当前位置:文档之家› 大涡模拟市介于直接数值模拟

大涡模拟市介于直接数值模拟

大涡模拟市介于直接数值模拟
大涡模拟市介于直接数值模拟

大涡模拟市介于直接数值模拟(DNS)与Reynolds平均法之间的一种湍流数值模拟方法。随着计算机硬件条件的快速提高,对大涡模拟的研究与应用呈明显上升趋势。

基本思想

湍流包含有一系列大大小小的涡团,涡的尺度范围相当宽广。为了模拟湍流流动,我们总是希望计算网格的尺度小道足以分辨最小涡的运动。

我们还知道,系统中动量、质量、能量及其他物理量的输运,主要由大尺度涡影响。大尺度涡与所求解的问题密切相关,由几何及边界条件所规定,各个大尺度涡的结构是互不相同的。而小尺度涡几乎不受几何及边界条件影响,不像大尺度涡那样与所求解的特定问题密切相关。小尺度涡趋于各向同性,其运动具有共性。因此,目前只能放弃对全尺度范围上涡的瞬时运动的模拟,只将比网格尺度大的湍流运动通过瞬时Navier-Stokes方程直接计算出来,而小尺度涡对大尺度涡运动的影响则通过一定的模型在针对大尺度涡的瞬时Navier-Stokes中体现出来,从而形成了目前的大涡模拟方法(LES)

要实现大涡模拟,有两个重要环节的工作必须完成。首先是建立一种数学滤波函数,从湍流瞬时运动方程中将尺度比滤波函数的尺度小的涡滤掉,从而分解出描写大涡流场的运动方程,而这时被滤掉的小涡对大涡运动的影响,则通过在大涡流场的运动方程中引入附加应力项来体现。该应力项称为亚格子尺度应力。而建立这一应力项的数学模型,就是要完成的第二个环节的工作。这一数学模型称为亚格子尺度模型(SGS)

运动方程

在LES方法中,通过使用滤波函数,每个变量都被分成两部分。例如,对于瞬时变量有:

LES,DNS,RANS三种模拟模型计算量比较及其原因

LES,DNS,RANS模型计算量比较 摘要:湍流流动是一种非常复杂的流动,数值模拟是研究湍流的主要手段,现有的湍流数值模拟的方法有三种:直接数值模拟(Direct Numerical Simulation: DNS),Reynolds平均方法(Reynolds Average Navier-Stokes: RANS)和大涡模拟(Large Eddy Simulation: LES)。直接数值模拟目前只限于较小Re数的湍流,其结果可以用来探索湍流的一些基本物理机理。RANS方程通过对Navier-Stokes方程进行系综平均得到描述湍流平均量的方程;LES方法通过对Navier-Stokes方程进行低通滤波得到描述湍流大尺度运动的方程,RANS和LES方法的计算量远小于DNS,目前的计算能力均可实现。 关键词:湍流;直接数值模拟;大涡模拟;雷诺平均模型 1 引言 湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,这种运动表现出非常复杂的流动状态,是流体力学中有名的难题,其 性。传统计算复杂性主要表现在湍流流动的随机性、有旋性、统计[]1 流体力学中描述湍流的基础是Navier-Stokes(N-S)方程,根据N-S 方程中对湍流处理尺度的不同,湍流数值模拟方法主要分为三种:直接数值模拟(DNS)、雷诺平均方法(RANS)和大涡模拟(LES)。直接数值模拟可以获得湍流场的精确信息,是研究湍流机理的有效手段,但现有的计算资源往往难以满足对高雷诺数流动模拟的需要,从而限制了它的应用范围。雷诺平均方法可以计算高雷诺数的复杂流动,但给出的是平均运动结果,不能反映流场紊动的细节信息。大涡模拟基于湍动能传输机制,直接计算大尺度涡的运动,小尺度涡运动对大尺度涡的影响则通过建立模型体现出来,既可以得到较雷诺平均方法更多的诸如大尺度涡结构和性质等的动态信息,又比直接数值模拟节省计算量,从而得到了越来越广泛的发展和应用。

大涡模拟

4.6.3大涡模拟LSE 大涡模拟LES 基本思想是:湍流运动是湍流运动是由许多大小不同尺度的涡旋组成,大尺度的涡旋对平均流动影响比较大,各种变量的湍流扩散、热量、质量、动量和能量的交换以及雷诺应力的产生都是通过大尺度涡旋来实现的,而小尺度涡旋主要对耗散起作用,通过耗散脉动来影响各种变量。不同的流场形状和边界条件对大涡旋有较大影响,使它具有明显的各向不均匀性。而小涡旋近似于各向同性,受边界条件的影响小,有较大的共性,因而建立通用的模型比较容易。据此,把湍流中大涡旋(大尺度量)和小涡旋(小尺度量)分开处理,大涡旋通过N-S 方程直接求解,小涡旋通过亚格子尺度模型,建立与大涡旋的关系对其进行模拟,而大小涡旋是通过滤波函数来区分开的。对于大涡旋,LES 方法得到的是其真实结构状态,而对小涡旋虽然采用了亚格子模型,但由于小涡旋具有各向同性的特点,在采用适当的亚格子模式的情况下,LES 结果的准确度很高。 大涡模拟LES 有四个一般的步骤: ①定义一个过滤操作,使速度分解u(x,t)为过滤后的成分(),u x t 和亚网格尺度成分u ’(x,t),这里要特别指出:过滤操作和Reynolds 分解是两个不同的概念,亚网格尺度SGS 成分u ’(x,t)与Reynolds 分解后的速度脉动值是两个不同的量。过滤后的三维的时间相关的成分()t x u ,表示大尺度的涡旋运动; ②由N-S 方程推导过滤后的速度场进化方程,该方程为一个标准形式,其中包含SGS 应力张量; ③封闭亚网格尺度SGS 应力张量,可采用最简单的涡黏性模型; ④数值求解模化方程,从而获得大尺度流动结构物理量。 (1)过滤操作 LES 方法和一般模式理论不同之处在于对N-S 方程第一步的处理过程不一样。一般模式理论方法是对变量取平均值,LES 方法是通过滤波操作,将变量分成大尺度量和小尺度量。对任一流动变量(),u x t 划分为大尺度量(,)u x t 和小尺度量(),u x t '(亚格尺度): (,)(,)(,)u x t u x t u x t '=+ 其中大尺度量是通过滤波获得:,过滤操作定义为: ()?-=dr t r x u x r G t x u ),(),(, (4.78) 式中积分遍及整个流动区域,(,)G r x 是空间滤波函数,它决定于小尺度运动的尺寸和结构。 滤波器G 要满足正规化条件 ?=1),(dr x r G (4.79) 亚网格尺度SGS 成分定义为 ),(),(),('t x u t x u t x u -= (4.80) 与Reynolds 分解不同的是,),(t x u 为一个随机的场分布,且 0),('≠t x u

第三章-数值模拟理论与方法

第三章 数值模拟理论与方法 §3.1 流体力学的基本方程 流体运动所遵循的规律是由物理学三大守恒定律规定的,即质量守恒定律,动量守恒定律和能量守恒定律[44]。 (一)连续方程 0)(=?+??v t ρρ (3.1) 式中 ρ-流体密度 u -流体速度分量 (二)动量方程(x 方向) 对于不可压流体(即0=?v ) x p f v u v x u x ??-+??=??+??ργρρρ)()()( (3.2) 式中 γ-运动粘性系数 p -压力 对于可压缩流体 ()()()()()x p f v x u u v x u x ??-+???+??=????ργργρρρ 31 (3.3) 式中等号后前两项是粘性力 y ,z 方向上的动量方程可类似推出。 (三)能量方程 ()()()v q T k e v e t ερρ++???=??+?? (3.4) 其中 T C e v = 式中等号左边第一项是瞬变项,第二项是对流项,等号右边第一项是扩散项,第二、三项是源项。 所以,流体力学基本方程组为: ()0=?+??v t ρρ

()x p f u u v f t u x ??-+??=??+??ργρ)( ()()y p f v v v f t v y ??-+??=??+??ργρ (3.5) ()()w p f w w v f t w w ??-+??=??+??ρλρ ()()v q e c k e v f e t v ερ++??? ? ????=??+?? §3.2 紊流模式理论概况 §3.2.1 基本方程 在自然界中,真实的流体都具有粘性。粘性流体存在两种不同的运动方式和流态,即层流和紊流。而在自然界和工农业生产中所遇见的流体流动大部分都是紊流。 三维的N-S 方程是目前描述粘性流体运动较为理想的模型,其优点一是应用范围广,在空气、水流、传热等方面均用N-S 方程描述;二是对于有分离、旋涡等情况的复杂三维流动更为适用。 三维直角坐标下的N-S 方程[45],[46],即不可压缩粘性流体的动量方程式为: ?????????????+??+??+??-=??+??+??+??-=??+??+??+??-=)()()(222222222222222222z w y w x w z p F Dt Dw z v y v x v y p F Dt Dv z u y u x u x p F Dt Du z y x μρρμρρ μρρ (3.6) 不可压缩流体的连续性方程为: (3.7) 式(3.6)和(3.7)共有四个未知数(u 、v 、w 、p )和四个方程,加上边界条件,从理论上来讲其解是存在的。但是,要直接求解复杂而详细的粘性流体运动是十分复杂和困难的。其原因是:直接求解N-S 方程要求求解从反映消散运动的最小涡漩尺度到反映大尺度涡体的所有流动尺度,因而只有对简单情况下才有理论解。 0=??+??+??z w y v x u

湍流的数值模拟方法进展

3 大涡模拟(LES ) 湍流大涡数值模拟(LES )是有别于直接数值模拟和雷诺平均模式的一种数值模拟手段。利用次网格尺度模型模拟小尺度湍流运动对大尺度湍流运动的影响即直接数值模拟大尺度湍流运动, 将N-S 方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。 3.1 基本思想 很多尺度不同的旋涡一起组成了湍流运动平均流动主要取决于大漩涡的流动,大尺度运动则受到小旋涡的影响。流动中的大涡实现了动量、能量质量、热量的交换,耗散主要是由于小涡作用的。大旋涡中受到流场形状、阻碍物的影响,,使大漩涡的各向异性更加明显。然而小漩涡之间各项同性,相互没有太大的区别,所以建立统一的模型比较容易一些。综上所述,大涡模拟将湍流瞬时运动量通过滤波将运动分成小尺度和大尺度。大尺度的运动受到小尺度的运动的影响可以通过应力项(类似于雷诺应力项)来表示,即为亚格子雷诺应力,以建立这种模型的方法来模拟。而大尺度则是求解运动微分方程而计算出来的,也就是说大涡模拟,要先过滤掉小尺度的脉动,然后再推出小尺度的运动封闭方程以及大尺度的运动控制方程。 3.2 滤波函数 正如上面提到,大涡模拟要先将流动变量分解成小尺度量和大尺度量,我们把这个作用叫做滤波。滤波运算就是在一区域内按照一定的条件对函数进行加权平均,作用是将高波数滤掉,使低波数保留,滤波函数的特征尺度决定了截断波数的最大波长,下面三种滤波函数是最为常用的主要有以下三种:盒式、富氏截断以及高斯滤波函数。 不可压常粘性系数的湍流运动控制方程为N-S 方程: j ij i j j i i x S x P x u u t u ???+??-=??+??)2(1γρ 式中:S 拉伸率张量,表达式为:2/)//(i j j i ij x u x u S ??+??=;γ分子粘性系数;ρ流体密度。设将变量i u 分解为方程(11)中i u 和次网格变量(模化变量)'i u ,

大涡模拟的FLUENT算例2D

Tutorial:Modeling Aeroacoustics for a Helmholtz Resonator Using the Direct Method(CAA) Introduction The purpose of this tutorial is to provide guidelines and recommendations for the basic setup and solution procedure for a typical aeroacoustic application using computational aeroacoustic(CAA)method. In this tutorial you will learn how to: ?Model a Helmholtz resonator. ?Use the transient k-epsilon model and the large eddy simulation(LES)model for aeroacoustic application. ?Set up,run,and perform postprocessing in FLUENT. Prerequisites This tutorial assumes that you are familiar with the user interface,basic setup and solution procedures in FLUENT.This tutorial does not cover mechanics of using acoustics model,but focuses on setting up the problem for Helmholtz-Resonator and solving it.It also assumes that you have basic understanding of aeroacoustic physics. If you have not used FLUENT before,it would be helpful to?rst review FLUENT6.3User’s Guide and FLUENT6.3Tutorial Guide. Problem Description A Helmholtz resonator consists of a cavity in a rigid structure that communicates through a narrow neck or slit to the outside air.The frequency of resonance is determined by the mass of air in the neck resonating in conjunction with the compliance of the air in the cavity. The physics behind the Helmholtz resonator is similar to wind noise applications like sun roof bu?eting. We assume that out of the two cavities that are present,smaller one is the resonator.The motion of the?uid takes place because of the inlet velocity of27.78m/s(100km/h).The ?ow separates into a highly unsteady motion from the opening to the small cavity.This unsteady motion leads to a pressure?uctuations.Two monitor points(Point-1and Point-2) act as microphone points to record the generated sound.The acoustic signal is calculated within FLUENT.The?ow exits the domain through the pressure outlet.

湍流大涡数值模拟进展

第22卷第2期空气动力学学报Vol.22,No.2 2004年06月ACTA AERODYNAMICA SINICA Jun.,2004 文章编号:0258-1825(2004)02-0121-09 湍流大涡数值模拟进展 崔桂香,许春晓,张兆顺 (清华大学工程力学系,北京100084) 摘要:本文简要陈述湍流大涡数值模拟的原理、优点,着重讨论湍流大涡数值模拟方法的关键问题及其可能解决的途径,包括脉动的过滤、亚格子模型、近壁模型和标量湍流的大涡数值模拟中的特殊问题。文章强调大涡数值模拟中亚格子应力的本质是可解尺度湍流和不可解尺度湍流动量间的输运,并以作者最近提出的新型亚格子模型说明发展亚格子模型的正确途径。文章最后提出湍流大涡数值模拟近期需要迫切解决的问题和其他具有挑战性的方向。 关键词:湍流;大涡数值模拟;亚格子模型;近壁模型;标量湍流 中图分类号:V211.3文献标识码:A * 0引言 复杂流动的准确数值预测是当前航空、航天器研究和设计中迫切需要解决的空气动力学前沿问题之一。随着计算空气动力学方法的不断完善,计算机品质的不断提高,湍流的数值模拟方法成为提高数值预测航天器空气动力特性的瓶颈。 目前,数值预测湍流的方法有:直接数值模拟(DNS),大涡数值模拟(LE S)和雷诺平均模拟(RANS)。 直接数值模拟(DNS)是精确数值模拟湍流的方法,它的主要困难在于湍流是一种不规则多尺度运动,无论在空间上或者时间上湍流都有十分宽广谱。准确数值模拟湍流既要精确计算大尺度流动;又要足够准确地计算小尺度运动。在最简单的各向同性湍流中湍流的空间尺度有以下估计:L ma x/l mi n~Re3/4K,同样最大和最小时间尺度之比T max/t min~Re3/4K,它们都和流动的泰勒雷诺数Re K有关。按照上述估计,空间网格数至少应有:N=N x@N y@N z~Re9/4K,运算量超过Re3K,航空航天器复杂绕流计算的网格数和运算时间远远超过上述估计。因此,目前不具备直接数值模拟复杂工程湍流需要的计算机,湍流直接数值模拟只能作为低雷诺数简单湍流的研究工具。 工程中常用的复杂湍流数值模拟方法是求解雷诺平均的控制方程,这种方法只计算大尺度平均流动,而所有湍流脉动对平均流动的作用,即雷诺应力,用模型假设封闭。由于雷诺应力主要由大尺度脉动贡献,而大尺度脉动和流动的几何特性密切相关,因此雷诺平均模式不是普适的,而是和流动有关,就是说,不存在对一切流动都适用的统一模式;对于不同类型的流动,模式的形式或系数需要修正,而这种修正常常带有经验性。所以,雷诺平均模式不是理想的封闭方法。 湍流大涡数值模拟是有别于直接数值模拟和雷诺平均模式的一种数值预测湍流的方法。这种方法是基于对各种尺度湍流脉动在输运和耗散中作用的认识:大尺度湍流脉动具有主要的能量和动量并支配湍流脉动的动量和能量输运;而湍动能的耗散主要发生在小尺度脉动中[1];根据这一认识产生了湍流大涡数值模拟。它的具体实施方法如下:首先,用滤波方法将小尺度脉动从湍流脉动中去掉,假设空间任意一点的滤波函数为G(x-x0),最简单的滤波器是盒式滤波: G(G)=1,|G i|[$/2, G(G)=0,|G i|>$/2(1)利用滤波器对湍流速度场过滤,过滤后的速度脉动中不存在过滤尺度$以下的脉动成分,称为可解湍流: u i(x,t)= 1 $3 m D u(y,t)G(x-y)d y(2) *收稿日期:2003-03-26;修订日期:2003-06-02. 基金项目:国家自然科学基金资助项目(批准号:10272065,10232020). 作者简介:崔桂香(1950-),女,清华大学工程力学系教授,从事湍流大涡数值模拟和标量湍流的研究.

湍流的数值模拟

2012年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目高等流体力学 学生所在院(系)机电工程学院 学生所在学科机械制造及自动化学生姓名高强 学号12S008123 学生类别工学硕士 考核结果阅卷人

湍流的数值模拟 一、流体力学概述 流体力学是研究流体的力学运动规律及其应用的学科。主要研究在各种力的作用下,流体本身的状态,以及流体和固体壁面、流体和流体间、流体与其他运动形态之间的相互作用的力学分支。除水和空气之外,这里的流体还指作为汽轮机工作介质的水蒸气、润滑油、地下石油、含泥沙的江水、血液、超高压作用下的金属和燃烧后产生成分复杂的气体、高温条件下的等离子体等等。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和高等数学、物理学、化学的基础知识。气象、水利的研究,船舶、飞行器、叶轮机械和核电站的设计及其运行,可燃气体或炸药的爆炸,汽车制造,以及天体物理的若干问题等等,都广泛地用到流体力学知识。许多现代科学技术所关心的问题既受流体力学的指导,同时也促进了它不断地发展。 二、数值计算在流体力学研究中的应用 数值计算是研究流体力学的重要方法。它是针对流体运动的特点,用数学语言将质量守恒、动量守恒、能量守恒等定律表达出来,从而得到连续性方程、动量方程和能量方程。此外,还要加上某些联系流动参量的关系式(例如状态方程),或者其他方程。这些方程合在一起称为流体力学基本方程组。 求出方程组的解后,结合具体流动,解释这些解的物理含义和流动机理。通常还要将这些理论结果同实验结果进行比较,以确定所得解的准确程度和力学模型的适用范围。 从基本概念到基本方程的一系列定量研究,都涉及到很深的数学问题,所以流体力学的发展是以数学的发展为前提。反过来,那些经过了实验和工程实践考验过的流体力学理论,又检验和丰富了数学理论,它所提出的一些未解决的难题,也是进行数学研究、发展数学理论的好课题。按目前数学发展的水平看,有不少题目将是在今后几十年以内难于从纯数学角度完善解决的。

大涡模拟的fluent算例

Introduction:This tutorial demonstrates how to model the2D turbu-lent?ow across a circular cylinder using LES(Large Eddy Simula-tion),and compute?ow-induced noise(aero-noise)using FLUENT’s acoustics model. In this tutorial you will learn how to: ?Perform2D Large Eddy Simulation(LES) ?Set parameters for an aero-noise calculation ?Save surface pressure data for an aero-noise calculation ?Calculate aero-noise quantities ?Postprocess an aero-noise solution Prerequisites:This tutorial assumes that you are familiar with the menu structure in FLUENT,and that you have solved or read Tu-torial1.Some steps in the setup and solution procedure will not be shown explicitly. Problem Description:The problem considers turbulent air?ow over a2D circular cylinder at a free stream velocity U of69.19m/s. The cylinder diameter D is1.9cm.The Reynolds number based on the?ow parameters is about90000.The computational do-main(Figure3.0.1)extends5D upstream and20D downstream of the cylinder,and5D on both sides of it.If the computational domain is not taken wide enough on the downstream side,so that no reversed?ow occurs,the accuracy of the aero-noise prediction may be a?ected.The rule of thumb is to take at least20D on the downstream side of the obstacle. c Fluent Inc.June20,20023-1

大涡模拟简单介绍

《粘性流体力学》小论文 题目:浅谈大涡模拟 学生姓名:丁普贤 学生学号:103911018 完成时间:2010/12/16

浅谈大涡模拟 丁普贤 (中南大学,能源科学与工程学院,湖南省长沙市,410083) 摘要:湍流流动是一种非常复杂的流动,数值模拟是研究湍流的主要手段,现有的湍流数值模拟的方法有三种:直接数值模拟、大涡模拟和雷诺平均模型。本文主要是介绍大涡模拟,大涡模拟的思路是:直接数值模拟大尺度紊流运动,而利用亚格子模型模拟小尺度紊流运动对大尺度紊流运动的影响。大涡模拟在计算时间和计算费用方面是优于直接数值模拟的,在信息完整性方面优于雷诺平均模型。本文还介绍了对N-S方程过滤的过滤函数和一些广泛使用的亚格子模型,最后简单对一些大涡模拟的应用进行了阐述。 关键词:计算流体力学;湍流;大涡模拟;亚格子模型

A simple study of Large Eddy Simulation DING Puxian (Central South University, School of Energy Science and Power Engineering, Changsha, Hunan, 410083) Abstract:Turbulent flow is a very complex flow, and numerical simulation is the main means to study it. There are three numerical simulation methods: direct numerical simulation, large eddy simulation,Reynolds averaged Navier-Stokes method. Large eddy simulation (LES) is mainly introduced in this paper. The main idea of LES is that large eddies are resolved directly and the effect of the small eddies on the large eddies is modeled by subgrid scale model. Large eddy simulation calculation in computing time and cost is superior to direct numerical simulation, and obtain more information than Reynolds averaged Navier-Stokes method. The Navier-Stokes equations filtering filter function and some extensive use of the subgrid scale model are simply discussed in this paper. Finally, some simple applications of large eddy simulation are told. Key words:computational fluid dynamics; turbulence; large eddy simulation; subgrid scale model

燃气轮机模型燃烧室的大涡模拟

燃气轮机模型燃烧室的大涡模拟 徐宝鹏1,曾佑杰1,马宏宇2,赵凯岚2,金戈2 (1.大连理工大学能源与动力学院,辽宁大连116024;2.中航工业沈阳发动机设计研究所,沈阳110015) 摘要:燃烧室内的燃油雾化、蒸发以及和空气进行混合过程对燃烧过程有重要影响。提出1种基于大涡模拟的数学模型来模拟燃烧室内燃料喷射、蒸发和混合过程。被空间滤波掉的亚网格尺度涡对大尺度涡的影响由求单方程SGS 湍流模型进行模拟。采用拉格朗日法和蒙特卡洛技术对流场中的喷雾粒子进行采样跟踪,采样喷雾粒子在流场中作为点源项与气相进行质量、动量和能量的双向耦合。提出1个基于SGS 湍流动能的双向耦合模型来模拟SGS 脉动速度对喷雾粒子运动的影响以及喷雾相对SGS 湍流动能的影响。通过对1个同轴模型燃烧室中的喷雾蒸发及混合过程的大涡模拟,将预测结果和试验值进行了比较,预测值和试验值吻合良好,验证了模型的可靠性。 关键词:燃烧室;燃气轮机;大涡模拟;双向耦合;燃油雾化 中图分类号:V211.3文献标识码:A doi :10.13477/https://www.doczj.com/doc/b25489755.html,ki.aeroengine.2014.03.003 Large Eddy Simulation of a Gas Turbine Model Combustor XU Bao-peng 1,ZENG You-jie 1,MA Hong-yu 2,ZHAO Kai-lan 2,JIN Ge 2 (1.School of Energy and Power Engineering,Dalian University of Technology,Liaoning Dalian 116024,China;2.AVIC Shenyang Engine Design and Research Institute,Shenyang 110015,China ) Abstract:Fuel atomization,evaporation and mixing with air in gas turbine combustors are vital to the subsequent combustion process.Numerical formulation based on large eddy simulation is proposed to model fuel injection,evaporation and mixing in a gas turbine combustor.The proposed model adopts a one-equation subgrid scale turbulent model to handle the effect of the filtered subgrid scale eddies on the solved large scale eddies.Spray droplets are tracked using both Lagrangian method and Mento Carlo technique,and the sampled spray particles are regarded as point sources to conduct two-way couplings of mass,momentum and energy.The two-way coupling model based on SGS turbulent kinetic energy is used to model the mutual influences between SGS fluctuating velocity and the movement of spray droplets.The proposed models are validated against a large simulation of a co-axial model combustor and the predictions are compared to the experimental data.Good agreements are obtained,which demonstrate the reliability of the proposed models.Key words:combustor ;gas turbine;large eddy simulation;two-way coupling;atomization 航空发动机Aeroengine 第40卷第3期 Vol.40No.3 Jun.2014 收稿日期:2013-08-14基金项目:燃气轮机重大项目联合培育基金(2011LH006)资助 作者简介:徐宝鹏(1969),男,博士,教授,主要研究方向为计算流体力学、两相流和燃烧学;E-mail:xbp624@https://www.doczj.com/doc/b25489755.html, 。引用格式:0引言 试验研究表明,燃油在燃气轮机燃烧室内的雾 化、蒸发及与空气进行混合的过程对直喷或预混燃烧 室中的燃烧过程起至关重要的作用[1-3]。Fric [3]通过试 验研究发现,燃料混合在空间上的不均匀性和时间上 的脉动性对氮氧化物的排放量有显著影响;此外,燃 烧室内的流动状态以及燃油喷雾粒子的大小和速度 分布对燃烧过程同样有重要影响。光学测试和数值模拟是目前研究燃烧室内燃油混合及燃烧过程的2种主要方法。光学测试已被成功应用于燃油喷射及混合过程的研究中[4-6],但使用数值模拟方法对燃烧前喷雾的分布情况进行理论研究的文献较少,且现有的数值模拟工作大都采用基于雷诺时间平均的RANS 方法。以往的数值研究表明,RANS 方法无法准确预测燃烧室内的回流流动,且其稳态特性也不能准确预测燃料的混合及燃烧过程[7]。大涡模

化工装置中两相流模型的建立

化工装置中的两相流模型的建立 摘要:通过文献调研,本文重点分析了大涡模型在离心泵两相流中的应用。较为详细的概述了模型的建立以及边界条件的确定和求解方法。 关键词:文献调研、大涡模型、边界条件 前言 两相流动是流体力学中一门重要的分支学科,它在很多现代工程技术甚至医学中得到广泛的应用。可以认为,绝大多数的流动都是多相流动,纯粹的单相流动只是个别情况。降雾,下雨、下冰雹、云层流动、流沙、尘暴等是自然界中两相流动的一些例子。各种发动机和窖炉中的喷雾燃烧、核反应堆的冷却、宇航飞行器的两相绕流、含铝推进剂固体火箭发动机中的燃气流动、石油和天然气的开采和输运、热力设备与制冷系统的工作过程、化学工艺中的流态化、吸收、蒸发、凝结和化学反应过程、采矿和冶金过程中的旋流分离和输运、气力和液力输送、煤的气化和液化、煤粉和煤浆燃烧、空气和水的污染、环保、粉尘爆炸、血液的循环与凝固、水利工程中的泥沙运动和高速渗气流等工程实际问题无不与两相流动有关。离心泵是化工生产中最常见的装置之一,泵内流体的运动以及流体对泵的的磨蚀尤为突出,而两相流动的研究就是为设计泵以及如何防止这些机械磨蚀产生的基础和关键性的内容。近几年,两相流动己发展到与可压缩流体力学及边界层理论有同等重要的地位。因此固液两相流动及多相流动的研究不仅对流体力学的发展,而且对解决工程中的实际问题具有重大的理论价值和实际意义。 下面就离心泵叶轮内高浓度液-固两相湍流的大涡模拟为例阐述化工装置中两相流数学模型的建立、边界条件的确定以及求解方法的选择。 湍流大涡数值模拟(LES)是有别于直接数值模拟和雷诺平均模拟的一种数值模拟手段。利用次网格尺度模型模拟小尺度湍流运动对大尺度湍流运动的影响即直接数值模拟大尺度湍流运动,将N-S方程在一个小空间域内进行平均(或称之为滤波),以使从流场中去掉小尺度涡,导出大涡所满足的方程。 1 大涡模拟 1.1 大涡模拟的基本思想 湍流运动是由许多尺度不同的旋涡组成的。那些大旋涡对于平均流动有比较明显的影响,而那些小旋涡通过非线性作用对大尺度运动产生影响。大量的质量、热量、动量、能量交换是通过大涡实现的,而小涡的作用表现为耗散。流场的形状,阻碍物的存在,对大旋涡有比较大的影响,使它具有更明显的各向异性。小旋涡则不然,它们有更多的共性,更接近各向同性,因而较易于建立有普遍意义的模型。基于上述物理基础,LES把包括脉动运动在内的湍流瞬时运动量通过滤

湍流的数值模拟综述

湍流的数值模拟 一、引语 流体的流动形态分为湍流与层流。而层流是流体的最简单的一种流动状态。流体在管内流动时,其质点沿着与管轴平行的方向作平滑直线运动。此种流动称为层流或滞流,亦有称为直线流动的。流体的流速在管中心处最大,其近壁处最小。管内流体的平均流速与最大流速之比等于0.5,根据雷诺实验,当雷诺准数引Re<2320时,流体的流动状态为层流。当雷诺数Re>2320时,流体流动状态开始向湍流态转变,湍流是一种很复杂的流动状态,是流体力学中公认的难题。 自从19世纪末O.Reynolds提出湍流的统计理论以来,已经有一个多世纪了,经过几代科学家的努力,湍流研究取得很大进展,但是仍然不能满足工程应用的需要,以至于经常有悲观的论调侵袭湍流研究。为什么湍流问题没有圆满地解决会受到如此关注呢?因为湍流是自然界和工程中十分普遍的流动现豫,对于湍流问题的正确认识和模化直接影响到对自然环境的预测和工程的质量。例如,当前影响航天器气动力和气动热预测准确度的主要障碍是缺乏可靠的湍流模型。和其他一些自然科学的准题不同,解决湍流问题具有迫切性。 湍流运动的最主要特征是不规则性,这是大家公认的。对于湍流不规则性的深入认识,是一百多年来湍流研究的上要成就之一。早期的科学家认为,像分子运动一样,湍流是完全不规则运动。类似于分子运动产生黏性,湍流的耗散可以用涡黏系数来表述。20世纪初,一些杰出的流体力学家,相继对涡黏系数提出各种流体力学的模型,如Taylor(1921年)的涡模型,Praudtl(1925年)的混合长模型和von Karman(1930年)相似模型等。当科学家用流体力学观念(不是分子观念)来建立湍流耗散的涡黏模型时,就开始考虑连续介质不规则运动的特点,其中有别于气体分子不规则运动的最主要特点是运动的多尺度性。第一个提出流体湍流运动中多尺度输运特性的科学家mchardson(1922年)曾描述湍动能的多尺度传输过程如下:“大涡包含小涡,并喂予速度;小涡包含更小的涡,如此继续直到黏性耗散”。多尺度的思想导致产生描述多尺度的谱概念和谱分析方法,并最终产生了Kolmogorov(1941年)的局部各向同性的通用谱(即5/3谱)。 湍流不仅是多尺度的而且是有结构的运动。20世纪中叶,大量的湍流实验(包括测量和显示)发现多尺度的湍流运动存在某种特殊的运动状态。Townsend(1951年),Corrsin(1955年)和Lumley(1965年)等从脉动序列的间歇性和空间相关相继推测湍流结构的可能形态。理论上也提出过各种湍涡的模型:球涡模型,柱涡模型等。早期的湍流结构主要是从运动学上考虑,把旋涡结构作为湍流统计的样本。我国的周培源教授是近代湍流模式的奠基人之一,他首先提出先解方程后平均的统计方法,就是说湍涡必须满足Navier—Stokes方程(Chou and Chou,1995年)。 真实的、可以观察到的湍流结构通过流动显示,以及稍后湍流直接数值模拟所证实。典型的例子是混合层的Brown—Roshko涡(1976年),图1明显地展示了混合层中存在规则的大涡和分布在大涡周围的细小湍涡。在边界层、槽道和圆管湍流中也存在各式各样的大涡结构。例如,用激光诱导荧光的显示方法,我们可以在圆管湍流中观察到周向(图2a)和流向大涡(图2b)。值得提出的是,不仅在剪切湍流中有大涡结构,简单的均匀各向同性湍流中也存在涡结构。图3展示的是各向同性湍流的直接数值模拟中强涡量等值面,它们是管状结构。仔细分析还可以确定管状涡的平均长度约等于各向同性湍流的积分尺度,它们的平均直径约等于湍流TayLor微尺度,更进一步分析可以算出管状涡内部的平均速度

湍流的研究进展论文

湍流的研究进展 丁立新 (青岛科技大学) 摘要本文重点就湍流的理论研究进展作一阐述,从湍流的相干结构、表征及发展由来,到上世纪末湍流研究进展的雷诺方程,本世纪湍流的统计理论和半经验理论发展,湍流的模式理论,湍流的高级数值模拟分别论述,并为主要的工程应用做简要的介绍。 关键词湍流理论研究工程应用 Research process of turbulence Dinglixin Qingdao University of Science & technology Abstract This article focuses on the turbulence of research process as elaborated. From coherent structure of turbulence, characterization and development of turbulence to Reynolds equation about research process of turbulence on the end of the century, the development of semi-empirical theory and statistical theory of turbulence of this century, mode theory of turbulence, advanced numerical simulation of turbulence. Finally, brief description of turbulence industrial applications is suggested. Keywords Turbulence, Theoretical research of turbulence, Engineering applications 湍流是自然界和工程中最常出现的流动形态,湍流的出现将使动量、质量、能量的输送速率极大地加快,一方面造成能量消耗加快,污染物加快扩散等严重消极

流体力学的研究进展

流体力学的研究进展 环境工程01班张东元 20106370 摘要: 利用流体力学研究解决不同方面和不同角度的问题,主要是构建数学模型,利用数学模型预测的结果进行分析研究实际情况,从而解决实际问题。 关键词:流体、数学模型、数值模拟、预测 简介: 流体力学是力学的一个分支,它研究流体静止和运动的力学规律,及其在工程技术中的应用。流体力学的研究进展,就是其相关方面的研究的前沿动态。 正文: 流体力学中研究得最多的流体是水和空气。它的主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程和物理学、化学的基础知识。 目前来说,流体力学在供热通风和燃气工程中应用的非常广泛。热的供应,空气的调节,燃气的输配,排毒排湿,除尘降温等等,都是一流体作为工作介质,通过流体的各种物理作用,对流体的流动有效地加以组织来实现的。除了上述的两个方面,在地质考察,环境监测,气象观测及海洋评估等多个领域中流体力学都有或多或少的涉猎。下面本文就针对其中几个方面来做个概述。

在环境流体力学方面而言,其本身建立之初,主要是为了研究污染问题,所涉及的尺度小、范围窄,不能在宏观上、整体上把握环境要素的变化规律。近年来,随着流体力学的发展与突破,环境流体力学逐渐趋向于研究多尺度、多科学的综合问题。 在河流水体方面,主要研究水利学中的环境问题,比如像05年的松花江苯类物质污染事件,其中的污染主体是100吨左右的苯类污染物,而根据流体力学的知识,黑龙江省水文局的工程师判断出了污染水团留出哈尔滨市区范围及中国范围的时间,并以此为后续处理工作的计划做了时间上的预算。这里面就涉及了一个叫水质数学模型的概念,是水体中污染物随时间和空间迁移转化规律的描述,表示一个定量关系。从文献中可知,GIS(地理信息系统)对构造这一模型起了十分重要的作用,这也是流体力学中科技的运用。 在大气环境中,流体力学一般研究居住环境的空气质量问题。随着计算机资源的迅速改善,用现代计算流体力学方法数值模拟大气环境效果显著。对于不同的尺度范围,研究对象的物理条件不同,数值模拟方法也随之不同。在城市尺度和居民小区尺度大气环境中,采用大涡数值模拟方法等方法。数值计算的边界条件是实现数值预测城市大气环境的关键,其中包括高空边界条件、计算域侧面的边界条件和下垫面边界条件。在预测中,选择合理的模型就能获得较为接近真实值的预测结果。这种数值模拟能得到所测地的风速风向、颗粒物大小及污染物浓度等方面的预测值,而不需要实地地观测考察,只需要单纯的模拟计算就行了。这样一来,不仅仅是单纯的居住环境的大气研

相关主题
文本预览
相关文档 最新文档