当前位置:文档之家› 集合中的数学思想方法

集合中的数学思想方法

集合中的数学思想方法
集合中的数学思想方法

集合中的数学思想方法

数学思想是历年高考的重点。其包括:数形结合思想、等价转化思想、分类讨论思想、函数与方程思想等。下面通过例题透视集合中的数学思想。

一、数形结合思想

数形结合思想就是把抽象的数和直观的形双向联系与沟通,使抽象思想与形象思维有机地结合起来化抽象为形象,以期达到化难为易的目的。

例1已知}{

10,9,8,7,6,5,4,3,2,1=I 为全集,集合B A ,为I 的子集,且)(B C A I ?=}{

7,4,1,}{3,2)(=?B A C I ,}{10,9,8,6)()(=?B C A C I I ,那么集合A 等于( ) A }{

10,9,8,7,6,5,4,1 B }{,7,4,1 C }{,7,5,4,1 D }{,7,5,4,3,2,1 解:由于集合B A ,将全集I 划分为四个子集: )()(B C A C I I ?、

)(B C A I ?、B A C I ?)(、B A ?.所以借助于文氏图, 可迅速做出判断,如图, 易知

I =()()(B C A C I I ?)?()(B C A I ?)?(B A C I ?)()I ?(B A ?).将已知元素填入相应的集合,易知B A ?∈5.即A ∈5,且B ∈5.故应

二、等价转化思想

等价转化思想就是在解答问题时,需要对所给定的条件进行转化,只有通过转化,给定的条件才能以有效利用。

例2已知集合{}{}01,0652=+==+-=mx x B x x x A ,且A B A =?,则实数m 组成

的集合是_______.

解:{}}{3,20652==+-=x x x A

B 是A 的子集 又

B ∴是A 的真子集

Φ=∴B 或}{2=B 或}{3=B

当Φ=B 时,0=m

当}{2=B 时,012=+m 解得

21-=m 当}{3=B 时,013=+m 解得

31-=m m ∴的值组成的集合是{}31,21,0--

三、分类讨论思想 分类讨论的思想就是整体问题化为部分问题来解决,它是逻辑划分思想在解数学题中的具体运用.

例3设集合{}0232=+-=x x x A ,集合{}0432222=+-+-=p p px x x B .若B 是A 的子集,求实数p 的取值范围.

解:{}}{2

,10232==+-=x x

x A

是A

的子集 ∴B 可能为Φ、{}1、{}2或{}2,1

方程

0432222=+-+-p p px x 中, )4)(2(4---=?p p ⑴若2

p ,则0

⑵若2=p ,原方程为02422=+-x x ,}{

1=∴B 为A 的子集 ⑶若4=p ,原方程为08822=+-x x ,}{2=∴B 为A 的子集

⑷若42<

?,原方程有两个相异实根

由B 是A 的子集得}{

2,1=B ,解得3=p 综上得,当}{),4[3]2,(+∞??-∞∈p 时, B 是A 的子集

四、函数与方程思想 函数与方程思想就是将函数问题转化为方程问题,借助于二次方程的判别式列式求解。

例4设{}01),(2=--=x y y x A ,{}05224),(2=--+=y x x y x B ,=C {}b kx y y x +=),(,

是否存在N b k ∈,,使得Φ=??C B A )(,证明此结论.

解:

Φ=?∴C A 且Φ=?C B

0)1(4)12(2221<---=?∴b k bk

,01442<+-∴bk k 此不等式有解,其充要条件是016162>-b ,即12>b ①

0)25(16)1(42

2<---=?∴b k

019822<-+-∴b k k 从而208

即5.2

由①②及N b ∈,得2=b 代入由01

得?????<--<+-032018422k k k k 1=∴k

故存在自然数,1=k 2=b ,使得Φ=??C B A )( 五、运用正难则反的补集思想解题

例5已知函数

12)2(24)(22+----=p p x p x x f ,在区间]1,1[-上至少存在一个实数c 使0)(>c f ,求实数p 的取值范围.

解:运用补集概念求解

设所求p 的范围为A,则

=A C I {

222)2(24)(]1,1[p x p x x f p ---=-上函数在}01≤+-p

注意到函数的图象开口向上 {}233012)1(0932)1(22≥-≤??

???=???≤++-=-≤+--==∴p p p p p f p p f p A C I 或{}233<<-=P P A

练习题

关于x 的不等式

2)1(2)1(2

2-≤+-a a x 与++-x a x )1(320)13(2≤+a )(R a ∈的解集分别为A 和B,求使B A ?的a 的取值范围. 解:运用子集概念求解

由已知得{}122+≤≤=a x a x A , }{0)2)(13(≤---=x a x x B 当31

≤a 时,}{

213≤≤+=x a x B

对任意实数]1,2[2+∈a a x ,不等式213≤≤+x a 恒成立

???≤++≥∴211322a a a 1-=∴a 当

31>a 时, }{

213≥≥+=x a x B 此时???+≤+≥131222a a a 31≤≤∴a 综上所述,所求a 的取值范围是1-=a 或31≤≤a

中学数学中常见的数学思想有哪些

中学数学中常见的数学思想有 哪些(总4页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

中学数学中常见的数学思想有哪些? 答题内容: 1、化归的思想方法: 所谓化归思想方法又叫转换思想方法、也叫转换思想方法、也叫转化思想方法,是一种把未解决的问题或特解决的问题,通过某种方式的转化,归化到一类已经能解决或比较容易解决的问题,最终得原问题的解答的思想方法.化归思想方法的三要素:化归谁(化归对象)、化归到哪(化归目标)、怎样化归(化归方法).常见的化归方式有:已知与未知的化归、特殊与一般的化归、动与静的化归、抽象与具体的化归等. 化归思想方法的特点:是实际问题的规范化、简单化、熟悉化、模式化、直观化、正难侧反思化、以便应用已知的理论、方法和技巧到解决问题的目的.其形式如图所示: 例如方程问题转化为不等式问题:已知关于,的方程组,的解满足 ,求的取值范围. 解析:先解关于,的方程组,再把用表示的,的代数式代入不等式组中,解关于的不等式组. 2、数形结合的思想方法 所谓数形结合的思想方法是指把数学问题用数量关系与图形结合起来解答数学问题. 数形结合的思想方法的特点:数→形→问题的解答;形→数→问题的解答;数形,问题的解答. 例如:如图所示、在数轴上的位置,请化简 + 的结果是: 3、分类讨论的思想方法 所谓分类讨论的思想方法是指根据所研究的问题的某种相同性和差异性将它们分类来进行研究的思想方法. 分类讨论的思想方法的特点:分类不能重复也不能遗漏;同一次分类时,标准须相同;分类须有一定的范围,不能超范围. 例如:三角形按边分类方法:三角形可分为不等边三角形、等腰三角形,等腰三角形又可分为等边三角形、底边和腰不相等的等腰三

常用的数学教学方法有哪些

常用的数学教学方法有哪些 常用的数学教学方法有以下几种: 一、自主探究式学习法 自主探索是让学生自主学习、自主探索、自主研究的一种课堂教学模式,充分体现了 学生的主体地位。在新课程标准实施以来在各学科都应用得较为广泛,且在教学中能更好 地激发学生的学习积极性、主动性,让学生自己去探讨新知识的来由并研究其特征,探索 其在实际生活中的应用价值。锻练了学生的思维能力、理解能力,增强了学生学好数学的 自信心。学生会把自主学习结果看成是一种成功,从而产生一种成就感和喜悦感,激发了 学生对整个学习过程的坚强自信心和自主探索、自觉钻研的兴趣,培养创新精神。使学生 明白数学中看似深奥的知识,只要积极探索,认真思考就能很快解决。数学来源于生活, 又更好地应用于生活。 二、小组讨论学习法 这种模式以学生为主,让学生分组共同协作商量和讨论教师提出的问题,与教师形成 一种互动的方式,小组讨论有利于培养学生集体主义思想,课堂上小组讨论有利于在学习 数学的过程中分类思想、综合思维能力、理解能力的培养。同时也能培养学生与学生、学 生与教师相互交流的能力,能增进同学之间、师生之间的感情,通过小组讨论可从多角度 获得解题思路和思维途径,往往是讨论和交流融为一体,在讨论中理解,在交流中加深印象。这样可以增强课堂教学效果,比教师直接讲授要好得多,对学生的学习起到推动作用,教师也能从中得出意想不到的收获。 三、发现式学习方法 发现式学习方法是继自主探索式学习法、小组讨论学习法之后的又一种以学生为主体 的教学模式和方法,通过阅读教材来发现新知识、发现新问题、发现新的解题思路和解题 方法、发现数学规律、发现学生容易出问题的地方。这样学生对新的知识有一种优先掌握 的心理,且学生对自己所发现的知识、问题、思路和方法有较深刻的印象,对学生掌握知 识很重要,找到了发现知识的渠道。有时候,还可能会使学生突发奇想,象某些数学家一 样提出一些稀奇古怪的数学问题。还会促进学生学习数学的学习积极性,有利于提高课堂 教学的质量。 四、演示与表演学习法 演示教学法是数学教学乃至所有学科的教学最基本的、最普遍使用的一种模式。主要 是教师演示课堂教学内容和讲述新的知识内容。有的教学内容无需学生去进行探究和发现,如定义、概念和公理等。这些内容我们都是直接讲述或借助教学用具进行演示或说明理论 知识的形成。 五、寓教于乐的游戏学习法

在小学数学教学中如何渗透集合思想的几点做法

在小学数学教学中如何渗透集合思想的几点做法 集合是近代数学中的一个重要概念。集合思想是现代数学思想向小学数学渗透的重要标志,在解决某些数学问题时,若是运用集合思想,可以使问题解决得更简单明了。集合论的创始人是德国的数学家康托(1845——1918),其主要思想方法可归结为三个原则,即概括原则、外延原则、一一对应原则。自集合论创立以来,它的概念、思想和方法已经渗透到现代数学的各个分支中,成为现代数学的基础。瑞士数学家欧拉(1707——1787)最早使用了表示两个非空集之间的关系的图,现称欧拉图。英国数学家维恩最早使用了另一种图即可以用于表示任意的几个集合(不论它们之间的关系如何,都可以画成同一样式),又称“维恩图”,用维恩图表示集合,有助于探索某些数学题的解决思路。 布鲁纳曾说,掌握基本的数学思想方法能使数学更易于理解和记忆,领会基本数学思想方法是通向迁移大道的“光明之路”。数学思想方法不但对学生学习具有普遍的指导意义,而且有利于学生形成科学的思维方式和思维习惯。 集合思想包括概念、子集思想、交集思想、并集思想、差集思想、空集思想、一一对应思想等,作为数学思想方法的一种,在教学中是具有很大的指导意义的。那么,在小学数学教学中我们应该如何应用集合思想进行教学活动呢? 一、集合概念在小学数学教学中的应用

集合思想的概念在教学中是不必向学生作解释的,教师主要指导学生看懂集合图的意思,会根据集合图来解题或者帮助解题。图形本身直观地应用了集合的表示方法——图示法,因此在小学低年级中运用这个方法对于教学是很有帮助的。 在认数教学中,教师要结合各种集合图,可以是选用书本上的,也可以是选用一些生活中常见的事物自己画。同时还可以反过来给学生一个数字,让学生画集合图,这样既可以让学生开动脑筋发挥自己的想象,也可以让学生更了解集合中的元素与基数概念的联系。 在日常教学中,教师还要让学生理解一些用来描述集合的常用术语,如“一些”、“一堆”、“一组”、“一群”等。比如说,在小学数学教材北师大版一年级(上册)的第四单元分类中,就出现了这么一张图,让学生观察,要求把玩具放一堆,文具放一堆,服装鞋帽放一堆,这种把具有同一种属性的东西放在一起,这就是集合的整体概念。 在认识0-10的十一个数字中,每个数字都有一张相应的集合图,也就是告诉学生,一个集合中有几个元素就用“几”来表示。如北师大版一年级(上册)第4页找一找的活动中“1”可以表示图里的一座房子;“2”可以表示图里的两个人。这就很形象的把集合中的元素与基数的概念有机的联系起来。 二、子集、交集、并集、差集、空集思想在小学数学教学中的应用 1、子集思想在小学数学教学中的应用 教学数的大小这一问题时,就可以应用子集思想。如北师大版二

论文:数学思想方法

数学思想方法 河南省虞城县李老家乡第二初级中学;高华增数学思想方法一般是指人们在数学的发生、形成、发展过程中总结概括出来的数学规律的本质认识,是利用数学知识去解决问题的思维策略和指导思想,它为数学知识的学习和运用提供了方向,是解决数学问题的“向导”,数学思想的产生并作用于数学学习的整个过程中,尤其是在解决复杂的综合题时,数学思想的合理运用起着关键性的决定作用,数学思想方法是数学思想的具体体现,不仅是学习和运用数学知识的解决数学问题应具备的、最基本的思想方法.而且是新课标改革的方向和中考试题解题特征 常见的数学思想方法有:化归思想方法、数形结合思想方法、分类讨论思想方法、数学建模思想方法、方程思想方法、函数思想方法、整体思想方法,对此类问题的突破,方法具体如下: 类型一:化归思想方法:重难点突破:解决问题的基本思想就是化未知为已知,把复杂的问题简单化,把生疏的问题熟悉化,把实际问题数学化,不同的数学问题相互转化,也体现了把不易解决的问题转化为有章可循,容易解决的问题的思想

【例1】 如下图中每个阴影部分是以多边形各顶点为圆心,1为半径 的扇形,并且所有多边形的每条边都大于2,则第n 个多边形中,所有扇形面积之和是______.(结果保留π) 分析:本题考察了扇形面积和n 边形内角和公式,解题关键是:是求第n 个图形中(n +2)个半径为1的扇形的面积之和 解析:[]ππ2n 1802-2)(n 3601S 2 =?+?=,答案;π2 n

类型二:数形结合: 重难点突破: 根据数学问题的题设和结论之间的内在联系,分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙结合,充分利用这种结合探究解题思路,使问题得以解决; 【例2】(09重庆)如图,在矩形ABCD 中,A B =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△ABP 的面积S 与点P 运动的路程x 之间的函数图象大致是 ( ) 分析:本题考查点是运动变化为前提,根据几何图形的面积变化特征,通过分段讨论,确立相应函数关系,进而确定函数图象,这是一道典型的数形结合与分类讨论的综合题,是这几年中招试题常见题型,解题关键是能否充分利用分类的讨论思想,难点是能否把所有情况分别讨论,很多同学因考虑不全而丢分. 解析:当点P 在BC 上时,即0<x ≤1时 x x 2PB AB S 2121PAB =??=?=? 当点P 在CD 上时,即1<x ≤3时

几种重要的数学思想方法

几种重要的数学思想方法 韩晓荣 数学思想方法是数学学科的精髓,是数学素养的重要内容之一,学生只有领会了数学思想方法,才能有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。 《数学课程标准》在对初中阶段的教学建议中要求“对于重要的数学思想方法应体现螺旋上升的、不断深化的过程,不宜集中体现”。这就要求我们教师能在实际的教学过程中不断地发现、总结、渗透数学思想方法。 一、化归思想, 所谓“化归”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。我们也常把它称之为“转化思想”。例如:解分式方程转化为解整式方程,解“二元”方程转化为解“一元”方程,解多边形问题转化为解三角形问题等等。 二、数形结合的思想方法 数形结合思想是指将数与图形结合起来解决问题的一种思维方式。著名的数学家华罗庚曾经说过:“数缺形时少直观,形少数时难入微。”这就是在强调把数和形结合起来考虑的重要性。在教材《有理数》里面用数轴上的点来表示有理数,就是最简单的数形结合思想的体现。 三、分类讨论的思想方法 在渗透分类讨论思想的过程中,我认为首要的是分类。比如在《有理数》研究相反数、绝对值、有理数的乘法运算的符号法则等都是按有理数分成正数、负数、零三类分别研究的:在《平面图形的认识》一章中,用分类讨论思想进行了角的分类、点和直线的位置关系的分类、两条直线位置关系的分类。这种思想方法主要可以避免漏解、错解。 四、方程思想 方程思想指借助解方程来求出未知量的一种解题策略。我们知道方程是刻画现实世界的一个有效的数学模型。所以方程思想实际上就是由实际问题抽象为方程过程的数学建模思想。例如利用一元一次方程,一元二次方程能解决好多实际问题。 五、从特殊到一般的思想方法

小学数学中常见的几种数学思想方法

小学数学中常见的几种数学思想方法 我们的教学实践表明:小学数学教育的现代化,主要不是内容的现代化,而是数学思想及教育手段的现代化,加强数学思想的教学是基础数学教育现代化的关键。所谓数学思想,是指人们对数学理论与内容的本质认识,它直接支配着数学的实践活动。所谓数学方法,是指某一数学活动过程的途径、程序、手段。数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段。以上合称为数学思想方法。一、小学数学教学中渗透数学思想方法的必要性小学教学教材是数学教学的显性知识系统,数学思想方法是数学教学的隐性知识系统。许多重要的法则、公式,教材中只能看到漂亮的结论,许多例题的解法,也只能看到巧妙的处理,而看不到由特殊实例的观察、试验、分析、归纳、抽象概括或探索推理的心智活动过程。虽然数学知识本身是非常重要的,但是它并不是唯一的决定因素,真正对学生以后的学习、生活和工作长期起作用,并使其终生受益的是数学思想方法。因此,向学生渗透一些基本的数学思想方法,是数学教学改革的新视角,是进行数学素质教育的突破口。二、在小学数学课堂中如何运用数学思想方法 1.符号思想用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学的内容,这就是符号思想。符号思想是将复杂的文字叙述用简洁明了的字母公式表示出来,便于记忆,便于运用。把客观存在的事物和现象及它们相互之间的关系抽象概括为数学符号和公式,有一个从具体到表象再抽象的过程。在数学中各种量的关系,量的变化以及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式来表达大量的信息。例1:“六一”联欢会上,小明按照3个红气球、2个黄气球、1个蓝气球的顺序把气球串起来装饰教室。你能知道第24个气球是什么颜色的吗?解决这个问题可以用书写简便的字母a、b、c分别表示红、黄、蓝气球,则按照题意可以转化成如下符号形式:aaabbc aaabbc aaabbc……从而可以直观地找出气球的排列规律并推出第24个气球是蓝色的。这是符号思想的具体体现。 2.化归思想化归思想是数学中最普遍使用的一种思想方法,其基本思想是:把甲问题的求

高考数学常用数学方法

高考数学常用数学方法 SANY GROUP system office room 【SANYUA16H-

第8讲 高考中常用数学的方法 ------配方法、待定系数法、换元法 一、知识整合 配方法、待定系数法、换元法是几种常用的数学基本方法.这些方法是数学思想的具体体现,是解决问题的手段,它不仅有明确的内涵,而且具有可操作性,有实施的步骤和作法. 配方法是对数学式子进行一种定向的变形技巧,由于这种配成“完全平方”的恒等变形,使问题的结构发生了转化,从中可找到已知与未知之间的联系,促成问题的解决. 待定系数法的实质是方程的思想,这个方法是将待定的未知数与已知数统一在方程关系中,从而通过解方程(或方程组)求得未知数. 换元法是一种变量代换,它是用一种变数形式去取代另一种变数形式,从而使问题得到简化,换元的实质是转化. 二、例题解析 例1.已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为( ). (A )32 (B )14 (C )5 (D )6 分析及解:设长方体三条棱长分别为x ,y ,z ,则依条件得: 2(xy +yz +zx )=11,4(x +y +z )=24.而欲求的对角线长为222z y x ++,因此需将对称式 222z y x ++写成基本对称式x +y +z 及xy +yz +zx 的组合形式,完成这种组合的常用手段是 配方法.故)(2)(2222xz yz xy z y x z y x ++-++=++=62-11=25 ∴ 5222=++z y x ,应选C .

例2.设F 1和F 2为双曲线14 22 =-y x 的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°,则ΔF 1PF 2的面积是( ). (A )1 (B ) 2 5 (C )2 (D )5 分析及解:欲求||||2 1 2121PF PF S F PF ?= ? (1),而由已知能得到什么呢? 由∠F 1PF 2=90°,得20||||2221=+PF PF (2), 又根据双曲线的定义得|PF 1|-|PF 2|=4 (3),那么(2)、(3)两式与要求 的三角形面积有何联系呢?我们发现将(3)式完全平方,即可找到三个式子之间的关系.即16||||2||||||||||212221221=?-+=-PF PF PF PF PF PF , 故2421)16|||(|21||||222121=?=-+=?PF PF PF PF ∴ 1||||2 1 2121=?=?PF PF S F PF ,∴ 选(A ). 注:配方法实现了“平方和”与“和的平方”的相互转化. 例3.设双曲线的中心是坐标原点,准线平行于x 轴,离心率为2 5 ,已知点P (0,5)到该双曲线上的点的最近距离是2,求双曲线方程. 分析及解:由题意可设双曲线方程为122 22=-b x a y ,∵25=e ,∴a =2b ,因此所求双 曲线方程可写成:2224a x y =- (1),故只需求出a 可求解. 设双曲线上点Q 的坐标为(x ,y ),则|PQ |=22)5(-+y x (2),∵点Q (x ,y )在双曲 线上,∴(x ,y )满足(1)式,代入(2)得|PQ |=222)5(44-+-y a y (3),此时|PQ |2 表示为 变量y 的二次函数,利用配方法求出其最小值即可求解. 由(3)式有4 5)4(45||22 2 a y PQ -+-=(y ≥a 或y ≤-a ).

整体的思想方法

整体的思想方法 一、知识要点概述 解数学题时,人们往往习惯于从问题的局部出发,将问题分解成若干个简单的子问题,然后再各个击破、分而治之.但思考方法并非对所有题目都适用,它常常导致某些题解题过程繁杂、运算量大,甚至半途而废.其实,有很多数学问题,如果我们有意识地放大考察问题的“视角”,往往能发现问题中隐含的某个“整体”,利用这个“整体”对问题实施调节与转化,常常能使问题快速获解.一般地,我们把这种从整体观点出发,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题思想方法,称为整体思想方法. 在数学思想中整体思想是最基本、最常用的数学思想。它是通过研究问题的整体形式、整体结构,并对其进行调节和转化使问题获解的一种方法.简单地说就是从整体去观察、认识问题、从而解决问题的思想。运用整体思想,可以理清数学学习中的思维鄣碍,可以使繁难的问题得到巧妙的解决。它是数学解题中一个极其重要而有效的策略,是提高解题速度的有效途径。 高考中,整体思想方法是一个重点考查对象,在选择题、填空题、解答题中都有不同层次的渗透。 二、解题方法指导 1.运用整体的思想方法解题,要有强烈的整体意识,要认真分析问题的条件或结论的表达形式、内部结构特征,不拘泥于常规,不着眼于问题的各个组成部分,从整体上观察,从整体上分析,从整体结构及原有问题的改造、转化入手,寻找解题的途径。 2.运用整体的思想方法解题,在思维方向上,既有正向的,也有逆向的;在思维形态上,既有集中的,也有发散的,既有直观的,也有抽象的。 3.运用整体的思想方法解题,常与换元法结合起来,对题目进行整体观察、整体变形、整体配对、整体换元、整体代入,在运用整体的思想进行转化问题时一定要注意等价性。 三、整体的思想方法主要表现形式 1、整体补形 【例1】甲烷分子(CH4)由一个碳原子和四个氢原子组成,其空间构型为一个各条棱都相等的四面体,其中四个氢原子分别位于该四面体的四个顶点上,碳原子位于该四面体的中心,它与每个氢原子的距离都相等.若视氢原子、碳原子为一个点,四面体的棱长为a,求碳原子到各个氢原子的距离. 思路:透过局部→整体补形→构建方程

中小学数学很重要的20种常见思想方法

中小学数学很重要的20种常见思想方法 1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。 2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 4、符号化思想方法 用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。 5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟般自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

小学数学中常见的数学思想方法有哪些.

小学数学中常见的数学思想方法有哪些? 1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。 2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 4、符号化思想方法 用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化

及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。 5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

初中数学中的主要数学思想方法

初中数学中的主要数学思想方法 初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等. (1) 转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容 易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、 陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题. 初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形 的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用 的最为广泛.

(2) 数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究 是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数” ) 与直观的图象(“形“ ) 结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”, 以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形” 两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用. 譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的 应用.再比如,用数形结合的思想学习相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显著降低了学习难度. (3) 分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的 种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、

教学中常用的几种数学思想方法

教学中常用的几种数学思想方法 数形结合思想:数和式是问题的抽象和概括、图形和图像是问题的具体和直观的反映。华罗庚先生说得好:“数缺形时少直观,形少数时难入微,数形结合百般好。”这句话阐明了数形结合思想的重要意义。 初中代数教材列方程解应用题所选例题多数采用数形结合中的图示法,教学过程中利用图形的直观性和具体性,引导学生从图形上发现数量关系找出解决问题的突破口。学生掌握了这一思想要比掌握一个公式或一种具体方法更有价值,对解决问题更具有指导意义。 再如在讲“圆与圆的位置关系”时,可自制圆形纸板,进行运动实验,让学生首先从形的角度认识圆与圆的位置关系,然后可激发学生积极主动探索两圆的位置关系反映到数上有何特征。这种借助于形通过数的运算推理研究问题的数形结合思想,在教学中要不失时机地渗透;这样不仅可提高学生的迁移思维能力,还可培养学生的数形转换能力和多角度思考问题的习惯。 方程思想:众所周知,方程思想是初等代数思想方法的主体,应用十分广泛,可谓数学大厦基石之一,在众多的数学思想中显得十分重要。 所谓方程思想,主要是指建立方程(组)解决实际问题的思想方法。教材中大量出现这种思想方法,如列方程解应用题,求函数解析式,利用根的判别式、根于系数关系求字母系数的值等。 在教学中有意识的引导学生发现等量关系从而建立方程。如讲“利用待定系数法确定二次函数解析式”时,可启发学生去发现确定解析式的关键是求出各项系数,可把他们看成三个“未知量”,告诉学生利用方程思想来解决,那学生就会自觉的去找三个等量关系建立方程组。在这里如果单讲解题步骤,就会显得呆板、僵硬,学生只知其然,不知其所以然。与此同时,还要注意渗透其他与方程思想有密切关系的数学思想,诸如换元,消元,降次,函数,化归,整体,分类等思想,这样可起到拨亮一盏灯,照亮一大片的作用。 辩证思想:辩证思想是科学世界观在数学中的体现,是最重要的数学思想之一。自然界中的一切现象和过程都存在着对立统一规律,数学中的有理数和无理数、整式和分式、已知和未知、特殊和一般、常量和变量、整体和局部等同样蕴涵着这一辩证思想。 教学时,应有意识地渗透。如初三《分式方程》一节,就体现了分式方程与整式方程的对立统一思想,教学时,不能只简单介绍分式方程的概念和解法,而要渗透上述思想,我们可以从复习整式和分式的概念出发,然后依据辩证思想自然引出分式方程,接着带领学生领会两个概念的对立性(非此即彼)和统一性(统称有理方程),再利用未知与已知的转化思想启发学生说出分式方程的解题基本思想,从而发现两种方程在解法上虽有不同,但却存在内在的必然联系。

数学有哪些常用的教学方法

数学有哪些常用的教学方法 传统教学方法 一、重学习环境,让学生参与数学教学 在讨论课上教师精心设计好讨论题,进行有理有据的指导,学生之间进行讨论研究。 二、重问题情境,让学生亲近数学 在数学教学中,教师要精心创设问题情境,激起学生对新知学习的热情,拉近学生与 新知的距离,让学生亲近数学。 三、重动手操作,让学生体验数学 教师将数学教学设计成看得见,摸得着的物化活动,让学生对十分抽象的知识获取清 晰的认识和理解,而且学生通过动手操作后获得的体验是非常深刻的。 四、重自主探索,让学生“再创造”数学 当学生对某种感兴趣的事物产生疑问并急于了解其中的奥秘时,教师不能简单地把自 己知道的知识直接传授给学生,而应该充分相信学生的认知潜能,鼓励学生自主探索,积 极从事观察、实验、猜测、推理、交流等数学活动,去大胆地“再创造”数学。 五、重生活应用,让学生实践数学 在教学中,教师应经常让学生运用所学知识去解决生活中的实际问题,使学生在实践 数学的过程中及时掌握所学知识,如用数学知识去解释三角形的稳定性、平行四边形的不 稳定性、圆的旋转不变性等等。 小学生数学学习方法 1、抓住课堂 理科注重是平时的学习,不适于突击复习。老师所讲的每一堂课里都要聚精会神,认 真听讲,紧跟老师的思路。多听多记老师所讲的数学思想、学习方法。千万不要被某一道 题局限了思维。例如“化归思想”、“数形结合”等思想方法远重要于某道题目的解答。 2、高质量完成作业 所谓高质量是指高正确率和高速度。 写作业时,有时同一类型的题重复练习,这时就要有意识的去考察速度和准确率,并 且在每做完一次时能够对此类题目有更深层的思考。如考察它的内容,运用数学思想方法,解题的规律、技巧等。另外对于老师布置的思考题也要认真完成。如果不会决不能轻易放

集合运算中蕴涵的数学思想方法

集合运算中蕴涵的数学思想方法 江苏省姜堰中学 张圣官 (225500) 2003年教育部颁布的《普通高中数学课程标准》中,特别提到“强调本质,注意适度形式化”,其中写道“要使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的数学思想方法”。在数学教育的各个环节中渗透数学思想方法,不仅具有提高教学效果的近期功效,而且具有优化学生的认知结构、进而全面提高学生数学素质的远期功效,这已经成了大家的共识。然而,对数学材料本身所蕴涵的数学思想方法进行挖掘和提炼,并在数学解题中加以运用和完善,这一方面还需要我们进行探索与研究。本文拟就集合的交、并、补集运算中所蕴涵的数学思想方法作一点说明。 1.交集思想方法 假设有两个集合A 和B ,A={x|x 具有性质P 1},B={x|x 具有性质P 2},则A ∩ B ={x|x 具有性质P 1和P 2}。在研究同时具有性质P 1和P 2的对象时可以考虑运用交集思想方法。从哲学意义上讲,A 和B 反映的是个性,A ∩ B 反映的是共性,而A ∩ B ?A 和A ∩ B ?B 则表明共性存在于个性之中这一基本原理。 例1设A={(x ,y )|x=m,y=3m+1,m ∈N + },B={(x ,y )|x=n,y=a(n 2-n+1),n ∈N + },问 是否存在非零整数a 使得A ∩ B ≠Φ?证明你的结论。 分析:集合A 、B 可化简为A={(x ,y )|y=3x+1,x ∈N +},B={(x ,y )|y=a(x 2-x+1),x ∈N + }。 本题是探索性问题,先假设a 存在,然后开始研究。 简解:要使A ∩ B ≠Φ,即A 、B 有共同的元素,只要方程组?? ?+-=+=)1(132x x a y x y 至少有一组正整数解,也即是方程ax 2-(a+3)x+a-1=0至少有一个正整数解。 ∵a ≠0且a ∈Z , 由⊿≥0,得3a 2-10a-9≦0,∴313253132 5+-≤≤a , ∴a=1,2,3,4 。 经检验,a=1,4符合题意;a=2,3不符合。 ∴存在a=1或4 ,使得A ∩ B ≠Φ 。 评注:本题如果将A 、B 视为点集,那么问题就化归为求直线与抛物线的交点中是否存在整点的问题令人望而生畏。以上解法利用交集思想方法,从共性入手,从而由A 、B 的共性使问题获得了优解。 例2已知n 是同时满足以下两个条件的最小正整数:①是15的倍数;②各个数位上的数字都是0或8 。试求n 。 解:设A={15的倍数},B={各个数位上数字都是0或8的正整数},则所求的n 即为 A ∩B 中的最小元素。 ∵A={3的倍数}∩{5的倍数}={数字和是3的倍数的整数}∩{个位数是0或5的整数}, ∴A ∩B={个位数字是0,其余各个数位上是0或8,且8的个数是3的倍数的正整数}。 由n 是A ∩B 中最小的数即知,n=8880 。 2.并集思想方法 有些数学问题牵涉若干个体,如果用孤立静止的观点来考虑问题,则或过于繁冗或难以奏效。如果在挖掘各个个体间隐含的某种关系的基础上将各个个体合并(取并集)为一个有机整体进行处理,则往往会出奇制胜,这就是并集思想方法。从哲学意义上讲,这种合并可

常用的数学思想和方法

不怕难题不得分,就怕每题扣点分! 常用的数学思想和方法 一.数学思想:1.数形结合的思想;2.分类与整合的思想;3.函数与方程的思想;4.转化与化归的思想; 5.特殊与一般的思想;6.有限与无限的思想;7.或然与必然的思想;8.正难则反的思想.二.数学基本方法:配方法、换元法、反证法、割补法、待定系数法;分析法、比较法、综合法、归纳法、观察法、定义法、等积法、向量法、解析法、构造法、类比法、放缩法、导数法、参数法、消元法、不等式法、判别式法、数形结合法、分类讨论法、数学归纳法、分离参数法、整体代换、正难则反、设而不求、设而求之.【解题时:方法多,思路广,运算准,化简快.】 三.数学逻辑方法:分析与综合、归纳与演绎、比较与类比、具体与抽象等.【也称数学思维方法.】 四.选择题的方法:四个选项有极大的参考价值!千万不要小题大做! ①求解对照法(直接法);②逆推代入法(淘汰法);③数形结合法(不要得意忘形);④特值检验法(定值问题); ⑤特征分析法(针对选项);⑥合理存在性法(针对选项);⑦逻辑分析法(充要条件);⑧近似估算法(可能性).五.填空题的方法:①直接法;②特例法(定值问题);③数形结合法;④等价转化法. 六.熟练掌握数学语言的三种形式:自然语言、符号语言、图形语言的相互转化. 七.计算与化简:这是一个值得十分注意的问题!平时的训练中,要多思考如何快速准确的计算和熟练的化简!八.学会自学!课堂上不可能把所有的题型都讲到!所以要多看例题,多思考!看之前一定要想自己会怎么做! 怎么看:一看解题思路【看完后要归纳步骤、总结方法】,二看规范表达【尽量学会使用数学语言、符号】.学会总结归类:①从数学思想上归类;②从知识应用上归类;③从解题方法上归类;④从题型类型上归类. 【特别提醒】 1.一道题有没有简便解法,关键就在于你能不能发现其中的一些条件的特殊性,并能加以灵活运用!(灵机一动)【转化、联想、换元等,另外,解题时有时对一些细节的处理也很关键,会起到峰回路转、柳暗花明的作用.】2.解函数、解析几何、立体几何的客观题,应特别注意数形结合思想的运用!但在解答题中,不能纯粹只凭借图象来解答问题;图象只起到帮助找到解题思路的作用【图象尽量画准,甚至在有时给出图象时也需要自己重新准确画一遍】;解题过程还是要进行严谨的理论推导【用数学语言表达】,不能纯粹以图象代替推理、证明.3.转化数量关系时,若是写不等式,则要注意是否可以取“”.特别是求取值范围时,端点一定要准确处理.4.平常做解答题应该做完整:解题过程的表达是否流畅、简洁.否则到考试时,还需为如何组织语言表达去思考而耽误时间.这是平时训练值得注意的【条理分明、言简意赅、字迹工整】!表达也是思维的一部分! 5.在解答题中,某些局部问题解答过程的书写的详略,取决于整个解题书写过程的长短:长则略写,可用易证、易知等字眼;短则详写.如果要应用教材中没有的重要结论,那么在解题过程中要给出简单的证明. 6.在设置有几问的解答题中,后面问题的解决有时候依赖于如何灵活运用前面已解决的问题的结论.有些解答题某一问貌似与前面无关,实则暗【明】示你必须把它与前面联系起来,才能解决问题. 7.平常要多积累解题经验和解题技巧.熟记一些数学规律和数学小结论对解题也是很有帮助的. 8.数学总分上不上得去,很大程度上取决于选择题、填空题得分高不高.而选择题、填空题更注重对基础知识,基本数学思想、方法和技能的全面考察.因此,要熟练掌握解选择题、填空题的特有方法:在解选择题或填空题时,优秀的解题方法更显得重要.建议每天做一份选择、填空题,花大力气提高解选择、填空题的准确率和速度.【注意:选择题的四个选项中有且只有一个是正确的,是一个需要特别重视的已知条件.】 9.可以在专门的笔记本上,收集作业、考试中的错题,学习中遇到的经典题,便于日后考前复习巩固. ⒑作业本上的错题、试卷上的错题一定要及时更正!做错了不可怕,可怕的是做错了不去纠正!

初中常见数学计算方法

1、C列分数化小数的记法:分子乘5,小数点向左移动两位。 2、D、E两列分数化小数的记法:分子乘4,小数点向左移动两位 常见分数、小数互化表

常见的分数、小数及百分数的互化 常见立方数

错位相加/减 A×9型速算技巧:A×9= A×10-A; 例:743×9=743×10-743=7430-743=6687 A×型速算技巧:A×= A×10+A÷10; 例:743×=743×10-743÷10== A×11型速算技巧:A×11= A×10+A; 例:743×11=743×10+743=7430+743=8173 A×101型速算技巧:A×101= A×100+A; 例:743×101=743×100+743=75043 乘/除以5、25、125的速算技巧: A×5型速算技巧:A×5=10A÷2; 例:×5=×10÷2=÷2= A÷5型速算技巧:A÷5=×2; 例:÷5=××2=×2= A×25型速算技巧:A×25=100A÷4; 例:7234×25=7234×100÷4=723400÷4=180850 A÷25型速算技巧:A÷25=×4; 例:3714÷25=3714××4=×4= A×125型速算技巧:A×5=1000A÷8; 例:8736×125=8736×1000÷8=8736000÷8=1092000

A÷125型速算技巧:A÷1255=×8; 例:4115÷125=4115××8=×8= 减半相加: A×型速算技巧:A×=A+A÷2; 例:3406×=3406+3406÷2=3406+1703=5109 “首数相同尾数互补”型两数乘积速算技巧: 积的头=头×(头+1);积的尾=尾×尾 例:23×27=首数均为2,尾数3与7的和是10,互补 所以乘积的首数为2×(2+1)=6,尾数为3×7=21,即23×27=621 本方法适合 11~99 所有平方的计算。 11X11=121 21X21=4141 31X31=961 41X41=1681 12X12=148 22X22=484 32X32=1024 42X42=1764 52X52=2704 从上面的计算我们可以得出公式: 个位=个位×个位所得数的个位,如果满几十就向前进几, 十位=个位×(十位上的数字×2)+进位所得数的末位,如果满几十就向前进几,百位=两个十位上的数字相乘+进位。 例:26×26= 个位=6×6=36,满 30 向前进 3; 十位=6×(2×2)+3=27,满 20 向前=进 2; 百位=2×2+2=6 由此可见 26×26=676 23×23 个位=3×3=9 十位=3×(2×2)=12,写 2 进 1 百位=2×2+进 1=5 所以 23×23=529 46×46 个位=6×6= 36,写6进3 十位=6×(4×2)+进 3= 5 1,写 1 进 5 百位=4×4+进 5= 21,写 1 进 2

小学数学思想方法的梳理集合思想

小学数学思想方法的梳理(集合思想) 课程教材研究所王永春 十二、集合思想 1. 集合的概念。 把指定的具有某种性质的事物看作一个整体,就是一个集合(简称集),其中每个事物叫做该集合的元素(简称元)。给定的集合,它的元素必须是确定的,即任何一个事物是否属于这个集合,是明确的。如“学习成绩好的同学”不能构成一个集合,因为构成它的元素是不确定的;而“语文和数学的平均成绩在90分及以上的同学”就是一个集合。一个给定集合中的元素是互不相同的,即集合中的元素不重复出现。只要两个集合的元素完全相同,就说这两个集合相等。 集合的表示法一般用列举法和描述法。列举法就是把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法。描述法就是在花括号内写出规定这个集合元素的特定性质来表示集合的方法。列举法的局限性在于当集合的元素过多或者有无限多个时,很难把所有的元素一一列举出来,这时描述法便体现出了优越性。此外,有时也可以用封闭的曲线(文恩图)来直观地表示集合及集合间的关系,曲线的内部表示集合的所有元素。 一一对应是两个集合之间元素(这种元素不一定是数)的一对一的对应,也就是说集合A中的任一元素a,在集合B中都有唯一的元素b与之对应;并且在集合B中的任一元素b,在集合A中也有唯一的元素a与之对应。数集之间可以建立一一对应,如正奇数集合和正偶数集合之间的元素可以建立一一对应。其他集合之间也可以建立一一对应,如五(1)班有25个男生,25个女生,如果把男生和女生各自看成一个集合,那么这两个集合之间可以建立一一对应;再如,中国、美国、俄罗斯、英国、法国、德国作为一个集合,北京、华盛顿、莫斯科、伦敦、巴黎、柏林作为一个集合,这两个集合之间也可以建立一一对应。 2. 集合思想的重要意义。 集合理论是数学的理论基础,从集合论的角度研究数学,便于从整体和部分及二者的关系上研究数学各个领域的知识。如数系的扩展,从小学的自然数到整数,再到中学的有理数、无理数和实数,都可以从集合的角度来描述。有时用集合语言来表述有关概念更为简洁,如全体偶数的集合可表示为{x|x=2k,k∈Z}。集合沟通了代数(数)和几何之间的关系,如y = kx ,既是正比例函数,又可以表示一条直线;也就是说在平面直角坐标系上,这条直线是由满足y = kx 的有序实数对所组成的点的集合。用集合图描述概念的分类及概念之间的关系,往往层次分明、直观清晰,如四边形的分类可以用文恩图表示。 3.集合思想的具体应用。 集合思想在小学数学的很多内容中进行了渗透。在数的概念方面,如自然数可以从对等集合基数(元素的个数)的角度来理解,再如在一年级通过两组数量相等的实物建立一一对应,让学生理解“同样多”的概念,实际上就是两个对等集合的元素之间建立一一对应;数的运算也可以从集合的角度来理解,如加法可以理解为两个交集为空集的集合的并集,再如求两数相差多少,通过把代表两数的实物图或直观图一对一地比较,来帮助学生理解用减法计算的道理;实际上就是把代表两数的实物分别看作集合A、B,通过把A的所有元素与B的部分元素建立一一对应,然后转化为求B与其子集(与A等基)的差集的基数。此外,在小学数学中还经常用集合图表示概念之间的关系,如把所有三角形作为一个整体,看作一个集合,记为A;把锐角三角形、直角三角形和钝角三角形各自看作一个集合,分别记为B、C、D,这三个集合就是集合A的三个互不相交的子集,B、C、D的并集就是A。再如在学习公因数和公倍数时,都是通过把两个数各自的因数和倍数分别用集合图表示,再求两个集合的交集,直观地表示了公因数和公倍数的概念。4.集合思想的教学。 集合思想在小学数学中广泛渗透,在教学中应注意以下几个问题。 第一,应正确理解有关概念。我们知道,两个数之间可以比较大小,但是两个集合之间无法直接比较大小,也就是说一般不说两个集合谁大谁小。如有两个集合A、B,当且仅当它们有完全相同的元素时,称A、B

相关主题
文本预览
相关文档 最新文档