时,靠近管壁处存在着一薄层,该层内流速梯度较大,粘性影响不可忽略,紊流附加切应力可以忽略,速度近似呈线性分布,这一薄层就称为粘性底层。

紊流核心:粘性底层之外的液流统称为紊流核心。

图6-10

判断:紊流核心的切应力以附加切应力为主,粘性切应力可以忽略。你的回答:对错

2. 粘性底层

a.粘性底层的流速分布

由牛顿内摩擦定律(1-6)式:

(6-22)

式中:

u *

——剪切流速,或称摩阻流速。结论:粘性底层中的流速随y呈线性分布。

b.

粘性底层厚度

实验资料表明:当时,,则粘性底层厚度

为(6-23)

式中:Re——管内流动雷诺数;

——沿程阻力系数。

说明:(1)粘性底层厚度很薄,一般只有十分之几毫米。

(2)当管径d相同时,随着液流的流动速度增大,雷诺数增大,粘性底层变薄。

c.圆管壁面水力特性

根据粘性底层厚度δ1与管壁的粗糙度△的关系,在不同的Re流动状态下,任一圆管的壁面均可能呈现下列三种水力状态:

水力光滑壁面(管)(hydraulic smooth wall):

当管内流动雷诺数较小时,粘性底层厚度δ1较大,以至于粘性底层足以覆盖全部粗糙,管壁的粗糙度△对紊流结构基本上没有影响,水流就象在光滑的壁面上流动一样。这种情况在水力学中称为水力光滑壁面(管)。

水力粗糙壁面(管)(hydraulic rough wall):

当粘性底层厚度δ1足够小,以致粗糙度△对紊流切应力起决定性作用,其粗糙突出高度伸入到紊流流核中,成为涡旋的策源地,从而加剧了紊流的脉动作用,水头损失也较大,这种情况在水力学中称为水力粗糙壁面(管)。

水力过渡区壁面(管)(transition region wall ):

介于水力光滑管区与水力粗糙管区之间的区域的紊流阻力受粘性和紊动同时作用,这个区域称为过渡区。

想一想:若原圆管壁面处于水力光滑壁面的水力状态,随着圆管中流速的逐渐增加,其水力状态将如何变化?

水力光滑壁面水力过渡壁面水力粗糙壁面

流体力学标准化作业答案第三章

流体力学标准化作业(三) ——流体动力学 本次作业知识点总结 1.描述流体运动的两种方法 (1)拉格朗日法;(2)欧拉法。 2.流体流动的加速度、质点导数 流场的速度分布与空间坐标(,,)x y z 和时间t 有关,即 (,,,)u u x y z t = 流体质点的加速度等于速度对时间的变化率,即 Du u u dx u dy u dz a Dt t x dt y dt z dt ????= =+++ ???? 投影式为 x x x x x x y z y y y y y x y z z z z z z x y z u u u u a u u u t x y z u u u u a u u u t x y z u u u u a u u u t x y z ?????=+++?????? ????? =+++???????????=+++?????? 或 ()du u a u u dt t ?==+??? 在欧拉法中质点的加速度du dt 由两部分组成, u t ??为固定空间点,由时间变化 引起的加速度,称为当地加速度或时变加速度,由流场的不恒定性引起。 ()u u ??v v 为同一时刻,由流场的空间位置变化引起的加速度,称为迁移加速度或位变加速度, 由流场的不均匀性引起。 欧拉法描述流体运动,质点的物理量不论矢量还是标量,对时间的变化率称为该物理量的质点导数或随体导数。例如不可压缩流体,密度的随体导数 D D u t t ρρ ρ?=+???() 3.流体流动的分类

(1)恒定流和非恒定流 (2)一维、二维和三维流动 (3)均匀流和非均匀流 4.流体流动的基本概念 (1)流线和迹线 流线微分方程 x y z dx dy dz u u u == 迹线微分方程 x y z dx dy dz dt u u u === (2)流管、流束与总流 (3)过流断面、流量及断面平均流速 体积流量 3(/)A Q udA m s =? 质量流量 (/)m A Q udA kg s ρ=? 断面平均流速 A udA Q v A A == ? (4)渐变流与急变流 5. 连续性方程 (1)不可压缩流体连续性微分方程 0y x z u u u x y z ???++=??? (2)元流的连续性方程 12 1122 dQ dQ u dA u dA =?? =? (3)总流的连续性方程 1122u dA u dA = 6. 运动微分方程 (1)理想流体的运动微分方程(欧拉运动微分方程)

工程流体力学课后习题答案_袁恩熙_流体力学第三章作业(1)

3.1一直流场的速度分布为: U=(4x 2+2y+xy)i+(3x-y 3+z)j (1) 求点(2,2,3)的加速度。 (2) 是几维流动? (3) 是稳定流动还是非稳定流动? 解:依题意可知, V x =4x 2+2y+xy ,V y =3x-y 3+z ,V z =0 ∴a x = t V x ??+ v x X V x ??+v y Y V x ??+v z Z V x ?? =0+(4x 2+2y+xy)(8x+y)+(3x-y 3+z)(2+x) =32x 3+16xy+8x 2y+4x 2y+2y 2+x y 2+6x-2 y 3+2z+3 x 2-x y 3+xz 同理可求得, a y =12 x 2+6y+3xy-9x y 2+3 y 5-3 y 2z a z =0 代入数据得, a x = 436,a y =60, a z =0 ∴a=436i+60j (2)z 轴方向无分量,所以该速度为二维流动 (3)速度,加速度都与时间变化无关,所以是稳定流动。 3.2 已知流场的速度分布为: k z yj yi x 2223+-=μ (1)求点(3,1,2)的加速度。 (2)是几维流动? 解:(1)由 z u z y u y x u x t u x x x x x u u u a ????????+++=

z u z y u y x u x t u y y y y y u u u a ????????+++= z u z y u y x u x t u z z z z z u u u a ????????+++= 得: 0202 2 2+?+?+=x y x xy y x a x 0)3(300+-?-+=y a y z z a z 420002?+++= 把点(3,1,2)带入得加速度a (27,9,64) (2)该流动为三维流动。 3-3 已知平面流动的速度分布规律为 ()() j y x x i y x y u 2 22222+Γ++Γ=ππ 解:() () 2 22 22,2y x x u y x y u y x +Γ= +Γ= ππ 流线微分方程:y x u dy u dx = 代入得: ()() 2 22 222y x x dy y x y dx +Γ= +Γππ C y x ydy xdx x dy y dx =-?=-?=220 3.4 截面为300mm ×400mm 的矩形风道,风量为2700m 3/h ,求平均流速。如风道出口截面收缩为150mm ×400mm 求该截面的平均流速。 解:因为v=q A /A 所以v 1=q A /A 1=2700/(300x400x10-6)=22500m/h=6.25m/s V 2=q A /A 2=2700/(150x400x10-6)=45000m/h=12.5m/s 3.5 渐缩喷嘴进口直径为50mm ,出口直径为10mm 。若进口流速为3m/s ,求喷嘴出口流速为多少?

流动阻力和能量损失

流动阻力和能量损失 1.如图所示: (1)绘制水头线;(2)若关小上游阀门A,各段水头线如何变化?若关小下游阀门B,各段水头线又如何变化?(3)若分别关小或开大阀门A和B,对固定断面1-1的压强产生什么影响? 解:(1)如图所示 (2)A点关小阀门,使A点局部阻力加大(A点总水头线下降更多)但由于整个管道流量减小,使整个管道除A点外损失减小,即B点局部阻力减小(B点总水头线下降,但没有原来多)各管道沿程阻力减小(总水头线坡长减小),速度水头减小(测压管水头线与总水头线之间距离减小) 同理可以讨论B点阀门关小的性质

(3)由于1—1断面在A 点的下游,又由于A 点以下测压管水头线不变,所以开大或者关小阀门对1—1断面的压强不受影响。对B 点,关小闸门,B 点以上测压管水头线上移,使1—1断面压强变大,反之亦然 2.用直径mm d 100=的管道,输送流量为s kg /10的水,如水温为5℃,试确定管内水的流态。如用这样管道输送同样质量流量的石油,已知石油密度 3 850m kg =ρ,运动粘滞系数 s cm 214.1=υ,试确定石油的流态。 解:(1)5℃时,水的运动粘滞系数s m 2 610519.1-?=υ Av Q Q ρρ==,v = () 2 31.04 10110 ?? ?π 20008386310519.1)1.0(4 1011 .010Re 6 23>=???? ??== -π υ vd 故为紊流 (2) 200013141014.1)1.0(4 8501 .010Re 4 2<=???? ?= -π 故为层流 3.有一圆形风道,管径为300mm ,输送的空气温度20℃,求气流保持层流时的最大质量流量。若输送的空气量为200kg/h ,气流是层流还是紊流? 解 :20℃时,空气的运动粘滞系数s m v 26107.15--?= 3205.1m kg =ρ 2000Re == υ vd s m v 105.03 .0107.1520006=??=-

工程流体力学公式资料讲解

工程流体力学公式

第二章 流体的主要物理性质 ? 流体的可压缩性计算、牛顿内摩擦定律的计算、粘度的三种表示方法。 1.密度 ρ = m /V 2.重度 γ = G /V 3.流体的密度和重度有以下的关系:γ = ρ g 或 ρ = γ/ g 4.密度的倒数称为比体积,以υ表示υ = 1/ ρ = V/m 5.流体的相对密度:d = γ流 /γ水 = ρ流 /ρ水 6.热膨胀性 7.压缩性. 体积压缩率κ 8.体积模量 9.流体层接触面上的内摩擦力 10.单位面积上的内摩擦力(切应力)(牛顿内摩擦定律) 11..动力粘度μ: 12.运动粘度ν :ν = μ/ρ 13.恩氏粘度°E :°E = t 1 / t 2 T V V ??=1αp V V ??-=1κV P V K ??-=κ1n A F d d υ μ=dn d v μτ±=n v d /d τμ=

第三章 流体静力学 ? 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力 学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。 1.常见的质量力:重力ΔW = Δmg 、直线运动惯性力ΔFI = Δm·a 离心惯性力ΔFR = Δm·r ω2 . 2.质量力为F 。:F = m ·am = m (f xi+f yj+f zk) am = F /m = f xi+f yj+f zk 为单位质量力,在数值上就等于加速度 实例:重力场中的流体只受到地球引力的作用,取z 轴铅垂向上,xoy 为水平面,则单位质量力在x 、y 、 z 轴上的分量为 fx = 0 , fy = 0 , fz = -mg /m = -g 式中负号表示重力加速度g 与坐标轴z 方向相反 3流体静压强不是矢量,而是标量,仅是坐标的连续函数。即:p = p (x ,y ,z ),由此得静压强的全微分为: 4.欧拉平衡微分方程式 单位质量流体的力平衡方程为: z z p y y p x x p p d d d d ??????++=d d d d d d 0x p f x y z x y z x ??-=ρd d d d d d 0y p f x y z x y z y ??-=ρd d d d d d 0z p f x y z x y z z ??-=ρ0 1=??-x p f x ρ10y p f y ??-=ρ

工程流体力学 禹华谦 习题答案 第6章讲课讲稿

工程流体力学禹华谦习题答案第6章

第六章 理想流体动力学 6-1平面不可压缩流体速度分布为 Vx=4x+1;Vy=-4y. (1) 该流动满足连续性方程否? (2) 势函数φ、流函数ψ存在否?(3) 求φ、ψ 解:(1)由于 044=-=??+??y Vy x Vx ,故该流动满足连续性方程 (2)由ωz = 21(y Vx x Vy ??-??)=)44(21 +-=0, 故流动有势,势函数φ存在,由于该流动满足连续性方程, 流函数ψ存在,. (3)因 Vx y x ??=??= ψ?=4x+1 Vy= y ??φ=-x ??ψ=-4y d φ= x ??φdx+y ??φdy=Vxdx+Vydy=(4x+1)dx+(-4y)dy φ= ?d φ=?x ??φ dx+y ??φdy=?Vxdx+Vydy=? (4x+1)dx+(-4y)dy =2x 2-2y 2+x d ψ= x ??ψ dx+y ??ψdy=-Vydx+Vxdy=4ydx+(4x+1)dy ψ= ?d ψ=?x ??ψ dx+y ??ψdy=?-Vydx+Vxdy=? 4ydx+(4x+1)dy =4xy+y 6-2 平面不可压缩流体速度分布: Vx=x 2-y 2+x; Vy=-(2xy+y). (1) 流动满足连续性方程否? (2) 势函数φ、流函数ψ存在否? (3)求φ、ψ .

解:(1)由于x Vx ??+x Vy ??=2x +1-(2x +1)=0,故该流动满足连续性方程,流动存在. (2)由ωz = 21(y Vx x Vy ??-??)=))2(2(21 y y ---=0, 故流动有势,势函数φ存在,由于该流动满足连续性方程,流函数ψ也存在. (3)因 Vx= x ??φ =y ??ψ= x 2-y 2+x, Vy=y ??φ=-x ??ψ=-(2xy+y). d φ= x ??φ dx+y ??φdy=Vxdx+Vydy=(x 2-y 2+x )dx+(-(2xy+y).)dy φ= ?d φ=? x ??φ dx+y ??φdy=?Vxdx+Vydy =? (x 2-y 2+x )dx+(- (2xy+y))dy =3 3 x -xy 2+(x 2-y 2)/2 d ψ= x ??ψdx+y ??ψdy=-Vydx+Vxdy ψ= ?d ψ=? x ??ψdx+y ??ψdy=?-Vydx+Vxdy =?(2xy+y)dx+ (x 2-y 2+x)dy =x 2y+xy-y 3/3 6-3平面不可压缩流体速度势函数 φ=x 2-y 2-x,求流场上A(-1,-1),及B(2,2)点处的速度值及流函数值 解: 因 Vx= x ??φ =y ??ψ=2x-1,V y =y x y 2-=??-=??ψ φ,由于x Vx ??+x Vy ??=0,该 流动满足连续性方程,流函数ψ存在 d ψ= x ??ψdx+y ??ψdy=-Vydx+Vxdy ψ= ?d ψ=? x ??ψ dx+y ??ψdy=?-Vydx+Vxdy=?2ydx+(2x-1)dy=2xy-y

工程流体力学(孔珑版)第六章_题解

第六章 管内流动和水力计算 液体出流 【6-11】 加热炉消耗q m =300kg/h 的重油,重油的密度ρ=880kg/m 3,运动黏度ν=0.000025m 2/s 。如图6-54所示,压力油箱位于喷油器轴线以上h =8m 处,而输油管的直径d =25mm ,长度l =30m 。求在喷油器前重油的计示压强?[62504Pa]。 图6-54 习题6-11示意图 【解】 流速 ()s m 0.192915 025 .08803600/300444 1222=???====ππρπρ d q d q A q v m m V 2300192.915000025 .0025.00.192915<=?==νvd Re 输油管内流动是层流 沿程损失 ()m 3.91557 807 .9025.0915.1920.192915 30323226422222f =????=??===g d Re lv g v d l Re g v d l h λ 以油箱液面为1-1,喷油器前为2-2断面,列写伯努利方程: w 222 2 2112 1 122h g p z g v g p z g v a a +++=++ραρα 由于是层流,221==αα;f w h h =;01=a v ;v v a =1;h z z =-21;01=p 。 w 2 222h g p g v h ++=ρ ()[]()[] ()Pa 62489.5 0.1929153.915578807.98802 2w 2=--??=--=v h h g p ρ 【6-16】用新铸铁管输送25℃的水,流量q v =300L/s ,在l =1000m 长的管道上沿程损失为 h f =2m (水柱),试求必须的管道直径。 【解】 v d q V 24 1π=2 4d q v V π= 5 22 2 22f 8242gd lq g d q d l g v d l h V V πλπλλ=?? ? ??==λπf 22 5 8gh lq d V = d q d d q vd R e V V 1442 πννπν=== 新铸铁管 ε=0.25~0.42,25℃水的运动黏度ν=0.897×10-6m 2/s 。 取ε=0.3, λ=0.0175 得 d = 0.5790 m

工程流体力学答案(陈卓如)第二章

[陈书2-8]容器中盛有密度不同的两种液体,问测压管A 及测压管B 的液面是否和容器中的液面O-O 齐平?为什么?若不齐平,则A 、B 测压管液面哪个高? [解]依题意,容器内液体静止。 测压管A 与上层流体连通,且上层流体和测压管A 均与大气连通,故A 测压管的液面与液面O-O 齐平。 测压管B 与上下层流体连通,其根部的压强为: a p gh gh p ++=2211ρρ 其中1h 为上层液体的厚度,2h 为液体分界面到B 管根部的垂向距离,a p 为大气压 因测压管B 与大气连通,其根部的压强又可表示为: a p gh p +=2ρ 其中h 为B 管内气液界面到B 管根部的垂向距离 所以:gh gh gh 22211ρρρ=+ 212 1 22211h h h h h +=+= ρρρρρ 由此可知:若21ρρ<,B 测压管的液面低于A 测压管的液面和O-O 面;若21ρρ>,B 测压管的液面高A 测压管的液面和O-O 面;若21ρρ=,A 、B 测压管的液面和O-O 面三者平齐。 又因为密度为1ρ的液体稳定在上层,故21ρρ<。 [陈书2-12]容器中有密度为1ρ和2ρ的两种液体,试绘出AB 面上的压强分布图。

[解]令上、下层液体的厚度分别为1h 和2h ,取垂直向下的方向为z 轴的正方向,并将原点设在自由表面上,可写出AB 表面上压强的表达式: ()?? ?+≤<-++≤≤+=21121111 0 h h z h h z g gh p h z gz p p a a ρρρ 整理得: ()?? ?+≤<+-+≤≤+=2 11212111 0 h h z h gz gh p h z gz p p a a ρρρρ A C B P 012P g AC g BC ρρ++01P g AC ρ+/h m /P Pa [陈书2-24]直径D=1.2m ,L=2.5的油罐车,内装密度3 900m kg =ρ的石油,油面高度为h=1m ,以2 2s m a =的加速度水平运动。试确定油罐车侧盖 A 和B 上所受到的油液的作用

工程流体力学 禹华谦 习题答案 第6章

第六章 理想流体动力学 6-1平面不可压缩流体速度分布为 Vx=4x+1;Vy=-4y. (1) 该流动满足连续性方程否? (2) 势函数φ、流函数ψ存在否?(3)求φ、ψ 解:(1)由于044=-=??+??y Vy x Vx ,故该流动满足连续性方程 (2)由ωz = 21(y Vx x Vy ??-??)=)44(21+-=0, 故流动有势,势函数φ存在,由于该流动满足连续性方程, 流函数ψ存在,. (3)因 Vx y x ??=??=ψ?=4x+1 Vy=y ??φ=-x ??ψ=-4y d φ=x ??φdx+y ??φdy=Vxdx+Vydy=(4x+1)dx+(-4y)dy φ= ?d φ=?x ??φdx+y ??φdy=?Vxdx+Vydy=? (4x+1)dx+(-4y)dy =2x 2-2y 2+x d ψ=x ??ψdx+y ??ψdy=-Vydx+Vxdy=4ydx+(4x+1)dy ψ= ?d ψ=?x ??ψdx+y ??ψdy=?-Vydx+Vxdy=? 4ydx+(4x+1)dy =4xy+y 6-2 平面不可压缩流体速度分布: Vx=x 2-y 2+x; Vy=-(2xy+y). (1) 流动满足连续性方程否? (2) 势函数φ、流函数ψ存在否? (3)求φ、ψ . 解:(1)由于x Vx ??+x Vy ??=2x +1-(2x +1)=0,故该流动满足连续性方程,流动存在. (2)由ωz = 21(y Vx x Vy ??-??)=))2(2(21y y ---=0, 故流动有势,势函数φ存在,由于该流动满足连续性方程,流函数ψ也存在.

工程流体力学第二版标准答案

工程流体力学 第二章 流体静力学 2-1.一密闭盛水容器如图所示,U 形测压计液面高于容器内液面h=1.5m ,求容器液面的相对压强。 [解] gh p p a ρ+=0 kPa gh p p p a e 7.145.1807.910000=??==-=∴ρ 2-2.密闭水箱,压力表测得压强为4900Pa 。压力表中心比A 点高0.5m ,A 点在液面下1.5m 。求液面的绝对压强和相对压强。 [解] g p p A ρ5.0+=表 Pa g p g p p A 49008.9100049005.10-=?-=-=-=ρρ表 Pa p p p a 9310098000490000 =+-=+=' 2-3.多管水银测压计用来测水箱中的表面压强。图中高程的单位为m 。试求水面的绝对压强p abs 。 [解] )2.13.2()2.15.2()4.15.2()4.10.3(0-+=-+---+g p g g g p a 汞水汞水ρρρρ g p g g g p a 汞水汞水ρρρρ1.13.11.16.10+=+-+ kPa g g p p a 8.3628.9109.28.9106.132.2980009.22.2330=??-???+=-+=水汞ρρ

2-4. 水管A 、B 两点高差h 1=0.2m ,U 形压差计中水银液面高差h 2=0.2m 。试求A 、B 两点的压强差。(22.736N /m 2) [解] 221)(gh p h h g p B A 水银水ρρ+=++ Pa h h g gh p p B A 22736)2.02.0(8.9102.08.9106.13)(33212=+??-???=+-=-∴水水银ρρ 2-5.水车的水箱长3m,高1.8m ,盛水深1.2m ,以等加速度向前平驶,为使水不溢出,加速度a 的允许值是多少? [解] 坐标原点取在液面中心,则自由液面方程为: x g a z - =0 当m l x 5.12-=- =时,m z 6.02.18.10=-=,此时水不溢出 20/92.35 .16 .08.9s m x gz a =-?-=-=∴ 2-6.矩形平板闸门AB 一侧挡水。已知长l=2m ,宽b=1m ,形心点水深h c =2m ,倾角α=45,闸门上缘A 处设有转轴,忽略闸门自重及门轴摩擦力。试求开启闸门所需拉力。 [解] 作用在闸门上的总压力: N A gh A p P c c 392001228.91000=????=?==ρ

工程流体力学(孔珑版)第三章_题解print(完整资料).doc

【最新整理,下载后即可编辑】 第三章 流体静力学 【3-2】 图3-35所示为一直煤气管,为求管中静止煤气的密度,在高度差H =20m 的两个截面装U 形管测压计,内装水。已知管外空气的密度ρa =1.28kg/m3,测压计读数h 1=100mm ,h 2=115mm 。与水相比,U 形管中气柱的影响可以忽略。求管内煤气的密度。 图3-35 习题3-2示意图 【解】 1air 1O H 1gas 2 p gh p +=ρ 2air 2O H 2gas 2 p gh p +=ρ 2gas gas 1gas p gH p +=ρ 2air air 1air p gH p +=ρ 2gas gas 1air 1O H 2 p gH p gh +=+ρρ gH gh p p air 2O H 1air 2gas 2 ρρ-=- gH gh gH gh air 2O H gas 1O H 2 2 ρρρρ-+= H H h h gas air 2O H 1O H 2 2ρρρρ=+- ()3 air 21O H gas kg/m 53.028.120 115 .01.010002 =+-?=+-=ρρρH h h 【3-10】 试按复式水银测压计(图3-43)的读数算出锅炉中水面上 蒸汽的绝对压强p 。已知:H =3m ,h 1=1.4m ,h 2=2.5m ,h 3=1.2m ,h 4=2.3m ,水银的密度ρHg =13600kg/m 3。

图3-43 习题3-10示意图 【解】 ()p h H g p +-=1O H 12ρ ()212Hg 1p h h g p +-=ρ ()232O H 32 p h h g p +-=ρ ()a 34Hg 3p h h g p +-=ρ ()()212Hg 1O H 2p h h g p h H g +-=+-ρρ ()()a 34Hg 232O H 2 p h h g p h h g +-=+-ρρ ()()a 3412Hg 321O H 2 p h h h h g p h h h H g +-+-=+-+-ρρ ()()()()() Pa 14.3663101013252.15.24.13807.910004.15.22.13.2807.913600a 321O H 1234Hg 2=+-+-??--+-??=+-+---+-=p h h h H g h h h h g p ρρ ()()()()()Pa 366300.683 1013252.15.24.1380665.910004.15.22.13.280665.913600a 321O H 1234Hg 2=+-+-??--+-??=+-+---+-=p h h h H g h h h h g p ρρ 【3-12】【解】两支管中的液面高度差为: mm 5.25tan == ?=Λl g a l h α (ans.) 【3-15】 图3-48所示为一等加速向下运动的盛水容器,水深h =2m ,加速度a =4.9m/s 2。试确定:(1)容器底部的流体绝对静压强;(2)加速度为何值时容器底部所受压强为大气压强?(3)加速度为何值时容器底部的绝对静压强等于零? 图3-48 习题3-15示意图 【解】 0=x f ,0=y f ,g a f z -= 压强差公式 ()z f y f x f p z y x d d d d ++=ρ ()()z g a z f y f x f p z y x d d d d d -=++=ρρ ()?? --=h p p z g a p a d d ρ ()()()()??? ? ??-=-=----=-g a gh a g h g a h g a p p a 10ρρρρ ??? ? ??-+=g a gh p p a 1ρ ()a g h p p a -=-ρh p p g a a ρ--=

流动阻力和能量损失讲解

流动阻力和能量损失 1.如图所示:(1)绘制水头线;(2)若关小上游阀门A ,各段水头线如何变化?若关小下游阀门B ,各段水头线又如何变化?(3)若分别关小或开大阀门A 和B ,对固定断面1-1的压强产生什么影响? 解:(1)略 (2)A 点阻力加大,从A 点起,总水头线平行下移。由于流量减少,动能减少,使总水头线与测压管水头线之间的距离减小,即A 点以上,测压管水头线上移。A 点以下,测压管水头线不变,同理讨论关小B 的闸门情况。 (3)由于1—1断面在A 点的下游,又由于A 点以下测压管水头线不变,所以开大或者关小阀门对1—1断面的压强不受影响。对B 点,关小闸门,B 点以上测压管水头线上移,使1—1断面压强变大,反之亦然。 2.用直径mm d 100=的管道,输送流量为s kg /10的水,如水温为5℃,试确定管内水的流态。如用这样管道输送同样质量流量的石油,已知石油密度3850m kg =ρ,运动粘滞系数s cm 214.1=υ,试确定石油的流态。 解:(1)5℃时,水的运动粘滞系数s m 2610519.1-?=υ Av Q Q ρρ==,v =() 231.0410110???π 20008386310519.1)1.0(41011.010Re 62 3>=??????= =-π υvd 故为紊流 (2) 200013141014.1)1.0(48501.010Re 4 2<=?????= - 故为层流 3.有一圆形风道,管径为300mm ,输送的空气温度20℃,求气流保持层流时的最大流量。若输送的空气量为200kg/h ,气流是层流还是紊流? 解 :20℃时,空气的运动粘滞系数s m v 26107.15--?= 3205.1m kg =ρ 2000 Re ==υvd s m v 105.03 .0107.1520006 =??=-

工程流体力学答案(陈卓如)第三章

[陈书3-8] 已知流体运动的速度场为32x v yt at =+,2y v xt =,0z v =,式中a 为常数。试求:1t =时过(0,)b 点的流线方程。 解: 流线满足的微分方程为: x y z dx dy dz v v v == 将32x v yt at =+,2y v xt =,0z v =,代入上式,得: 3 22dx dy yt at xt = +(x-y 平面内的二维运动) 移向得:32(2)xtdx yt at dy =+ 两边同时积分:32(2)xtdx yt at dy =+??(其中t 为参数) 积分结果:223x t y t ayt C =++(此即流线方程,其中C 为积分常数) 将t=1, x=0, y=b 代入上式,得:20b ab C =++ ∴积分常数2C b ab =-- ∴t=1时刻,过(0,b)点的流线方程为:222()x y ay b ab =+-+ 整理得:222()0x y ay b ab --++= 陈书3-10 已知二元不可压缩流体流动的流线方程如下,问哪一个是无旋的? (1)2Axy C =; (2)Ax By C +=; (3)()2ln A xy C =, 其中A ,B ,C 均为常数。

[解法一] (1)根据流线方程2Axy C =? 220Aydx Axdy += 当0 A ≠时,有 dx dy x y =- 令(),u xf x y =,(),v yf x y =- 根据流体的不可压缩性,从而 '''' 0x y x y u v f xf f yf xf yf x y ??+=+--=-=?? 再把流线方程2Axy C =对x 求导得到 ' ' 220y A y A xy y x +=?=- 所以 '''''' 20x y y y y u v xf yf xf y yf yf x y ??+ =-=-=-=?? y 是任意的,得到'0y f = 2 ' '' 0y x y u v y xf yf x f y x x ????-=+=-= ???? ? 无旋 (2)根据流线方程Ax By C +=? 0Adx Bdy += 令(),u Bf x y =,(),v Af x y =- 根据流体的不可压缩性,从而 ' ' 0x y u v Bf Af x y ??+=-=?? 再把流线方程Ax By C +=对x 求导得到 ' ' 0A A By y B +=?=- 所以' ' ' 20x y y u v Bf Af Af x y ??+ =-=-=?? 当0A =时,0 v =无旋 当0 A ≠时,'0y f = 2 ''' 0y x y u v A Bf Af B f y x B ????-=+=-= ????? 无旋 (3)根据流线方程()2ln A xy C = ?2 22 111220A y dx xydy A dx dy xy xy x y ????+=+= ? ?????

工程流体力学 禹华谦 习题答案 第6章

第六章 理想流体动力学 6-1平面不可压缩流体速度分布为 Vx=4x+1;Vy=-4y. (1) 该流动满足连续性方程否? (2) 势函数φ、流函数ψ存在否?(3)求φ、ψ 解:(1)由于 044=-=??+ ??y Vy x Vx ,故该流动满足连续性方程 (2)由ωz =2 1( y Vx x Vy ??- ??)= )44(2 1+-=0, 故流动有势,势函数φ存在,由于该流 动满足连续性方程, 流函数ψ存在,. (3)因 Vx y x ??= ??= ψ?=4x+1 Vy=y ??φ=-x ??ψ=-4y d φ=x ??φdx+ y ??φdy=Vxdx+Vydy=(4x+1)dx+(-4y)dy φ= ? d φ=? x ??φdx+ y ??φdy=?Vxdx+Vydy=? (4x+1)dx+(-4y)dy =2x 2-2y 2+x d ψ= x ??ψdx+ y ??ψdy=-Vydx+Vxdy=4ydx+(4x+1)dy ψ= ? d ψ=? x ??ψdx+ y ??ψdy=?-Vydx+Vxdy=? 4ydx+(4x+1)dy =4xy+y 6-2 平面不可压缩流体速度分布: Vx=x 2-y 2+x; Vy=-(2xy+y). (1) 流动满足连续性方程否? (2) 势函数φ、流函数ψ存在否? (3)求φ、ψ . 解:(1)由于 x Vx ??+x Vy ??=2x +1-(2x +1)=0,故该流动满足连续性方程,流动存在. (2)由ωz = 2 1( y Vx x Vy ??- ??)= ))2(2(2 1y y ---=0, 故流动有势,势函数φ存在,由 于该流动满足连续性方程,流函数ψ也存在.

工程流体力学第三章思考题、练习题

工程流体力学第三章思考 题、练习题 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

第三章 流体静力学 思考题 ? 1、液体静压力具有的两个基本特性是什么 ? 2、液体静压力分布规律的适用条件是什么 作业 ? ,,, ,, , 一、选择题 1、静止液体中存在A A 压应力; B 压应力和拉应力; C 压应力和切应力; D 压应力、切应力和拉应力。 2、相对压力的起量点是C A 绝对真空; B 1个标准大气压; C 当地大气压; D 液面压强。 3.金属压力表的读数是B A 绝对压力; B 相对压力; C 绝对压力加当地大气压力; D 相对压力加当地大气压力 4、绝对压力 、相对压力p 、真空值、当地大气压力之间的关系是C A abs v p p p =+; B abs a p p p =+ ; C v a abs p p p =- 5、静止流场中的压强分布规律D A 仅适用于不可压缩流体; B 仅适用于理想流体; C 仅适用于黏性流体; D 既适用于理想流体,也适用于黏性流体。 6.在密闭的容器上装有U 形水银压力计(如图3-1),其中1、2、3点位于同一水平面,其压强关系为C A 123p p p ==; B 、123p p p >> ; C 、123p p p << 图3-1 图3-2 图3-3

7用U 形水银差压计测量水管内A 、B 两点的压强差(如图3-2),水银面高差h p =10cm ,p a -p b 为B A ; B ;C 8、静水中斜置平面壁的形心淹深c h 与压力中心淹深D h 的关系为 c h _C__ D h 。 A 大于; B 等于; C 小于; D 无规律。 9如图3-3所示,垂直放置的矩形挡水平板,水深为3m ,静水总压力p 的作用点到水面的距离为C A ; B ; C ;D 10完全淹没在水中的一矩形平面,当绕其形心轴旋转到什么位置时,其压力中心与形心重合C A 倾斜; B 倾斜; C 水平; D 竖直。 11、完全淹没在水中的一矩形平面,当绕其形心轴旋转到什么位置时,其压力中心与形心 最远D A 倾斜; B 倾斜; C 水平; D 竖直。 12 在液体中潜体所受浮力的大小B A 与潜体的密度成正比; B 与液体的密度成正比; C 与潜体淹没的深度成正比。 13、浮力作用线通过C A 潜体的重心; B 浮体的体积形心; C 排开液体的体积形心; D 物体上面竖直方向液体的 体积形心 14、浮体稳定平衡,则B A 仅当重心G 在浮心C 之下; B 、重力和浮力相等,且重心低于定倾中心; 15、潜体的稳定性条件是A A 潜体的重心必须位于其浮心之下; B 潜体的重心必须位于其浮心之上; C 潜体的形心必须位于其浮心之下; D 潜体的重心必须位于其浮心之上。

工程流体力学_第四版__作业答案_详解

第二章 2-1.已知某种物质的密度ρ=2.94g/cm3,试求它的相对密度d。 解:d=ρ/ρw=2.94(g/cm3)/1(g/cm3)=2.94 2-2.已知某厂1号炉水平烟道中烟气组分的百分数为α(co2)=13.5%,a(SO2)=0.3%,a(O2)=5.2%,a(N2)=76%,a(H2O)=5%。试求烟气的密度。 2-3.上题中烟气的实测温度t=170℃,实测静计压强Pe=1432Pa,当地大气压强 Pa=10058Pa。试求工作状态下烟气的密度和运动粘度。

2-4.当压强增量为50000Pa时,某种液体的密度增长0.02%,试求该液体的体积模量。

2-5.绝对压强为3.923×10^5Pa的空气的等温体积模量和等熵体积模量各等于多少? 2-6. 充满石油的油槽内的压强为4.9033×10^5Pa,今由槽中排出石油40kg,使槽内压强降到9.8067×10^4Pa,设石油的体积模量K=1.32×10^9 Pa。试求油槽的体积。 2-7. 流量为50m3/h,温度为70℃的水流入热水锅炉,经加热后水温升到90℃,而水的体胀系数αV=0.000641/℃,问从锅炉中每小时流出多少立方米的水?

2-8. 压缩机压缩空气,绝对压强从9.8067×104Pa升高到5.8840×105Pa,温度从20℃升高到78℃,问空气体积减少了多少? 2-9. 动力粘度为2.9×10^-4Pa·S,密度为678kg/m3的油,其运动粘度等于多少?解:V=u/ρ=2.9×10^-4/678=4.28×10^-7m2/s 2-10. 设空气在0℃时的运动粘度ν0=13.2×10-6m2/s,密度ρ0=1.29kg/m3。试求在150℃时空气的动力粘度。

工程流体力学习题答案

第三章 流体静力学 【3-2】 图3-35所示为一直煤气管,为求管中静止煤气的密度,在高度差H =20m 的两个截面装U 形管测压计,内装水。已知管外空气的密度ρa =1.28kg/m3,测压计读数h 1=100mm ,h 2=115mm 。与水相比,U 形管中气柱的影响可以忽略。求管内煤气的密度。 图3-35 习题3-2示意图 【解】 1air 1O H 1gas 2p gh p +=ρ 2air 2O H 2gas 2p gh p +=ρ 2gas gas 1gas p gH p +=ρ 2air air 1air p gH p +=ρ 2gas gas 1air 1O H 2 p gH p gh +=+ρρ gH gh p p air 2O H 1air 2gas 2ρρ-=- gH gh gH gh air 2O H gas 1O H 2 2 ρρρρ-+= H H h h gas air 2O H 1O H 2 2 ρρρρ=+- () 3air 21O H gas kg/m 53.028.120 115 .01.010002 =+-?=+-=ρρρH h h 【3-10】 试按复式水银测压计(图3-43)的读数算出锅炉中水面上蒸汽的绝对压强p 。已知:H =3m , h 1=1.4m ,h 2=2.5m ,h 3=1.2m ,h 4=2.3m ,水银的密度ρHg =13600kg/m 3。 图3-43 习题3-10示意图 ()()

()232O H 32p h h g p +-=ρ ()a 34Hg 3p h h g p +-=ρ ()()212Hg 1O H 2 p h h g p h H g +-=+-ρρ ()()a 34Hg 232O H 2 p h h g p h h g +-=+-ρρ ()()a 3412Hg 321O H 2 p h h h h g p h h h H g +-+-=+-+-ρρ ()()()()() Pa 14.3663101013252.15.24.13807.910004.15.22.13.2807.913600a 321O H 1234Hg 2=+-+-??--+-??=+-+---+-=p h h h H g h h h h g p ρρ ()()()()()Pa 366300.683 1013252.15.24.1380665.910004.15.22.13.280665.913600a 321O H 1234Hg 2=+-+-??--+-??=+-+---+-=p h h h H g h h h h g p ρρ 【3-15】 图3-48所示为一等加速向下运动的盛水容器,水深h =2m ,加速度a =4.9m/s 2 。试确定:(1) 容器底部的流体绝对静压强;(2)加速度为何值时容器底部所受压强为大气压强?(3)加速度为何值时容器底部的绝对静压强等于零? 图3-48 习题3-15示意图 【解】 0=x f ,0=y f ,g a f z -= 压强差公式 () z f y f x f p z y x d d d d ++=ρ ()()z g a z f y f x f p z y x d d d d d -=++=ρρ ()?? --=h p p z g a p a d d ρ ()()()()??? ? ??-=-=----=-g a gh a g h g a h g a p p a 10ρρρρ ??? ? ??-+=g a gh p p a 1ρ () a g h p p a -=-ρh p p g a a ρ-- = (1) ()()()Pa 111138.39.480665.921000101325=-??+=-+=a g h p p a ρ

工程流体力学公式

第二章 流体的主要物理性质 1.密度 ρ = m /V 7.压缩系数 T p V V ???? ? ?-=δδκ 体积模量 6.体胀系数 P V T V V ??? ??=δδα 9.牛顿内摩擦定律 h Av F /μ= dy dv x μτ= 动力黏度:μ 运动黏度 ρμν= 第三章 流体静力学 重点:流体静压强特性、欧拉平衡微分方程式、等压面方程及其、流体静力学基本方程意义及其计算、压强关系换算、相对静止状态流体的压强计算、流体静压力的计算(压力体)。 1、 01=??-x p f x ρ 01=?-p ρf 2、 压强差公式 )(dz f dy f dx f dp z y x ++=ρ 等压面:dp =0 3、重力场中流体的平衡 4、帕斯卡定理 ()gh p z z g p p ρρ+=-+=000 5、 真空度 p p p a v -= 6、 等加速直线运动容器内液体的相对平衡 7、等角速度旋转容器中液体的相对平衡 C z g r g p +??? ? ??-=222ωρ 外加边界条件确定C 如:0,0,0p p z r === 自由液面上某点的铅直坐标:g r Zs 22 2ω= V P V K ??-=κ1

8、静止液体作用在平面上的总压力 9、静止液体作用在曲面上的总压力 水平方向的作用力:z x ghdA ghdA dF dF ρθρθ===cos cos 垂直方向的作用力 x z ghdA ghdA dF dF ρθρθ===sin sin 总压力 2 2y x F F F += z x F F tg =θ 第四章 流体运动学基础 1、.欧拉法 加速度场 简写为 当地加速度: 迁移加速度 2、 拉格朗日法:流体质点的运动速度的拉格朗日描述为 3、流线微分方程: 4.流量计算: 单位时间内通过d A 的微小流量为 d q v=u d A 通过整个过流断面流量 平均流速 5、 水力半径 :总流的有效截面积与湿周之比 χ A R h = 6. ???' =V dV N ηρ 连续性方程 对于定常流动 ρ1A 1υ1= ρ2A 2υ2 对于不可压缩流体,ρ1 = ρ2 =c A 1υ1=A 2υ2= q v 7、动量方程 8、 能量方程:、 不考虑与外界热量交换,质量力只有重力的情况 υυ)(????==A A u q q d d v v

相关主题
文本预览
相关文档 最新文档