当前位置:文档之家› 数模全国一等奖储油罐的变位识别与罐容表标定

数模全国一等奖储油罐的变位识别与罐容表标定

数模全国一等奖储油罐的变位识别与罐容表标定
数模全国一等奖储油罐的变位识别与罐容表标定

储油罐的变位识别与罐容表的标定

摘要

本文研究储油罐的变位识别与罐容表的标定。分别以小椭圆型油罐和实际卧式储油罐为研究对象,运用高等数学的积分的知识,分别建立罐体变位前后罐内油体积与油高读数之间的积分模型,使用Matlab 软件得出结论。

对于问题一,以小椭圆型储油罐为研究对象,在无变位时,小椭圆型储油罐为规则的椭球柱体,可利用解析几何与高等数学的知识建立油罐内体积与油高读数之间的积分模型,得出罐体无变位时的理论值。当罐体发生纵向变位时,小椭圆型储油罐的截面不再是规则的几何形体,但根据倾角α及所给小椭圆型罐体的尺寸,可得其截面面积的表达式,利用高等数学中积分的方法,根据不同油高,建立了模型一,得到了储油量和油高的关系公式。最后,根据实验数据的处理,用拟合的方法,修正了某些系统误差的影响,计算出罐体变位后油位高度间隔1cm 的罐容表的标定值。 对于问题二,由于实际储油罐内没油的高度不同,我们将其分为五种情况分别讨论,并对每种情况建立积分公式,得出罐内油体积与油位高度及变位参数(纵向倾斜角α和横向偏转角β)之间的函数关系式,利用所给的实验数据,运用最小二乘法,建立非线性规划模型

2

1

2

arg ,(((,,)(,,)))min (,,)n

i

i i i V H V H

OilData error OilData αβ

αβαβαβ-==--∑用Matlab 非线性规划求解得出使得总体误差最小的α与β值:α=2.12°,β=4.06°。通过α与β的数值计算出出油量理论值与实测值的平均相对误差小于0.5% 。

对模型进行了较为充分的正确性验证和稳定性验证:在α与β的值为0时,其计算出来的罐容值与理论值完全吻合,说明模型在体积计算上是正确的;当对油高进行0.1%的扰动时,α的值变化也在0.1%左右,说明α的稳定性很好,但是β的值从4.06°变成了3.75°,变化了大约8%,所以我们详细分析了β的数学表达式,从理论上分析了影响其稳定性的因素。根据得到的变位参数计算出实际罐体变位后油位高度间隔为10cm 的罐容表的标定值。

最后,本文对模型的优缺点进行了评价,并讨论模型的推广。

关键字:储油罐;变位识别;罐容表标定;非线性规划

一.问题重述

通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。

根据上述所述,求解下列问题:

(1)为了掌握罐体变位后对罐容表的影响,利用小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为=4.1°的纵向变位两种情况做了实验。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。

(2)对于实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度和横向偏转角度)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据,根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用实际检测数据来分析检验你们模型的正确性与方法的可靠性。

二.问题分析

本文研究罐容表的读数与储油罐的变位的关系。借助高等数学积分的方法,求出储油量与油高读数的函数关系式,并对倾斜的储油罐进行容量标定。

1.对问题一的分析

问题一中用小椭圆储油罐分别对罐体无变位和纵向倾斜进行实验,研究变位对罐容表的影响,因此我们分别建立变位前和变位后的罐容表读数与罐内油体积的函数关系式,通过函数关系式计算出理论值,再与所给的实际值相比较,得出其相对误差,然后通过分析系统误差进行修正,出罐体变位后油位高度间隔为1cm的罐容表的标定值。

2.对问题二的分析

问题二中是以实际储油罐为研究对象,不仅考虑了储油罐的纵向倾斜,而且还考虑了横向偏转,为了使问题简化,我们先只考虑纵向倾斜,由于储油罐的形体不规则,所以我们将它分成如图1所示的三部分,分别算出每部分的体积与罐容表读数的函数关系式,然后对其求和。再考虑横向偏转,建立它与所给的油高的函数关系式。然后将二者进行综合考虑得出变位后罐容表读数与储油罐内油体积的函数关系式,通过关系式和所给数据,运用最小二乘法,通过MATLAB程序,搜索出α和β的最小误差解,再对模型的稳定性和正确性进行评定,最后给出高度间隔10cm的罐容表的标定值。

图1 油罐分区域积分示意图

三.模型假设

假设一:数据是储油罐的内壁参数。

假设二:忽略温度、压力对汽油的密度的影响。

假设三:储油罐在偏移的过程中,油位探针始终与油罐底面垂直。假设四:对卧式储油罐来说,不考虑其长期埋在地下所发生的蠕变。假设五:累加进出油量数据是准确可靠的。

四.符号说明

H: 对应于罐容表读数的液面实际高度。

H: 球冠中与油罐圆柱左侧底面距离为x处的油高。

1

R: 球冠中与油罐左侧底面相距为x处的小圆半径。

2

H:球冠中与油罐圆柱右侧底面距离为x处的油高。

2

R:球冠中与油罐右侧底面相距为x处的小圆半径。

3

R: 储油罐圆柱部分的底面半径。

1

R: 球冠所在球体的大圆半径。

H:第i条数据所对应的罐容表读数。

i

OilData:用于分析的油量进出数据。

a: 椭圆长半轴长。

b: 椭圆短半轴长。

n: 用于分析的进出油测量数据个数。

h:罐容表读数。

五. 模型的建立与求解

5.1 模型一的建立与求解

问题一要求研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。

5.1.1 计算未变位和变位的理论罐内油位高度与储油量的关系

利用高等数学中微元法求体积的方法建立罐容表读数与罐内油体积的函数关系式的模型。

(1) 在无变位的情况下,储油罐内的油所占空间为柱体,其体积为 V S L = (1) 其中S 为柱体底面面积,L 为柱体的长度。

2h

b

S x dy -=?

(2)

底面椭圆方程为 22

22

1x y a b += (3)

22a x b y b

=

- (4)

将(4)代入(2),得到

2

22

h

b

a S

b y dy b

-=-? (5)

其积分解析表达式为 22221

(arcsin )2

a h S h

b h b b b b π=

-++ (6) 其中, h H b =-

(7)

如图

图2微元法求椭圆切面面积

221

[()(2)arcsin(1)]2a H S H b H b H b b b b π=--+-+

(8) 221

[()(2)arcsin(1)]2

a H V L H

b H b H b b b b π=--+-+

(9)

图3 油罐无倾斜时示意图

(2)当油罐发生纵向偏转时,油罐中油所占空间为一倾斜柱体,如图4所示:

图4 油罐偏移示意图 如图4所示,根据几何关系可知,

'(0.4)tan h H x α=--

(10)

又根据油面的高度不同,可分为以下三种情况:

图5 情况1:低油位

若油面位于图5所示位置,则:

22 10

22

[(

0.4tan tan)(0.4tan)

0.4tan tan1

arcsin]

2

a

V H x b b H b

b

H x b

b b dx

b

αα

ααα

αα

π

=+---+-+

+--

+

?(H+0.4tan)/tan

(11)

图6 情况2:正常油位

若油面位于图6所示位置,则:

2.45

22

20

22

[(0.4tan tan)(0.4tan)

0.4tan tan1

arcsin]

2

a

V H x b b H b

b

H x b

b b dx

b

ααα

αα

π

=+---+-+

+--

+

?

(12)

图7 情况3高油位

若油面位于图7位置,则:

2.45

30.4(1.2H)/tan 22

[(tan tan 1arcsin ]2

a

V abL x b b

x b b b dx

b απααπ--=---+?

(13)

由上述公式知,油罐的变位会对罐内油高与储油量的对应关系(罐容表),产生

较大的影响。

综合式(11)-(13),可以得到模型1如下:

(

)0

222.45

02[(0.4tan tan 0.4tan tan 1arcsin ] H<2.05*tan 2[(0.4tan tan ()arcsin a H x b b

H x b b b dx b a H x b b

V H H b ααααααπααα+--+--+++--=++??(H+0.4tan )/tan ,当

0<22.450.4(1.2H)/tan 22

0.4tan tan 1] (H 1.2-0.4tan )2[(tan tan 1arcsin

] (H 1.2)2x b b dx b a abL x b b x b b b dx b αααπααπααπα--???

???

--+≤≤---++≤?,当2.05*tan ,当1.2-0.4tan

???

(14)

5.1.2 应用试验数据对理论关系式进行修正

当无变位进油时,我们可以根据式(9)

221

[(arcsin(1)]2

a H V L H

b b b b b π=--+

对每一个油位高度求出其理论储油量;另根据累加进油量和罐内油量初值,可求得实际储油量。

由于理论储油量和实测数据之间存在一定的系统误差,所以我们用线性回归方式得到修正系数 m = 1.035。因此,无变位实际体积的修正计算公式为:

221

[(arcsin(1)]/2f a H V L H b b b m b b π=--+

(15) 对不同高度用式(14)计算对应的体积f V 和实测值进行对比验证,平均误差为0.01%,达到较好的计算精度(图8)。参考数据见附表1

图8

当罐体有α=4.1°倾斜角的纵向变位时,利用模型1我们对每一实验数据给出的油高计算其理论储油量。 系统误差校正:

所谓系统误差,是由于原始读数不准确造成的,其原因可能是仪表不准确、罐体变形或者进油出油管道和仪表占据一定的容积。虽然我们不知道具体的原因,但是我们通过统计分析可以一定程度上消除系统误差。方法如下:根据实验数据中累加进油量和罐内油量初始值求出实际储油量,与模型计算值进行比较,用二阶多项式拟合储油量差值和油高。

20.00040.5834124.24,

0.9773

dv H H Relative =-+-=

(16)

这两列数据的相关系数达到0.977,有理由采用此多项式对模型的计算值进行系统误差修正。

图9 系统误差和油高的拟合

对于试验中变位时,数据中的油高均处在5.1中正常油位情况,模型一中其他两种情况没有涉及。所以,模型简化为:实际储油量(f

V )=模型储油量(

2

V )

-系统误差(dv ),即

2.45

22

022

2[(0.4tan tan )(0.4tan )0.4tan tan 1arcsin ]2

(0.00040.5834124.24)

f a

V H x b b H b b

H x b b b dx

b H H αααααπ=+---+-+--++--+-? (17)

用实验数据验证,拟合效果良好,平均误差为0.059%。

图10

根据模型一,对系统误差进行修正后,我们可以计算求得模型所需的罐容表,详见下表。 小椭圆型储油罐罐容表标定值

油位高度(mm ) 储油量(L ) 油位高度(mm ) 储油量(L ) 油位高度(mm ) 储油量(L ) 油位高度(mm ) 储油量(L )

0.00 1.67 300.00 580.47 600.00 1716.72 900.00 2995.61 10.00 3.53 310.00 611.97 610.00 1759.00 910.00 3036.59 20.00 6.26 320.00 644.09 620.00 1801.42 920.00 3077.31 30.00 9.97 330.00 676.80 630.00 1843.97 930.00 3117.75 40.00 14.76 340.00 710.08 640.00 1886.63 940.00 3157.90 50.00 20.69 350.00 743.91 650.00 1929.40 950.00 3197.73 60.00 27.85 360.00 778.26 660.00 1972.26 960.00 3237.24 70.00 36.32 370.00 813.12 670.00 2015.20 970.00 3276.39 80.00 46.14 380.00 848.46 680.00 2058.20 980.00 3315.18 90.00

57.39

390.00

884.28

690.00

2101.26

990.00

3353.58

5.2 模型二的建立与求解

5.2.1 建立实际储油罐储油量和油位高度的模型

首先只考虑纵向倾角α。由于实际储油罐相当于圆柱体与球冠体组成,故用垂直于油罐的平面切割油罐,与罐中的油相交,所截的平面为弓形。

劣弧弓形的面积公式为:

21cos (r h

S r r h r

--=--

(18) 优弧弓形的面积公式为:

21

(cos )(h r

S r h r r

π--=-+-(19) 其中r 为弓形所在圆的半径;h 为弓形的高。 所以罐中油的体积微元为

21[cos (r h

dv r r h dx r

--=--

或者:

21[(cos )(h r

dv r h r dx r

π--=-+-

由于实际储油罐是不规则的几何形体,故我们在计算罐内油的体积时,将卧

2010年数学建模B题(储油罐问题)

储油罐的变位识别与罐容表标定 摘要 对于加油站储存燃油的地下储油罐变位的罐容标定问题,我们需要研究各种不定因素对罐容标定的影响。本文主要考虑在油罐的几何形状确定的情形下,由于地基变形而引起的油液面倾斜等因素对罐容表的影响。 将理论推导和数据拟合情况综合分析,在理论推导方面,创新性的运用祖暅体积公式,使用操作更简单的近似计算,结合相应容积斜率表,将倾斜卧式椭圆油罐容积的计算等效替换为水平状态下相应部分体积的计算,并对其修正得出最符合实际情况的罐容表。使用体积补偿方法产生虚拟体积,对不规则体积进行规则变换,最终求得不规则立体的体积。探讨了使用SURFER软件对体积网格化求不规则立体体积的方法。 对两端平头的椭圆柱体形小椭圆型储油罐无变位和倾斜(倾斜角α=4.1) 情况进行分析,求出罐容表并对其进行分析。我们利用祖暅原理结合不定积分即可求出理论推导式,再用Matlab对实际所测数据进行拟合得出近似方程。对近似方程与理论推导出来的公式分别计算并进行比较,同时进行修正得出最符合实际情况的方程。 对实际的储油罐变位情况(纵向倾斜角度α,横向倾斜角度β)建立罐容 表。我们采用分割法利用竖直平面将储油罐分割,对于规则微小体积元,可以通过积分的方法计算规则体的体积;对于不规则的微小体积元,通过延长油罐的另一端使其转化成规则体元,计算出总的体积,减去虚拟体积。采用Matlab符号 运算工具箱,推导出变位油罐标尺高度h,α,β与体积V之间的关系,并与实 际测量数据拟合公式做比较,求出体积微小差异量,进行误差分析。结果表明,此模型与实际测量数据吻合程度较好。 关键词:祖暅原理;截面转化;等效变换;虚拟体积;体积网格化

数学建模及全国历年竞赛题目

数学建模及全国历年竞赛题目 (2010-09-28 21:58:01) 标签: 分类:专业教学 数学建模 应用数学模型 教育 一、数学建模的涵 (一)数学建模的概念 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。使用数学语言描述的事物就称为数学模型,这个建立数学模型的全过程就称为数学建模。(二)应用数学模型 应用数学去解决各类实际问题,把错综复杂的实际问题简化、抽象为合理的数学结构。通过调查、收集数据资料,观察和研究实际对象的固有特征和在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。需要诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包如 Mathematica,Matlab,Lingo,Spss,Mapple的使用,甚至排版软件等知识的基础。

(三)数学建模的特点 数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点;数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。(四)数学建模的指导思想 数学建模的指导思想就是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。 (五)数学建模的意义 数学建模是联系数学与实际问题的桥梁,是数学在各个领械广泛应用的媒介,是数学科学技术转化的主要途径。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。 1.培养创新意识和创造能力; 2.训练快速获取信息和资料的能力; 3.锻炼快速了解和掌握新知识的技能; 4.培养团队合作意识和团队合作精神; 5.增强写作技能和排版技术;

(整理)储油罐的变位识别与罐容表标定模型.

储油罐的变位识别与罐容表标定模型 摘要 本文研究的是储油罐变位识别与罐容表标定的数学关系模型。 对于问题一, 罐体没有纵向变位时, 在储油罐本身几何分析的基础上,建立无变位的油量体积V 与标定表读数h 的关系模型。计算出理论值,通过误差分析和线性拟合,求出系统误差和随机误差,修正了罐容表。 在罐体有纵向变位时,将储油罐的纵向变位划分为三种不同情况,利用积分思想求解不同变位情况下的油量的理论体积。根据纵向倾斜参数?=1.4α建立有纵向变位的油量体积V 与标定表读数h 的关系模型。利用MATLAB 软件和excel 工具的解出油量体积V 的理论值。然后,充分考虑模型中系统误差和偶然误差的影响,重新标定了罐容表,给出间隔为1cm 的罐容表标定表,解决了加油站罐容表无法准确反映储油量的问题。 对问题二罐体,我们建立了纵向α和横向β同时发生时,标定表读数h 与油量V 的数学模型。我们不仅考虑了纵向变位的三种情况、横向变位的两种情况,而且考虑了纵向和横向变位同时发生的情况。利用积分思想建立模型,运用MATLAB 软件对模型的不同情况进行了详细、精确的计算。然后充分结合误差分析,以平方误差最小原则对α、β采取搜索算法,得出实际变化值2.0524, 4.0 αβ==,并给出罐容表间隔为10cm 的标定表。最后结合题目所给数据对所求数据进行检验。通过模型分析,结合系统误差与读数h 的函数关系。在多次误差分析的基础上再对模型进行了检验,得到了理想结果。 本文通过以上各模型的深入分析和研究,解决了储油罐变位时储油量与罐容表刻度不一致的问题,具有广泛的运用价值。在运用方法上,我们采用了系统误差和观察误差双重误差分析,线性回归、拟合相结合的误差分析法以及搜索法等方法的运用,提高了罐容表标定的精确度,大大增添了本文的的科学性和结构的严谨性。 关键词:线性回归、拟合、MATLAB 、误差分析、搜索法 一、 问题的重述

2017全国数学建模竞赛B题

2017年高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) B题“拍照赚钱”的任务定价 “拍照赚钱”是移动互联网下的一种自助式服务模式。用户下载APP,注册成为APP的会员,然后从APP上领取需要拍照的任务(比如上超市去检查某种商品的上架情况),赚取APP对任务所标定的酬金。这种基于移动互联网的自助式劳务众包平台,为企业提供各种商业检查和信息搜集,相比传统的市场调查方式可以大大节省调查成本,而且有效地保证了调查数据真实性,缩短了调查的周期。因此APP成为该平台运行的核心,而APP中的任务定价又是其核心要素。如果定价不合理,有的任务就会无人问津,而导致商品检查的失败。 附件一是一个已结束项目的任务数据,包含了每个任务的位置、定价和完成情况(“1”表示完成,“0”表示未完成);附件二是会员信息数据,包含了会员的位置、信誉值、参考其信誉给出的任务开始预订时间和预订限额,原则上会员信誉越高,越优先开始挑选任务,其配额也就越大(任务分配时实际上是根据预订限额所占比例进行配发);附件三是一个新的检查项目任务数据,只有任务的位置信息。请完成下面的问题: 1.研究附件一中项目的任务定价规律,分析任务未完成的原因。 2.为附件一中的项目设计新的任务定价方案,并和原方案进行比较。 3.实际情况下,多个任务可能因为位置比较集中,导致用户会争相选择,一种 考虑是将这些任务联合在一起打包发布。在这种考虑下,如何修改前面的定价模型,对最终的任务完成情况又有什么影响? 4.对附件三中的新项目给出你的任务定价方案,并评价该方案的实施效果。 附件一:已结束项目任务数据 附件二:会员信息数据 附件三:新项目任务数据

2017年研究生数学建模竞赛A题

2017年中国研究生数学建模竞赛A题 无人机在抢险救灾中的优化运用 2017年8月8日,四川阿坝州九寨沟县发生7.0级地震,造成了不可挽回的人员伤亡和重大的财产损失。由于预测地震比较困难,及时高效的灾后救援是减少地震损失的重要措施。无人机作为一种新型运载工具,能够在救援行动中发挥重要作用。为提高其使用效率,请你们解决无人机优化运用的几个问题。 附件1给出了震区的高程数据,共有2913列,2775行。第一行第一列表示(0,0)点处的海拔高度值(单位:米),相邻单元格之间的距离为38.2米,即第m行第n列单元格中的数据代表坐标(38.2(m-1), 38.2(n-1))处的高度值。震区7个重点区域的中心位置如下表所示(单位:千米): 除另有说明外,本题中的无人机都假设平均飞行速度60千米/小时,最大续航时间为8小时,飞行时的转弯半径不小于100米,最大爬升(俯冲)角度为±15°,与其它障碍物(含地面)的安全飞行距离不小于50米,最大飞行高度为海拔5000米。所有无人机均按规划好的航路自主飞行,无须人工控制,完成任务后自动返回原基地。 问题一:灾情巡查 大地震发生后,及时了解灾区情况是制订救援方案的重要前提。为此,使用无人机携带视频采集装置巡查7个重点区域中心方圆10公里(并集记为S)以 内的灾情。假设无人机飞行高度恒为4200米,将在地面某点看 无人机的仰角大于60°且视线不被山体阻隔视为该点被巡查。 若所有无人机均从基地H(110,0)(单位:千米)处派出,且完成任

务后再回到H,希望在4小时之内使区域S内海拔3000米以下的地方尽可能多地被巡查到,最少需要多少架无人机?覆盖率是多少?每架无人机的飞行路线应如何设计?在论文中画出相应的飞行路线图及巡查到的区域(不同的无人机的飞行路线图用不同的颜色表示)。 进一步,为及时发现次生灾害,使用无人机在附件1给出的高度低于4000米的区域(不限于S)上空巡逻。问最少需要多少架无人机、如何设定每架无人机的飞行时间、路线,才能保证在72小时内,上述被巡查到的地方相邻两次被巡查的时间间隔不大于3小时(无人机均需从H出发并在8小时内回到H,再出发的时间间隔不小于1小时)? 问题二:生命迹象探测 使用无人机携带生命探测仪搜索生命迹象,能够给灾后救援提 供准确的目标定位。拟从基地H(110,0),J(110,55)(单位:千米)处 总共派出30架无人机(各15架),任务完成后回到各自的出发地。 探测仪的有效探测距离不超过1000米,且最大侧视角(探测仪到可 探测处的连线与铅垂线之间的夹角)为60度。请你们规划它们的飞 行路线,使附件1所给出的全区域内海拔3000米以下部分能被探测到的面积尽可能大,且使从第一架无人机飞出到最后一架完成任务的无人机回到基地的时间间隔尽量短。 问题三:灾区通信中继 大地震发生后,地面电力设施被破坏,灾区通信中断。太阳能无人机(白天不受续航能力限制,其余条件同前述)可以作为地面移动终端之间的通信中继,为灾区提供持续的通信保障(地面终端只能与无人机进行通信,无人机之间只要不超过最大通信距离就可以互相通信,地面与地面之间的通信由无人机转接)。假设无人机在空中飞行时,可与距离3000米以内的移动终端通信,无人机之间的最大通信距离为6000米,问最少需要多少架无人机、每架无人机的飞行路线如何,才能保证在白天12小时内,附件2中的任意两个地面终端之间都能实现不间断通信(作为中继的无人机之间的切换时间忽略不计,地面终端的移动距离不超过2千米)? 问题四:无人机对地的数据传输 指挥中心拟从H派出3架无人机携带通信装备向灾区内的72个地面终端(分布见附件2)发送内容不同,总量均为500M(1M按106比特计算)的数据。设每台通信装备的总功率是5瓦,可同时向不超过10个地面终端发送数据。数据传输过程可以简化为:当地面终端i看无人机的仰角大于30°、距离不超过3000米且没有山体阻隔时,如果无人机当前服务用户少于10

全国数学建模优秀论文

上海世博会影响力的定量评估 摘要 本文主要针对世博会对上海市的发展产生的影响力进行定量评估。 在模型一中,首先我们从上海的城市基础设施建设这一侧面定量评估世博会对上海市的发展产生的影响,而层次分析法是对社会经济系统进行系统分析的有力工具。所以我们运用层次分析法,构造成对比矩阵a,找到最大特征值 ,运用 进行一致性检验,这样对成对比矩阵a进行逐步修正,最终可以确定权向量。再运用模糊数学的综合评价法,通过组合权向量就可以得出召开世博会比没有召开世博会对上海城市基本设施建设的影响要高出40%。 在模型二中,上海世博会的影响力直接体现在GDP上,我们直接以GDP这个硬性直接指标来衡量上海世博会对上海的影响。因此我们运用线性回归的模型预测出在有无上海世博会这两者情况下的GDP的值,并将运用线性回归得到的数据与上海统计年鉴中的相关数据进行比较运算,算出误差在1.2%左右,这说明我们用线性回归得到的模型能准确地反映出世博会对上海GDP的影响。运用公式 可以计算出世博对上海GDP的影响力的大小为 。 关键词:层次分析法模糊数学线性回归城市基础建设 GDP 1 问题重述

2010年上海世博会是首次在中国举办的世界博览会。从1851年伦敦的“万国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。请你们选择感兴趣的某个侧面,建立数学模型,利用互联网数据,定量评估2010年上海世博会的影响力。 2 问题分析 对于模型一,为了定量评估2010年上海世博会的影响力,我们首先选取城市基础设施建设的投入这一个侧面,因为通过查找相关数据,我们发现,城市基础设施建设的投入在上海整个GDP的增长中占有很大的比重,对GDP的贡献占主体地位。而层次分析法是对社会经济系统进行系统分析的有力工具。为此,我们通过研究上海统计局的相关数据,使用层次分析法来评估世博会的召开对基础设施建设的投入的影响,目标层为世博会的召开对基础设施建设的投入的影响,准则层依次为电力建设、交通运输、邮电通信、公用事业、市政建设,方案层依次为没有召开世博时的影响、召开世博时的影响。首先我们通过层次分析法算出电力建设、交通运输、邮电通信、公用事业、市政建设的相对权重,然后应用模糊数学中的综合评价法对上海世博会对城市基础设施建设的影响作出综合的评价,应用综合评价法计算出没有召开世博和召开世博两种情况下的权重,从而得出上海世博会的召开对城市基础设施建设的影响。 对于模型二,直接以GDP这个硬性直接指标来衡量上海世博会对上海的影响。先根据上海没有申办世博会的GDP总额的相关数据,建立线性回归模型,由此预测不举办世博会情况下2010年上海市的GDP总额;再由2002年至2009年的GDP值用线性回归预测出举办世博会情况下2010年上海市的GDP总额,并将两种情况进行对比得出世博会对上海GDP的影响。 3 模型假设 3.1假设非典和奥运等重大事件对世博前的城市基础建设的投入影响很小,可以忽略。

全国数学建模大赛B题

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 指导教师或指导教师组负责人(打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号): 创意平板折叠桌 摘要 折叠与伸展也已成为家具设计行业普遍应用的一个基本设计理念,占用空间面积小而且家具的功能又更加多样化自然会受到人们的欢迎,着看创意桌子把一整块板分成若干木条,组合在一起,也可以变成很有创意的桌子,就像是变魔术一样,真的是创意无法想象。这样的一个有创意的家具给我们的生活带来了无限的乐趣, 问题一: 问题二:运用几何模型,对折叠桌平铺和完全展开后两个状态进行分析,得到各个变量之间的几何关系,因为折叠桌的设计要考虑产品的稳固性、加工方便、用材最少等方面的因素,但产品稳固性的权重选大于其它方面,所以优先满足产品的稳固性最好的情况,在已知折叠桌高度和圆形桌面直径的条件下,经过实际分析得到,当折叠桌完全展开后,四个最外侧着地的桌腿构成的正方形与桌面圆形外切时,稳固性最大,由此可以通过几何关系求得最外侧桌腿的长度l,进而得到平板的最有尺寸的长度x,再通过考虑对折叠桌进行受力分析,得到钢筋的位置,距离桌脚的距离M, L,问题二通过Matlab和C语言进行编程,得到每根桌腿到中心的距离r和每根桌腿的开槽长度 得以解决,结果见表1。 问题三: 关键字:几何模型 一、问题重述 某公司生产一种可折叠的桌子,桌面呈圆形,桌腿随着铰链的活动可以平摊成一张平板(如图1-2所示)。桌腿由若干根木条组成,分成两组,每组各用一根钢筋将木条连接,钢筋两端分别固定在桌腿各组最外侧的两根木条上,并且沿木条有空槽以保证滑动的自由度(见图3)。桌子外形由直纹曲面构成,造型美观。附件视频展示了折叠桌的动态变化过程。 试建立数学模型讨论下列问题: 1.给定长方形平板尺寸为120cm×50cm×3cm,每根木条宽 2.5cm,连接桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为53cm。试建立模型描述此折叠桌的动态变化过程,在此基础上给出此折叠桌的设计加工参数(例如,桌腿木条开槽的长度等)和桌脚边缘线(图4中红色曲线)的数学描述。

储罐控制系统

毕业论文 题目:基于组态王6.5 的串级PID 液位控制系统设计学院:东北石油大学秦皇岛分校 专业:生产过程自动化 姓名:李秋峰 指导教师:刘文龙 摘要 开发经济实用的教学实验装置、开拓理论联系实际的实验内容,对提高课程教学实验水平,具有重要的实际意义。就高校学生的实验课程来讲,由于双容水箱液位控制系统本身具有的复杂性和对实时性的高要求,使得在该系统上实现基于不同控制策略的实验内容,需要全面掌握自动控制理论及相关知识。 本文通过对当前国内外液位控制系统现状的研究,选取了PID 控制、串级PID 控制等策略对实验系统进行实时控制,通过对实验系统结构的研究,建立了单容水箱和双容水箱实验系统的数学模型,并对系统的参数进行了辨识,利用工业控制软件组态王6.5,并可通用于ADAM 模块及板卡等的实现方案,通过多种控制模块在该实验装置上实验实现,验证了实验系统具有良好的扩展性和开放性。 关键词:双容水箱液位控制系统串级PID控制算法组态王6.5 智能调节仪 目录 前言 (1) 第一章串级液位控制系统介绍 (2) 1.1 国内外研究现状. (2) 1.1.1 液位控制系统的发展现状 (2) 1.1.2 液位控制系统算法的研究现状 (2) 1.2 PID 控制算法的介绍 (3) 1.2.1 PID 控制算法的历史 (3) 1.2.2 PID 控制各环节作用 (4) 1.3 串级控制系统介绍 (4) 第二章水箱液位控制系统的建模 (5) 2.1 水箱液位控制系统的构成 (6) 2.2 液位控制的实现 (5) 2.3 单容水箱建模............................................................................. (5) 2.4 双容水箱建模 (6) 2.4.1 双容水箱数学模型 (6)

全国大学生数学建模竞赛论文

2009高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名):指导教师组 日期:年月日 赛区评阅编号(由赛区组委会评阅前进行编号):

2009高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号):

论文标题 摘要 摘要是论文内容不加注释和评论的简短陈述,其作用是使读者不阅读论文全文即能获得必要的信息。 一般说来,摘要应包含以下五个方面的内容: ①研究的主要问题; ②建立的什么模型; ③用的什么求解方法; ④主要结果(简单、主要的); ⑤自我评价和推广。 摘要中不要有关键字和数学表达式。 数学建模竞赛章程规定,对竞赛论文的评价应以: ①假设的合理性 ②建模的创造性 ③结果的正确性 ④文字表述的清晰性 为主要标准。 所以论文中应努力反映出这些特点。 注意:整个版式要完全按照《全国大学生数学建模竞赛论文格式规范》的要求书写,否则无法送全国评奖。

2017年中国研究生数学建模竞赛题

2017年中国研究生数学建模竞赛D题 基于监控视频的前景目标提取 视频监控是中国安防产业中最为重要的信息获取手段。随着“平安城市”建设的顺利开展,各地普遍安装监控摄像头,利用大范围监控视频的信息,应对安防等领域存在的问题。近年来,中国各省市县乡的摄像头数目呈现井喷式增长,大量企业、部门甚至实现了监控视频的全方位覆盖。如北京、上海、杭州监控摄像头分布密度约分别为71、158、130个/平方公里,摄像头数量分别达到115万、100万、40万,为我们提供了丰富、海量的监控视频信息。 目前,监控视频信息的自动处理与预测在信息科学、计算机视觉、机器学习、模式识别等多个领域中受到极大的关注。而如何有效、快速抽取出监控视频中的前景目标信息,是其中非常重要而基础的问题[1-6]。这一问题的难度在于,需要有效分离出移动前景目标的视频往往具有复杂、多变、动态的背景[7,8]。这一技术往往能够对一般的视频处理任务提供有效的辅助。以筛选与跟踪夜晚时罪犯这一应用为例:若能够预先提取视频前景目标,判断出哪些视频并未包含移动前景目标,并事先从公安人员的辨识范围中排除;而对于剩下包含了移动目标的视频,只需辨识排除了背景干扰的纯粹前景,对比度显著,肉眼更易辨识。因此,这一技术已被广泛应用于视频目标追踪,城市交通检测,长时场景监测,视频动作捕捉,视频压缩等应用中。 下面简单介绍一下视频的存储格式与基本操作方法。一个视频由很多帧的图片构成,当逐帧播放这些图片时,类似放电影形成连续动态的视频效果。从数学表达上来看,存储于计算机中的视频,可理解为一个3维数据,其中代表视频帧的长,宽,代表视频帧的帧数。视频也可等价理解为逐帧图片的集合,即,其中为一张长宽分别为 的图片。3维矩阵的每个元素(代表各帧灰度图上每个像素的明暗程度)为0到255之间的某一个值,越接近0,像素越黑暗;越接近255,像素越明亮。通常对灰度值预先进行归一化处理(即将矩阵所有元素除以255),可将其近似认为[0,1]区间的某一实数取值,从而方便数据处理。一张彩色图片由R(红),G(绿),B(蓝)三个通道信息构成,每个通道均为同样长宽的一张灰度图。由彩色图片

数模 全国一等奖 A题 储油罐的变位识别与罐容表标定

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是:A题储油罐的变位识别与罐容表标定 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:2010年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

储油罐的变位识别与罐容表的标定 摘要 本文研究储油罐的变位识别与罐容表的标定。分别以小椭圆型油罐和实际卧式储油罐为研究对象,运用高等数学的积分的知识,分别建立罐体变位前后罐内油体积与油高读数之间的积分模型,使用Matlab 软件得出结论。 对于问题一,以小椭圆型储油罐为研究对象,在无变位时,小椭圆型储油罐为规则的椭球柱体,可利用解析几何与高等数学的知识建立油罐内体积与油高读数之间的积分模型,得出罐体无变位时的理论值。当罐体发生纵向变位时,小椭圆型储油罐的截面不再是规则的几何形体,但根据倾角α及所给小椭圆型罐体的尺寸,可得其截面面积的表达式,利用高等数学中积分的方法,根据不同油高,建立了模型一,得到了储油量和油高的关系公式。最后,根据实验数据的处理,用拟合的方法,修正了某些系统误差的影响,计算出罐体变位后油位高度间隔1cm 的罐容表的标定值。 对于问题二,由于实际储油罐内没油的高度不同,我们将其分为五种情况分别讨论,并对每种情况建立积分公式,得出罐内油体积与油位高度及变位参数(纵向倾斜角α和横向偏转角β)之间的函数关系式,利用所给的实验数据,运用最小二乘法,建立非线性规划模型 2 1 2 arg ,(((,,)(,,)))min (,,)n i i i i V H V H OilData error OilData αβ αβαβαβ-==--∑用Matlab 非线性规划求解得出使得总体误差最小的α与β值:α=2.12°,β=4.06°。通过α与β的数值计算出出油量理论值与实测值的平均相对误差小于0.5% 。 对模型进行了较为充分的正确性验证和稳定性验证:在α与β的值为0时,其计算出来的罐容值与理论值完全吻合,说明模型在体积计算上是正确的;当对油高进行0.1%的扰动时,α的值变化也在0.1%左右,说明α的稳定性很好,但是β的值从4.06°变成了3.75°,变化了大约8%,所以我们详细分析了β的数学表达式,从理论上分析了影响其稳定性的因素。根据得到的变位参数计算出实际罐体变位后油位高度间隔为10cm 的罐容表的标定值。 最后,本文对模型的优缺点进行了评价,并讨论模型的推广。 关键字:储油罐;变位识别;罐容表标定;非线性规划

2017年中国研究生数学建模竞赛E题

2017年中国研究生数学建模竞赛E题 多波次导弹发射中的规划问题 随着导弹武器系统的不断发展,导弹在未来作战中将发挥越来越重要的作用,导弹作战将是未来战场的主要作战样式之一。 为了提高导弹部队的生存能力和机动能力,常规导弹大都使用车载发射装置,平时在待机地域隐蔽待机,在接受发射任务后,各车载发射装置从待机地域携带导弹沿道路机动到各自指定发射点位实施发射。每台发射装置只能载弹一枚,实施多波次发射时,完成了上一波次发射任务的车载发射装置需要立即机动到转载地域(用于将导弹吊装到发射装置的专门区域)装弹,完成装弹的发射装置再机动至下一波次指定的发射点位实施发射。连续两波次发射时,每个发射点位使用不超过一次。 某部参与作战行动的车载发射装置共有24台,依据发射装置的不同大致分为A、B、C三类,其中A、B、C三类发射装置的数量分别为6台、6台、12台,执行任务前平均部署在2个待机地域(D1,D2)。所属作战区域内有6个转载地域(Z01~ Z06)、60个发射点位(F01~ F60),每一发射点位只能容纳1台发射装置。各转载地域最多容纳2台发射装置,但不能同时作业,单台转载作业需时10分钟。各转载地域弹种类型和数量满足需求。相关道路情况如图1所示(道路节点J01~J62),相关要素的坐标数据如附件1所示。图1中主干道路(图中红线)是双车道,可以双车通行;其他道路(图中蓝线)均是单车道,只能在各道路节点处会车。A、B、C三类发射装置在主干道路上的平均行驶速度分别是70公里/小时、60公里/小时、50公里/小时,在其他道路上的平均行驶速度分别是45公里/小时、35公里/小时、30公里/小时。 部队接受发射任务后,需要为每台车载发射装置规划每个波次的发射点位及机动路线,要求整体暴露时间(所有发射装置的暴露时间之和)最短。本问题中的“暴露时间”是指各车载发射装置从待机地域出发时刻至第二波次发射时刻为止的时间,其中发射装置位于转载地域内的时间不计入暴露时间内。暂不考虑发射装置在发射点位必要的技术准备时间和发射后发射装置的撤收时间。

2010数学建模A题 储油罐的变位识别与罐容表标定

2010高教社杯全国大学生数学建模竞赛题目 (请先阅读“全国大学生数学建模竞赛论文格式规范”) A 题 储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 油 油浮子 出油管 油位探测装置 注油口 检 查 口 地平线 2m 6m 1m 1m 3 m 油位高度 图1 储油罐正面示意图 油位探针

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

储罐自动计量系统

储罐自动计量系统 随着我国2000年加入WTO,石油销售、储云行业面临计算机管理信息化改造,对所有储油罐的自动化计量与管理信息化改造,对所有储油罐的自动化计量与管理工作已提上议事日程。目前对每个储油罐内油品的物理参数都采用人工检尺、人工取样进行计量、计算,这种落后的计量方式会被以计算机为中心的自动计量系统所替代,迎来了自动化的时代。 油罐自动计量系统简介:石化行业对储存各种油品的储罐内所储存油品数量的检测一直采用人工投尺、人工采样、人工计算的计量方法。自20世纪70年代,随着计算机技术的迅猛发展,国内外开始出现了一些自动计量的技术及方法,部分或全部替代了人工计量,减少了劳动力的支出。而且从计算机上便可得到罐内所储存油品的所有物理参数。这就是油罐自动计量系统。油罐内储存的油品的物理参数有:液位(油高)、密度(标准密度或观察密度)、油品平均温度、油罐内油水界面(即水高)、每个罐内储存的油品的体积和质量(商业质量—考虑空气浮力后的物理质量)。对于实行不同贸易交接方法的国家,真正需要知道的只应是一种结果。例如实行体积交接的国家最终应知道罐内储存油品在标准温度下的体积,而实行质量交接的国家则最终只需要知道罐内储存油品的商业质量。

油罐自动计量系统可归纳为3大类自动测量方法,即自动液位计法(ATG)、静压法(HTG)和混合法(HTMS)。这3种方法是依据出现先后及技术的成熟程度依次排列的。事实上,这3种油罐自动计量方法所采用的敏感元件不外乎为钢带浮子式液位计、伺服式液位计、磁致伸缩式液位计、雷达式液位计、超声波式液位计、光导式液位计等等,都是用来测量液位、油水界面或密度的。另外就是各种压力传感器,如表压式、差压式、电容式、硅半导体式,及单点测温元件、多点温度传感器或智能型多点平均温度变送器。以上各种敏感元件可以组成用于油罐自动计量的各种ATG、HTG、HTMS自动计量系统。这3类不同原理的计量系统又可分为模拟式系统、全数字化式系统。目前最先进的计量系统为现场总线式的自动计量系统。

第十五届华为杯中国研究生数学建模竞题—B题

2018年中国研究生数学建模竞赛B 题 光传送网建模与价值评估 1. 背景 2009年诺贝尔物理学奖授予了英籍华人高锟(Charles K. Kao )博士,以表彰他对光纤通信发展所做出的贡献,诺贝尔奖委员会在给公众的公开信中写到: “当诺贝尔物理学奖宣布的时候,世界大部分地方几乎瞬间收到了这条信息…文字、语音和视频信号沿着光纤在世界各地来回传输,几乎瞬时地被微小而便捷的设备接收,人们已经把这种情况当做习惯。光纤通信正是整个通信领域急速发展的前提。” 从诞生至今,50多年里基于数字光纤通信技术的光传送网构建起了全球通信的骨架。从城市内的传输,直到跨越大洋的传输,光传送网为人类提供了大容量、高可靠性和低能耗的信息传输管道,人类对通信容量的追求也成为光传送技术发展的源源不断的动力。 光传送网的规划与建设是运营商、设备商以及政府必须考虑的课题。光传送的基本规律是——在相同技术条件下传输的容量会随着传输距离增加而减小。网络规划者需要在有限资源的条件下,综合考虑传输距离,传输容量、网络拓扑等各种因素,以最大化网络的价值。本课题中,请你们站在上述角度,从底层物理出发为光传送链路建模,制定光传送网规划,探索光传送网有关规律。 本课题的内容包括: 1) 对光传送链路进行简单建模 2) 制定光传送网的规划,并探讨网络的价值 3)改进调制格式 2. 问题-1:光传送链路建模 现代数字传输系统可认为是对0101二进制序列进行编码传输的系统,1个二进制的0或1称为1个比特(bit )。无论是语音、视频还是任何类型的消息,都可以数字化为一串串”0101…”的二进制比特序列,经编码并调制为某个“载体信号”后,再经过特定的“信道”(信息的通道)传输到目的地。图1中给出了简化的模型。在光纤通信中,光纤就是信道,光纤传输的光波就是信息的载体。信道中无法避免的噪声可能导致最终接收的二进制序列中比特出错,即产生误码。 接收机解调制噪声信号接收 信号 发送序列 0101010...接收序列0101110...发射机 编码调制 图1 简化后的数字传输模型 二进制序列通常需要将K 个比特作为一个“符号”进行传输,每个符号有个不同状

中国研究生数学建模竞赛历届竞赛题目截止

中国研究生数学建模竞赛历届竞赛题目 第一届2004年题目 A题发现黄球并定位 B题实用下料问题 C题售后服务数据的运用 D题研究生录取问题 第二届2005年题目 A题HighwayTravelingtimeEstimateandOptimalRouting B题空中加油 C题城市交通管理中的出租车规划 D题仓库容量有限条件下的随机存贮管理 第三届2006年题目 A题AdHoc网络中的区域划分和资源分配问题 B题确定高精度参数问题 C题维修线性流量阀时的内筒设计问题 D题学生面试问题 第四届2007年题目 A题建立食品卫生安全保障体系数学模型及改进模型的若干理论问题 B题械臂运动路径设计问题 C题探讨提高高速公路路面质量的改进方案 D题邮政运输网络中的邮路规划和邮车调运 第五届2008年题目 A题汶川地震中唐家山堪塞湖泄洪问题 B题城市道路交通信号实时控制问题 C题货运列车的编组调度问题 D题中央空调系统节能设计问题 第六届2009年题目 A题我国就业人数或城镇登记失业率的数学建模 B题枪弹头痕迹自动比对方法的研究 C题多传感器数据融合与航迹预测 D题110警车配置及巡逻方案 第七届2010年题目 A题确定肿瘤的重要基因信息 B题与封堵渍口有关的重物落水后运动过程的数学建模 C题神经元的形态分类和识别 D题特殊工件磨削加工的数学建模 第八届2011年题目 A题基于光的波粒二象性一种猜想的数学仿真 B题吸波材料与微波暗室问题的数学建模 C题小麦发育后期茎轩抗倒性的数学模型 D题房地产行业的数学建模

第九届2012年题目 A题基因识别问题及其算法实现 B题基于卫星无源探测的空间飞行器主动段轨道估计与误差分析C题有杆抽油系统的数学建模及诊断 D题基于卫星云图的风矢场(云导风)度量模型与算法探讨 第十届2013年题目 A题变循环发动机部件法建模及优化 B题功率放大器非线性特性及预失真建模 C题微蜂窝环境中无线接收信号的特性分析 D题空气中PM2.5问题的研究attachment E题中等收入定位与人口度量模型研究 F题可持续的中国城乡居民养老保险体系的数学模型研究 第十一届2014年题目 A题小鼠视觉感受区电位信号(LFP)与视觉刺激之间的关系研究B题机动目标的跟踪与反跟踪 C题无线通信中的快时变信道建模 D题人体营养健康角度的中国果蔬发展战略研究 E题乘用车物流运输计划问题 第十二届2015年题目 A题水面舰艇编队防空和信息化战争评估模型 B题数据的多流形结构分析 C题移动通信中的无线信道“指纹”特征建模 D题面向节能的单/多列车优化决策问题 E题数控加工刀具运动的优化控制 F题旅游路线规划问题 第十三届2016年题目 A题多无人机协同任务规划 B题具有遗传性疾病和性状的遗传位点分析 C题基于无线通信基站的室内三维定位问题 D题军事行动避空侦察的时机和路线选择 E题粮食最低收购价政策问题研究 数据来源:

2017年中国研究生数学建模竞赛F题

2017年中国研究生数学建模竞赛F题 构建地下物流系统网络 背景 交通拥堵是世界大城市都遇到的“困局”之一。2015年荷兰导航经营商TomTom 发布了全球最拥堵城市排名,中国大陆有十个城市位列前三十名。据中国交通部2014年发布的数据,我国交通拥堵带来的经济损失占城市人口可支配收入的20%,相当于每年国内生产总值(GDP)损失5~8%。15座大城市的居民每天上班比欧洲发达国家多消耗28.8亿分钟。大量研究表明:“时走时停”的交通导致原油消耗占世界总消耗量的20%。高峰期,北京市主干线上300万辆机动车拥堵1小时所需燃油为240万~330万升。2015年城市交通规划年会发布数据显示:在石油消费方面,我国交通石油消费比重占到了消费总量的54%,交通能耗已占全社会总能耗10%以上,并逐年上升。高能耗也意味着高污染和高排放。 导致城市交通拥堵的主要原因是交通需求激增所带来的地面道路上车辆、车次数量巨增,其中部分是货物物流的需求增长。尽管货车占城市机动车总量的比例不大,但由于货运车辆一般体积较大、载重时行驶较慢,车流中如果混入重型车,会明显降低道路的通行能力,因此,其占用城市道路资源的比例较大。如北京,按常规的车辆换算系数(不同车辆在行驶时占用道路净空间的程度),货运车辆所占用的道路资源达40%。因此,世界各国都在为解决城市交通和环境问题进行积极探索,而处理好货运交通已成为共识。大量实践证明,仅通过增加地面交通设施来满足不断增长的交通需求,既不科学也不现实,地面道路不可能无限制地增加。因此“统筹规划地上地下空间开发”势在必行,“地下物流系统”正受到越来越多发达国家的重视。 概念 地下物流系统(Underground Logistics System——ULS)是指城市内部及城市间通过类似地铁的地下管道或隧道运输货物的运输和供应系统。它不占用地面道路,减轻了地面道路的交通压力,从而缓解城市交通拥堵;它采用清洁动力,有效减轻城市污染;它不受外界条件干扰,运输更加可靠、高效。地面货车的减少同时带来巨大的外部效益,如路面损坏的修复费用,环境治理的费用,可以用于补偿地下物流系统建设的高投资。

相关主题
文本预览
相关文档 最新文档