当前位置:文档之家› 第七章信号的运算和处理

第七章信号的运算和处理

第七章信号的运算和处理
第七章信号的运算和处理

第七章模拟信号运算电路

自测题

一、判断下列说法是否正确,用“√”或“×”表示判断结果。

(1)运算电路中一般均引入负反馈。()

(2)在运算电路中,集成运放的反相输入端均为虚地。()

(3)凡是运算电路都可利用虚短和虚断的概念求解运算关系。()解:(1)√(2)×(3)√

二、现有电路:

A. 反相比例运算电路

B. 同相比例运算电路

C. 积分运算电路

D. 微分运算电路

E. 加法运算电路

F. 乘方运算电路

选择一个合适的答案填入空内。

(1)欲将正弦波电压移相+90O,应选用。

(2)欲将正弦波电压转换成二倍频电压,应选用。

(3)欲将正弦波电压叠加上一个直流量,应选用。

(4)欲实现A u=-100的放大电路,应选用。

(5)欲将方波电压转换成三角波电压,应选用。

(6)欲将方波电压转换成尖顶波波电压,应选用。

解:(1)C (2)F (3)E (4)A (5)C (6)D

三、已知图T7.3所示各电路中的集成运放均为理想运放,模拟乘法器的乘积系数k 大于零。试分别求解各电路的运算关系。

图T7.3

解:图(a )所示电路为求和运算电路,图(b )所示电路为开方运算电路。它们的运算表达式分别为

I 3142O 2O 4

3'O 43I 12O2O1O I34

3421f 2I21I1f O1 )b (d 1 )1()(

)a (u R kR R R u ku R R u R R u R R u t u RC u u R R R R R R R u R u R u ?=

?-=-=-=-

=?+?+++-=?∥

习题

本章习题中的集成运放均为理想运放。

7.1 分别选择“反相”或“同相”填入下列各空内。

(1)比例运算电路中集成运放反相输入端为虚地,而比例运算电路中集成运放两个输入端的电位等于输入电压。

(2)比例运算电路的输入电阻大,而比例运算电路的输入电阻小。

(3)比例运算电路的输入电流等于零,而比例运算电路的输入电流等于流过反馈电阻中的电流。

(4)比例运算电路的比例系数大于1,而比例运算电路的比例系数小于零。

解:(1)反相,同相(2)同相,反相(3)同相,反相(4)同相,反相

7.2填空:

(1)运算电路可实现A u>1的放大器。

(2)运算电路可实现A u<0的放大器。

(3)运算电路可将三角波电压转换成方波电压。

(4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。

(5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。

(6)运算电路可实现函数Y=aX2。

解:(1)同相比例(2)反相比例(3)微分(4)同相求和(5)反相求和(6)乘方

7.3设计一个比例运算电路,要求输入电阻R i=20kΩ,比例系数为-100。

解:可采用反相比例运算电路,R=20kΩ,R f=2MΩ。

7.4电路如图P7.4所示,试求:

(1)输入电阻;

(2)比例系数。

解:由图可知R i=50kΩ,u M=-2u I。

342R R R i i i +=

即 3O M 4M 2M R u u R u R u -+=-

输出电压 I M O 10452u u u -== 图P 7.4

7.5 电路如图P7.5所示,T 1、T 2和T 3的特性完全相同,填空:

(1)I 1≈ mA ,I 2≈ mA ;

(2)若I 3≈0.2mA ,则R 3≈ k Ω。

图P 7.5

解:(1)1,0.4;(2)10。

7.6 试求图P7.6所示各电路输出电压与输入电压的运算关系式。

图P7.6

解:在图示各电路中,集成运放的同相输入端和反相输入端所接总电阻均相等。各电路的运

算关系式分析如下:

(a )13I2I1I33f I22f I11f O 522u u u u R R u R R u R R u +--=?+?-?-

= (b )13I2I1I33f I22f I11f O 1010u u u u R R u R R u R R u ++-=?+?+?-

= (c ))( 8)(I1I2I1I21

f O u u u u R R u -=-= (d )I44f I33f I22f I11f O u R R u R R u R R u R R u ?+?+?-?-

= 1413I2I1402020u u u u ++--=

7.7 图P7.7所示为恒流源电路,已知稳压管工作在稳压状态,试求负载电阻中的电流。

图P 7.7

解:6.02

Z 2P L ===

R U R u I mA

7.8 电路如图P7.8所示。

(1)写出u O 与u I 1、u I 2的运算关系式;

(2)当R W 的滑动端在最上端时,若u I 1=10mV ,u I 2=20mV ,则u O =?

(3)若u O 的最大幅值为±14V ,输入电压最大值 u I 1ma x =10mV ,u I 2ma x =20mV ,最小值均为0V ,则为了保证集成运放工作在线性区,R 2的最大值为多少?

图P 7.8

解:(1)A 2同相输入端电位

)( 10)(I1I2I1I2f N2P2u u u u R R u u -=-=

= 输出电压 ))(1(10)1(I1I212P212O u u R R u R R u -+=?+

= 或 )(10I1I21

W O u u R R u -??= (2)将u I 1=10mV ,u I 2=20mV 代入上式,得u O =100mV

(3)根据题目所给参数,)(I1I2u u -的最大值为20mV 。若R 1为最小值,则为保证集成运放工作在线性区, )(I1I2u u -=20mV 时集成运放的输出电压应为+14V ,写成表达式为

14201010)(10min

1I1I2min 1W O =??=-??=R u u R R u 故 R 1m i n ≈143Ω

R 2ma x =R W -R 1m i n ≈(10-0.143)k Ω≈9.86 k Ω

7.9 分别求解图P7.9所示各电路的运算关系。

图P 7.9

解:图(a )所示为反相求和运算电路;图(b )所示的A 1组成同相比例运算电路,A 2组成加减运算电路;图(c )所示的A 1、A 2、A 3均组成为电压跟随器电路,A 4组成反相求和运算电路。

(a )设R 3、R 4、R 5的节点为M ,则

))(( )( 2I21I15434344M O 5

M 2I21I15342

I21I13M R u R u R R R R R R i u u R u R u R u i i i R u R u R u R R R R ++

+-=-=-+=-=+-= (b )先求解u O 1,再求解u O 。

))(1( )1()1( )1()1(I1I245I24

5I11345I24

5O145O I113O1u u R R u R R u R R R R u R R u R R u u R R u -+=+++-=++-

=+

=

(c )A 1、A 2、A 3的输出电压分别为u I 1、u I 2、u I 3。由于在A 4组成的反相求和运算电路中反相输入端和同相输入端外接电阻阻值相等,所以 )( 10)(I3I2I1I3I2I11

4O u u u u u u R R u ++=++=

7.10 在图P7.10(a )所示电路中,已知输入电压u I 的波形如图(b )所示,当t =0时u O =0。试画出输出电压u O 的波形。

图P 7.10

解:输出电压的表达式为 )(d 11O I O 21

t u t u RC u t t +-=? 当u I 为常量时

)()(100 )()(10101 )()(11O 12I 1O 12I 7

5112I O t u t t u t u t t u t u t t u RC

u O +-=+-?-=+--

=-- 若t =0时u O =0,则t =5ms 时

u O =-100×5×5×10

-3V =-2.5V 。

当t =15mS 时

u O=[-100×(-5)×10×10-3+(-2.5)]V=2.5V。

因此输出波形如解图P7.10所示。

解图P7.10

7.11已知图P7.11所示电路输入电压u I的波形如图P7.10(b)所示,且当t=0时u O=0。试画出输出电压u O的波形。

图P7.11

解图P7.11

解:输出电压与输入电压的运算关系为u O=100u I(t2-t1)+u I-u C(t1),波形如解图P7.11所示。

7.12 试分别求解图P7.12所示各电路的运算关系。

图P 7.12

解:利用节点电流法,可解出各电路的运算关系分别为:

(a ) t u u t u C R u R R u d 100d 1I I I 1I 12O ??

--=--= (b ) I I 3I 21I 1

O 2d d 10d d u t u u C C t u RC u --=--=- (c ) t u t u RC

u d 10d 1I 3I O ??== (d ) t u u t R u R u C u d )5.0(100d )(1I2I12I21I1O +-=+-

=??

7.13 在图P7.13所示电路中,已知R 1=R =R '=100k Ω,R 2=R f =100k Ω,C =1μF 。

图P 7.13

(1)试求出u O 与 u I 的运算关系。

(2)设t =0时u O =0,且u I 由零跃变为-1V ,试求输出电压由零上升到+6V 所需要的时间。

解:(1)因为A 1的同相输入端和反相输入端所接电阻相等,电容上的电压u C =u O ,所以其输出电压

I O O 2f I 1f O1u u u R R u R R u -=?+?-

= 电容的电流

R u R u u i I O O1C -=-=

因此,输出电压

t u t u RC

t i C u d 10d 1d 1I I C O ???-=-== (2)u O =-10u I t 1=[-10×(-1)×t 1]V =6V ,故t 1=0.6S 。即经0.6秒输出电压达到6V 。

7.14 试求出图P7.14所示电路的运算关系。

图P 7.14

解:设A 2的输出为u O 2。因为R 1的电流等于C 的电流,又因为A 2组成以u O 为输入的同相比例运算电路,所以

???

-==+

=-=-=t

u u u u R R u t u t u C R u d 2)1( d 2d 1I O O O 32O2I I 1O2

7.15 画出利用对数运算电路、指数运算电路和加减运算电路实现除法运算的原理框图。

解:答案如解图7.15所示。

解图7.15

7.16 求出图P7.16所示各电路的运算关系。

图P

7.16

解:电路(a )实现求和、除法运算,电路(b )实现一元三次方程。它们的运算关系式分别为

)( )(

)a (2I21I1I33O I3O 2

I21I13'O R u R u ku R u u ku R u R u R u +-==+-=

I 143I 2342I 24O )b (u R R u k R R ku R R u ---=

FPGA在高速数字信号处理中的使用

由于成本、系统功耗和面市时间等原因,许多通讯、视频和图像系统已无法简单地用现有DSP处理器来实现,现场可编程门阵列(FPGA)尤其适合于乘法和累加(MAC)等重复性的DSP任务。本文从FPGA与专用DSP器件的运算速度和器件资源的比较入手,介绍FPGA 在复数乘法、数字滤波器设计和FFT等数字信号处理中应用的优越性,值得(中国)从事信号处理的工程师关注。 Chris Dick Xilinx公司 由于在性能、成本、灵活性和功耗等方面的优势,基于FPGA的信号处理器已广泛应用于各种信号处理领域。近50%的FPGA产品已进入各种通信和网络设备中,例如无线基站、交换机、路由器和调制解调器等。FPGA提供了极强的灵活性,可让设计者开发出满足多种标准的产品。例如,万能移动电话能够自动识别GSM、CDMA、TDMA或AMPS等不同的信号标准,并可自动重配置以适应所识别的协议。FPGA所固有的灵活性和性能也可让设计者紧跟新标准的变化,并能提供可行的方法来满足不断变化的标准要求。 复数乘法 复数运算可用于多种数字信号处理系统。例如,在通讯系统中复数乘积项常用来将信道转化为基带。在线缆调制解调器和一些无线系统中,接收器采用一种时域自适应量化器来解决信号间由于通讯信道不够理想而引入的干扰问题。量化器采用一种复数运算单元对复数进行处理。用来说明数字信号处理器优越性能的指标之一就是其处理复数运算的能力,尤其是复数乘法。 一个类似DSP-24(工作频率为100MHz)的器件在100ns内可产生24×24位复数乘积(2个操作数的实部和虚部均为24位精度)。复数乘积的一种计算方法需要4次实数乘法、1次加法和1次减法。一个满精度的24×24实数管线乘法器需占用348个逻辑片。将4个实数乘法器产生的结果组合起来所需的2个48位加法/减法器各需要24个逻辑片(logic slice)。这些器件将工作在超过100MHz的时钟频率。复数乘法器采用一条完全并行的数据通道,由4×348+2×24=1440个逻辑片构成,这相当于Virtex XCV1000 FPGA所提供逻辑资源的12%。计算一个复数乘积所需的时间为10ns,比DSP结构的基准测试快一个数量级。为了获得更高的性能,几个完全并行的复数乘法器可在单个芯片上实现。采用5个复数乘法器,假设时钟频率为100MHz,则计算平均速率为每2ns一个复数乘积。这一设计将占用一个XCV1000器件约59%的资源。 这里应该强调的一个问题是I/O,有这样一条高速数据通道固然不错,但为了充分利用它,所有的乘法器都须始终保持100%的利用率。这意味着在每一个时钟来临时都要向这些单元输入新的操作数。 除了具有可实现算法功能的高可配置逻辑结构外,FPGA还提供了巨大的I/O带宽,包括片上和片外数据传输带宽,以及算术单元和存储器等片上部件之间的数据传输带宽。例如,XCV1000具有512个用户I/O引脚。这些I/O引脚本身是可配置的,并可支持多种信号标准。实现复数乘法器的另一种方法是构造一个单元,该单元采用单设定或并行的24x24实数乘法器。这种情况下,每一个复数乘法需要4个时钟标识,但是FPGA的逻辑资源占用率却降到了最低。同样,采用100MHz系统时钟,每隔40ns可获得一个新的满精度复数乘积,这仍是DSP结构基准测试数据的2.5倍。这一设定方法需要大约450个逻辑片,占一个XCV1000器件所有资源的3.7%(或XCV300的15%)。 构造一条能够精确匹配所需算法和性能要求的数据通道的能力是FPGA技术独特的特性之一。而且请注意,由于FPGA采用SRAM配置存储器,只需简单下载一个新的配置位流,同样的FPGA硬件就可适用于多种应用。FPGA就像是具有极短周转时间的微型硅片加工厂。

7章 信号的运算和处理题解

(4)各种滤波电路的通带放大倍数的数值均大于1。(×) 二、现有电路: A. 反相比例运算电路 B. 同相比例运算电路 C. 积分运算电路 D. 微分运算电路 E. 加法运算电路 F. 乘方运算电路 选择一个合适的答案填入空内。 (1)欲将正弦波电压移相+90O,应选用 C 。 (2)欲将正弦波电压转换成二倍频电压,应选用 F 。 (3)欲将正弦波电压叠加上一个直流量,应选用 E 。 (4)欲实现A u=-100的放大电路,应选用A 。 (5)欲将方波电压转换成三角波电压,应选用 C 。 (6)欲将方波电压转换成尖顶波波电压,应选用 D 。 (1)为了避免50Hz电网电压的干扰进入放大器,应选用带阻滤波电路。 (2)已知输入信号的频率为10kHz~12kHz,为了防止干扰信号的混入,应选用带通滤波电路。 (3)为了获得输入电压中的低频信号,应选用低通滤波电路。 (4)为了使滤波电路的输出电阻足够小,保证负载电阻变化时滤波特性不变,应选用有源滤波电路。 四、已知图T7.4所示各电路中的集成运放均为理想运放,模拟乘法器的乘积系数k大于零。试分别求解各电路的运算关系。

图T7.4 解:图(a )所示电路为求和运算电路,图(b )所示电路为开方运算电路。它们的运算表达式分别为 I 3142O 2O 4 3'O 43I 12O2O1O I34 3421f 2I21I1f O1 )b (d 1 )1()( )a (u R kR R R u ku R R u R R u R R u t u RC u u R R R R R R R u R u R u ?= ?-=-=-=- =?+?+++-=?∥ 本章习题中的集成运放均为理想运放。 7.1 分别选择“反相”或“同相”填入下列各空内。 (1)反相 比例运算电路中集成运放反相输入端为虚地,而同相 比例运算电路中集成运放两个输入端的电位等于输入电压。 (2)同相比例运算电路的输入电阻大,而反相比例运算电路的输入电阻小。 (3)同相 比例运算电路的输入电流等于零,而 反相 比例运算电路的输入电流等于流过反馈电阻中的电流。 (4)同相 比例运算电路的比例系数大于1,而反相 比例运算电路的比例系数小于零。 (6) 乘方 运算电路可实现函数Y =aX 2。

数字信号处理第七章

成绩: 《数字信号处理》作业与上机实验 (第七章) 班级:电信 学号: 姓名: 任课老师:李宏民 完成时间: 信息与通信工程学院 2015—2016学年第1 学期

第7章 有限脉冲响应数字滤波器设计 一、教材p238: 19,20,21,25,26 二、某信号()x t 为:123()0.5cos(2)0.7cos(20.1)0.4cos(2)x t f t f t f t ππππ=+++,其中121100,130,600.f Hz f Hz f Hz ===设计最低阶FIR 数字滤波器,按下图所示对()x t 进行数字滤波处理,实现: (x t ()y t 1)将3f 频率分量以高于50dB 的衰减抑制,同时以低于2dB 的衰减通过1f 和2f 频率分量; 2)将1f 和2f 频率分量以高于50dB 的衰减抑制,同时以低于2dB 的衰减通过3f 频率分量; 要求:按数字滤波器直接型结构图编写滤波程序,求得()y n ;1)中的FIR 滤波器采用窗函数法设计;2)中的FIR 滤波器采用频率采样法设计。画出所设计的滤波器频率特性图、信号时域图;给出滤波器设计的MATLAB 代码与滤波器实现的代码;选择合适的信号采样周期T 。 3)与第6章作业2的IIR 滤波方法进行比较研究。

一、19、 Fs=80000; fp=15000;fs=20000;rs=40; wp=2*pi*fp/Fs;ws=2*pi*fs/Fs; rp=-20*log10(1-0.02);rs=40; [N1,wpo]=ellipord(wp/pi,ws/pi,rp,rs); [B,A]=ellip(N1,rp,rs,wpo); [Hk,wk]=freqz(B,A,500); Bt=ws-wp; alph=0.5842*(rs-21)^0.4+0.07886*(rs-21); M=ceil((rs-8)/2.285/Bt) wc=(wp+ws)/2/pi; hn=fir1(M,wc,kaiser(M+1,alph)); [Hk1,wk1]=freqz(hn,1,500); figure(1); plot(wk1/pi,20*log10(abs(Hk1)),'k'); hold on plot(wk/pi,20*log10(abs(Hk)),'r--'); hold off legend('FIR 滤波器,'IIR 滤波器'); axis([0,1,-80,5]);xlabel('w/\pi');ylabel('幅度/dB'); title('损耗函数'); figure(2) plot(wk1/pi,angle(Hk1)/pi,'k'); hold on plot(wk/pi,angle(Hk)/pi,'r--'); hold off legend('FIR 滤波器','IIR 滤波器'); xlabel('w/\pi');ylabel('相位/\pi'); title('相频特性曲线'); 0.20.4 0.60.81 0w/ 幅度/d B 损耗函数

模拟电子技术答案第7章信号的运算和处理

第7章信号的运算和处理 自测题 一、现有电路: A.反相比例运算电路 B.同相比例运算电路 C.积分运算电路 D.微分运算电路 E.加法运算电路 F.乘方运算电路 选择一个合适的答案填入空内。 (1)欲将正弦波电压移相+90o,应选用( C )。 (2)欲将正弦波电压转换成二倍频电压,应选用( F )。 (3)欲将正弦波电压叠加上一个直流量,应选用( E )。 (4)欲实现A u=?100 的放大电路,应选用( A )。 (5)欲将方波电压转换成三角波电压,应选用( C )。 (6)欲将方波电压转换成尖顶波波电压,应选用( D )。 二、填空: (1)为了避免50H z电网电压的干扰进入放大器,应选用( 带阻 )滤波电路。 (2)已知输入信号的频率为10kH z~12kH z,为了防止干扰信号的混入,应选用( 带通 )滤波电路 (3)为了获得输入电压中的低频信号,应选用( 低通 )滤波电路。 (4)为了使滤波电路的输出电阻足够小,保证负载电阻变化时滤波特性不变,应选用( 有源 )滤波电路。 三、已知图T7.3所示各电路中的集成运放均为理想运放,模拟乘法器的乘积系数k大于零。试分别求解各电路的运算关系。 (a)

(b) 图T7.3 解:图(a)所示电路为求和运算电路,图(b)所示电路为开方运算电路。它们的运算表达式分别为: (a) 124 13121234 ( )(1)//f I I O f I R u u R u R u R R R R R R =-+++??+ 11 O O u u dt RC =- ? (b) '2 3322144 O I O O R R R u u u ku R R R =- ?=-?=-? 24 13 O I R R u u kR R = ?

高速实时数字信号处理硬件技术发展概述

高速实时数字信号处理硬件技术发展概述 摘要:在过去的几年里,高速实时数字信号处理(DSP)技术取得了飞速的収展,目前单片DSP芯片的速度已经可以达到每秒80亿次定点运算(8000MIPS);其 高速度、可编程、小型化的特点将使信息处理技术迚入一个新纪元。一个完整的高速 实时数字信号处理系统包括多种功能模块,如DSP,ADC,DAC,RAM,FPGA,总线接口等技术本文的内容主要是分析高速实时数字信号处理系统的特点,构成,収展过程和系统设计中的一些问题,幵对其中的主要功能模块分别迚行了分析。最后文中介绍了一种采用自行开収的COTS产品快速构建嵌入式幵行实时信号处理系统的设计方法。 1.概述 信号处理的本质是信息的变换和提取,是将信息仍各种噪声、干扰的环境中提取出来,幵变换为一种便于为人或机器所使用的形式。仍某种意义上说,信号处理类似于”沙里淘金”的过程:它幵不能增加信息量(即不能增加金子的含量),但是可以把信息(即金子)仍各种噪声、干扰的环境中(即散落在沙子中)提取出来,变换成可以利用的形式(如金条等)。如果不迚行这样的变换,信息虽然存在,但却是无法利用的,这正如散落在沙中的金子无法直接利用一样。 高速实时信号处理是信号处理中的一个特殊分支。它的主要特点是高速处理和实时处理,被广泛应用在工业和军事的关键领域,如对雷达信号的处理、对通

信基站信号的处理等。高速实时信号处理技术除了核心的高速DSP技术外,还包括很多外围技术,如ADC,DAC等外围器件技术、系统总线技术等。 本文比较全面地介绍了各种关键技术的当前状态和収展趋势,幵介绍了目前高性能嵌入式幵行实时信号处理的技术特点和収展趋势,最后介绍了一种基于COTS产品快速构建嵌入式幵行实时信号处理系统的设计方法。 2.DSP技术 2.1 DSP的概念 DSP(digital signal processor),即数字信号处理器,是一种专用于数字信号处理的可编程芯片。它的主要特点是: ①高度的实时性,运行时间可以预测; ②Harvard体系结构,指令和数据总线分开(有别于冯·诺依曼结构); ③RISC指令集,指令时间可以预测; ④特殊的体系结构,适合于运算密集的应用场合; ⑤内部硬件乘法器,乘法运算时间短、速度快; ⑥高度的集成性,带有多种存储器接口和IO互联接口; ⑦普遍带有DMA通道控制器,保证数据传辒和计算处理幵行工作; ⑧低功耗,适合嵌入式系统应用。 DSP有多种分类方式。其中按照数据类型分类,DSP被分为定点处理器(如ADI的ADSP218x/9xBF5xx,TI的TMS320C62/C64)和浮点处理器(如ADI的SHARC/Tiger SHARC系统·TI的TMS320C67)。 雷达信号处理系统对DSP的要求很高,通常是使用32bit的高端DSP;而且浮

数字信号处理第七章

第七章数字滤波器设计 7.1:无限冲激响应滤波器的阶数的估计 Q7.1用MATTAB确定一个数字无限冲激响应低通滤波器所有四种类型的最低阶数。指标如下:40 kHz的抽样率,,4 kHz的通带边界频率,8 kHz的阻带边界频率,0.5 dB的通带波纹,40 dB的最小阻带衰减。评论你的结果。 答:标准通带边缘角频率Wp是: 标准阻带边缘角频率Ws是: 理想通带波纹Rp是0.5dB 理想阻带波纹Rs是40dB 1.使用这些值得到巴特沃斯低通滤波器最低阶数N=8,相应的标准通带边缘频率Wn是0.2469. 2.使用这些值得到切比雪夫1型低通滤波器最低阶数N=5,相应的标准通带边缘频率Wn是0.2000. 3/使用这些值得到切比雪夫2型低通滤波器最低阶数N=5,相应的标准通带边缘频率Wn是0.4000. 4.使用这些值得到椭圆低通滤波器最低阶数N=8,相应的标准通带边缘频率Wn是0.2000. 从以上结果中观察到椭圆滤波器的阶数最低,并且符合要求。 Q7.2用MATLAB确定一个数字无限冲激响应高通滤波器所有四种类型的最低阶数。指标如下:3500Hz的抽样率,1050 Hz的通带边界频率,600 Hz的阻带边界频率,1 dB 的通带波纹,50 dB的最小阻带衰减。评论你的结果 答:标准通带边缘角频率Wp是: 标准阻带边缘角频率Ws是: 理想通带波纹Rp是1dB 理想阻带波纹Rs是50dB 1.使用这些值得到巴特沃斯高通滤波器最低阶数N=8,相应的标准通带边缘频率Wn是0.5646.

2.使用这些值得到切比雪夫1型高通滤波器最低阶数N=5,相应的标准通带边缘频率Wn是 0.6000. 3.使用这些值得到切比雪夫2型高通滤波器最低阶数N=5,相应的标准通带边缘频率Wn是 0.3429. 4.使用这些值得到椭圆低通滤波器最低阶数N=4,相应的标准通带边缘频率Wn是0.6000. 从以上结果中观察到椭圆滤波器的阶数最低,并且符合要求。 Q7.3用MATLAB确定一个数字无限冲激响应带通滤波器所有四种类型的最低阶数。指 标如下:7 kHz的抽样率,1.4 kHz和2.1 kHz的通带边界频率,1.05 kHz和2.45 kHz 的阻带边界频率,,0 .4 dB的通带波纹,50 dB的最小阻带衰减。评论你的结果。 答:标准通带边缘角频率Wp是: 标准阻带边缘角频率Ws是: 理想通带波纹Rp是0.4dB 理想阻带波纹Rs是50dB 1.使用这些值得到巴特沃斯带通滤波器最低阶数2N=18,相应的标准通带边缘频率Wn是[0.3835 0.6165]. 2.使用这些值得到切比雪夫1型带通滤波器最低阶数2N=12,相应的标准通带边缘频率Wn 是[0.4000 0.6000]. 3.使用这些值得到切比雪夫2型带通滤波器最低阶数2N=12,相应的标准通带边缘频率Wn 是[0.3000 0.7000]. 4.使用这些值得到椭圆带通滤波器最低阶数2N=8,相应的标准通带边缘频率Wn是[0.4000 0.6000]. 从以上结果中观察到椭圆滤波器的阶数最低,并且符合要求。 Q7.4用MATLAB确定一个数字无限冲激响应带阻滤波器所有四种类型的最低阶数。指标如下:12 kHz的抽样率,2.1 kHz和4.5 kHz的通带边界频率,2.7 kHz和3.9 kHz的阻带边界频率,0.6 dB的通带波纹,45 dB的最小阻带衰减。评论你的结果。

第7章 信号处理电路 习题解答

第7章习题解答 自测题7 一、分别从LPF、HPF、BPF和BEF中选择最合适的一词填空。 1)直流电压放大倍数就是它的通带电压放大倍数的电路是。 2)在f=0或f→∞(意即频率足够高)时的电压放大倍数均等于零的电路是。 3)在理想条件下,f→∞时的电压放大倍数就是它的通带电压放大倍数的电路 是。 4)在理想条件下,f=0与f→∞的电压放大倍数相等,且不等于零的放大倍数是。 解:1)LBF;2)BPF;3)HPF;4)BEF。 二、判断下列说法是否正确,用“√”(正)和“?”(误)填入括号内。 1)高通滤波器的通频带是指电压的放大倍数不变的频率范围。() 2)低通滤波器的截止频率就是电压放大倍数下降1/2的频率点。() 3)带通滤波器的频带宽度是指电压放大倍数大于或等于通带内放大倍数0.707的频率范围。() 4)在带阻滤波器的阻带内,所有频率信号的电压放大倍数一定低于通带的放大倍数。 () 5)全通滤波器也是直流放大器。() 6)滤波器中的运放工作在线性状态,所以滤波电路中只引入了负反馈。() 解: 1)×;使 .. ||0.707|| u up A A ≈时的频率为截止频率。 2)×;使 .. ||0.707|| u up A A ≈时的频率为截止频率。 3)√; 4)×; 5)√; 6) ×。有时候同时也引入了正反馈。 三、在每小题的四个词中选择最合适的一个填入空格。 1)开关电容滤波器所不具备的特点是

A.集成度高 B. 截止频率稳定 C. 电路简单 D. 体积小、功耗低2)测量放大器显著的特点是 A 输出功率大 B 共模抑制比大 C 高频特性好 D 电流放大倍数高 3)电荷放大器的主要作用是 A 电流放大 B 电荷存储 C 高频放大 D 电压放大 4)隔离放大器在放大较低频率信号时,一般采取的方式为 A 电容耦合 B 光电耦合 C 直接耦合 D 变压器调制耦合 解:1)C;2)B;3)D;4)D。 习题7 7.1在下列各种情况下,因分别采用那种类型(低通、高通、带通、带阻)的滤波电路? (1)抑制频率为200kHz以上的高频干扰; (2)为了避免50Hz电网电压的干扰进入放大器; (3)防止干扰信号混入已知频率为20kHz~35kHz的输入信号; (4)获得低于50Hz的信号。 解:(1)低通滤波器;(2)带阻滤波器;(3)高通滤波器(4)低通滤波器 7.2简述仪表放大器有什么特点,应用于何种场合。 解:仪表放大器也称精密放大器,用于弱信号放大。 在测量系统中,通常都用传感器获取信号,然后进行放大。因此,传感器的输出是放大器的信号源。为了保证放大器对不同幅值信号具有稳定的放大倍数,就必 须使得放大器得输入电阻R i>>Rs,R i愈大,因信号源内阻变化而引起得放大误差 就愈小。此外,从传感器所获得的信号为差模小信号,并含有较大共模部分,其数 值有时远大于差模信号。因此,要求放大器应具有较强的抑制共模信号的能力。 综上所述,仪表放大器的特点是:具备足够大的放大倍数、高的输入电阻和高共模抑制比。 7.3简述电荷放大器有什么特点,应用于何种场合。

信号的运算和处理

第七章 信号的运算和处理 【本章主要内容】本章主要讲述基本运算电路和有源滤波电路。 【本章学时分配】本章分为2讲,每讲2学时。 第二十讲 运算电路概述和基本运算电路 一、主要内容 1、比例运算电路 分析方法,利用虚短、虚断的概念和基尔霍夫电流定理列出放大倍数表达式。 1) 反相比例运算电路 (1)电路的组成如图7.2.1所示。 (2)电路的放大倍数及特点 由分析得电路的放大倍数为 1 u R R A f -= 特点 ①输入信号接入反相输入端,u N 点虚地,其输出信号与输入信号反相。 ②电路不存在共模信号。 ③放大倍数可以大于1,可以小于1,也可以等于0。 ④因为电路引入电压并联负反馈,故电路的输入阻抗较低,即R i =R 1。 2) 同相比例运算电路 (1)电路的组成如图7.2.2所示。 (2)电路的放大倍数及特点 由分析得电路的放大倍数为 1 u R R 1A f += 特点 ①输入信号接入同相输入端,故其输出信号与输入信号同相。 ②电路存在共模信号,故应选用共模抑制比高的集成运放。 ③放大倍数只能大于或等于1。 ④因为电路引入电压串联负反馈,故其输入阻抗很高。 2、加减运算电路 分析方法,利用虚短、虚断的概念、结电电压法或叠加定理列出输出方程。 1) 反相求和运算电路 (1)电路的组成如下图所示

R u 1 u 2u o (2)电路的分析及特点 电路的输出表达式为 ??? ? ??+-=22 11 o u R R u R R u f f 电路的特点与反相比例运算电路的特点类似。 2) 同相求和运算电路 (1)电路的组成如下图所示 R 3u o (2)电路的分析及特点 电路的输出表达式为 ???? ??+++???? ? ? + =23 22132 31o u R R R u R R R R R 1u f 电路的特点与同相比例运算电路的特点类似。 3) 加减运算电路 (1)电路的组成如下图所示 R u 1u 2 u o (2)电路的分析及特点 电路的输出表达式为

高速DSP的PCB抗干扰设计技术(精)

高速DSP的PCB抗干扰设计技术 高速系统中,噪声干扰的产生是第一影响因素,高频电路还会产生辐射和冲突,而较快的边缘速率则会产生振铃、反射和串扰。如果不考虑高速信号布局布线的特殊性,设计出的电路板将不能正常工作。因此PCB板的设计成功是DSPs电路设计过程中非常关键的一个环节。 1 传输线效应 1.1信号完整性 信号完整性主要有反射、振铃、地弹和串扰等现象。PCB板上的走线可等效为图1所示的串联和并联的电容、电阻和电感结构。串联电阻的典型值0.25D./R-4)。55DJft,并联电阻阻值通常很高。将寄生电阻、电容和电感加到实际的PCB连线中之后,连线上的最终阻抗称为特征阻抗zo。 如果传输线和接收端的阻抗不匹配,这就会引起信号的反射和振荡。 布线的几何形状,不正确的线端接,经过连接器的传输及电源平面的不连续等因素的变化均会导致反射。过冲和下冲是信号在电平上升沿和下降沿变化时产生的,会在瞬间产生高于或低于平稳电平的毛刺,容易损坏器件。信号的振铃和环绕振荡分别是由线上不恰当的电感和电容所应起的。振铃可以通过适当的端接予以减小。 当电路中有大的电流涌动时会引起地弹,若有一个较大的瞬态电流在芯片与板的电源平面流过,芯片封装与电源平面间的寄生电感和电阻就会引发电源噪声。串扰是两条信号线之间的耦合问题,信号线之间的互感和互容导致了线上的噪声。容性耦合引发耦合电流,而感性耦合引发耦合电压。PCB板层的参数、信号线间距、驱动端和接收端的电气特性及线端接方式对串扰都有一定的影响。 1.2 解决办法 要解决常见的问题需要采取的一些措施: 电源层对电流方向不限制,返回线可沿着最小阻抗即与信号线最接近的路径走。这就可能使电流回路最小,而这将是高速系统首选的方法。但是电源层不排除线路杂波,不注意电源分布路径,所有系统均会产生噪声造成错误。因此需要特殊的滤波器,由旁路电容实现。一般一个l虾到lOp.F的电容放在板上电源输入端,而0.01p.F至U0.1心的电容放在板上每个有源器件的电源、地的管脚之间。旁路电容的作用就像滤波器,大电容(10aF)放在电源输入端,滤除板外产生的低频(60Hz)噪声,板上有源器件产生的噪声在100MHz或更高的频率下会产生谐波,放在每个芯片之间的旁路电容通常比放在板上电源输入端的电容小得多。

信号的运算及处理电路

信号的运算及处理电路 基本要求 · 正确理解:有源滤波电路 · 熟练掌握:比例、求和、积分运算电路;虚短和虚断概念 · 一般了解:其它运算电路 难点重点 1.“虚断”和“虚短”概念 如果为了简化包含有运算放大器的电子电路,总是假设运算放大器是理想的,这样就有“虚短”和“虚断”概念。 “虚短”是指在理想情况下,两个输入端的电位相等,就好像两个输入端短接在一起,但事实上并没有短接,称为“虚短”。虚短的必要条件是运放引入深度负反馈。 “虚断”是指在理想情况下,流入集成运算放大器输入端电流为零。这是由于理想运算放大器的输入电阻无限大,就好像运放两个输入端之间开路。但事实上并没有开路,称为“虚断”。 2.集成运算放大器线性应用电路 集成运算放大器实际上是高增益直耦多级放大电路,它实现线性应用的必要条件是引入深度负反馈。此时,运放本身工作在线性区,两输入端的电压与输出电压成线性关系,各种基本运算电路就是由集成运放加上不同的输入回路和反馈回路构成。 在分析由运放构成的各种基本运算电路时,一定要抓住不同的输入方式(同相或反相)和负反馈这两个基本点。 3.有源滤波电路 有源滤波电路仍属于运放的线性应用电路。滤波功能由RC 网络完成,运放构成比例运算电路用以提供增益和提高带负载能力。与无源滤波电路相比有以下优点: (1)负载不是直接和RC 网络相连,而是通过高输入阻抗和低输出阻抗的运放来连接,从而使滤波性能不受负载的影响; (2)电路不仅具有滤波功能,而且能起放大作用。 8.1基本运算电路 一、比例运算电路 1.反相比例运算电路(反相输入方式) 保密

(1)闭环电压放大倍数 Avf=Vo/Vi=-R2/R1 (2)当R2=R1时,闭环电压放大倍数为-1,此时的运算放大电路称为反相器。 (3)由于“虚短”,且同相输入端接地,所以此种组态电路具有虚地特性,即反相输入端近似地电位。 (4)输入电阻小。 2.同相比例运算电路(同相输入方式) (1)闭环电压放大倍数 Avf=Vo/Vi=(R2+R1)/R1=1+R2/R1 (2)当R1开路时,Vo=Vi ,此时的运算放大电路称为电压跟随器。 (3)由于“虚短”,且反相输入端信号为 (Vo*R1)/(R2+R1)不为0,所以同相输入端信号等于 (Vo*R1)/(R2+R1)也不为0。即同相电路组态引入共模信号。 (4)输入电阻较大。 二、加、减运算电路 加、减运算电路均有反相输入和同相输入两种输入方式。对于此种电路的计算一般采用叠加定理。 1.加法电路 Vo=-(V1/R1+V2/R2).Rf 若将V2经一级反相器接至加法器输入端,则可实现减法运算: Vo=-(V1/R1-V2/R2).Rf 2.减法运算电路(差动输入方式) (1)根据叠加定理,可以认为输出电压Vo 是在两个输入信号V1和V2分别作用下的代数和,即 Vo=-(R2/R1)V1+[R2'/(R1'+R2')].[(R1+R2)/R1].V2 (2)当R1=R2=R1'=R2' 时,Vo=V2-V1,实现减法运算。 (3)由于“虚短”,同相输入端输入信号和反相输入端输入信号等于[R2'/(R1'+R2')]. V保密

(完整版)TMS320C6455高速SRIO接口设计

TMS320C6455高速SRIO接口设计 引言 数字信号处理技术已广泛应用于通信、雷达、声纳、遥感、图形图像处理和语音处理等领域。随着现代科技的发展,尤其是半导体工艺的进入深亚微米时代,新的功能强劲的高性能数字信号处理器(DSP)也相继推出,如ADI(美国模拟器件)公司的TigerSHARC系列和TI(德州仪器)公司的 C6000系列,但是,要实现对运算量和实时性要求越来越高的DSP 算法,如对基于分数阶傅立叶变换的Chirp信号检测与估计,合成孔径雷达(SAR)成像,高频地波雷达中的自适应滤波和自适应波束形成等算法,单片DSP 仍然显得力不从心。这些挑战主要涉及两个主题:一是计算能力,指设备、板卡和系统中分别可用的处理资源。采用多DSP、多FPGA系统,将是提高运算能力的一个有效途径。二是连接性,从本质上说就是实现不同设备、板卡和系统之间的“快速”数据转移。对于一些复杂的信息系统,对海量数据传输的实时性提出了苛刻的要求,多DSP之间、DSP与高速AD采集系统、DSP与FPGA间的高速数据传输,是影响信号处理流程的主要瓶颈之一。TI公司最新推出的高性能TMS320C6455(下文称C6455)处理器,具有高速运算能力的同时集成了高速串行接口SRIO,方便多DSP以及DSP与FPGA之间的数据传输,在一定程度上满足了高速实时处理和传输的要求。本文在多DSP+FPGA通用信号处理平台的基础上,深入研究了多DSP间,DSP与FPGA间的SRIO 的数据通信和加载技术的软硬件设计与实现。这些技术包括了目前SRIO接口的各种应用方式,可作为SRIO接口及C6455开发提供参考[1-3]。 1 C6455特性及SRIO标准介绍 C6455是目前单片处理能力最强的新型高性能定点DSP,它是TI 公司基于第三代先进VeloviTI VLIW(超长指令字)结构开发出来的新产品。最高主频为1.2GHz,16位定点处理能力为9600MMAC/s。C6455建立在增强型C64x+ DSP内核基础之上,代码尺寸平均缩短了20%至30%,周期效率提高了20%。C6455不仅是内核的增强和运算速度的提升,相比以前的芯片,集成了丰富的外围接口,如千兆以太网控制器,66 MHz PCI总线接口,最重要的是增加了新的外设接口SRIO,全双工工作时,四个端口峰值速率每秒高达25 Gbits,解决了DSP高速数据传输的瓶颈,降低了开发多处理器系统的难度[4-5]。 RapidIO是新一代高速互连技术,已于2004年被国际标准化组织(ISO)和国际电工协会(IEC) 批准为ISO/IEC DIS 18372标准。RapidIO互连定义包括两类技术:面向高性能微处理器及系统互连的Parallel RapidIO接口;面向串行背板、DSP和相关串行控制平面应用的Serial RapidIO接口。SRIO支持编程模型包括基本存储器映射IO事务、基于端口的消息传递和基于硬件一致性的全局共享分布式处理器。 SRIO互连架构是一个开放的标准,满足了嵌入式基础实施在应用方面的广泛需要。可行的应用包括多处理器、存储器、网络设备中的存储器映射I/O器件、存储子系统和通用计算平台。这一互连技术主要作为系统内部互连,支持芯片到芯片和板到板的通信,可以实现从1Gbps到60Gbps的性

第七章 信号检测与处理电路

第七章信号检测与处理电路一、教学要求 知识点 教学要求 学时掌握理解了解 信号检测系统的基本组成√ 检测系统中的放大电路 测量放大器的电路结构和工作 原理 √ 隔离放大器的电路结构和工作 原理 √ 有源滤波 器 滤波器的基础知识√ 低通、高通有源滤波器特性和 分析方法 √ √ 带通、带阻有源滤波器电路结 构与特性 √ 电压比较器的特性和分析方法√ 二、重点和难点 本章的重点和难点 本章的重点是:测量放大器的电路结构和工作原理、滤波器的基础知识、低通和高通有源滤波器特性和 分析方法、电压比较器的特性和分析方法。本章的难点是:二阶有源滤波器、迟滞比较器的电路分析。 三、教学内容 7.1 信号检测系统的基本组成 一般信号检测系统的前向通道主要包含传感器、放大器、滤波器、采样保持器和模数转换器等电路模块。 将被测物理量转换成相应的电信号的部件称为传感器。传感器输出的电信号一般都比较微弱,通常需要利用放大电路将信号放大。然而,与被测信号同时存在的还会有不同程度的噪声和干扰信号,有时被测信号可能会被淹没在噪声及干扰信号之中,很难能分清哪些是有用信号,哪些是干扰和噪声。因此,为了提取出有用的信号,而去掉无用的噪声或干扰信号,就必须对信号进行处理。 在信号处理电路中,应根据实际情况选用合理的电路。例如,当传感器的工作环境恶劣,输出信号中的有用信号微弱、共模干扰信号很大,而传感器的输出阻抗又很高,这时应采用具有高输入阻抗、高共模抑制比、高精度、低漂移、低噪声的测量放大器;当传感器工作在高电压、强电磁场干扰等场所时,还必须将检测、控制系统与主回路实现电气上的隔离,这时应采用隔离放大器;对于那些窜入被测信号中的差模干扰和噪声信号,通常需要根据信号的频率范围选择合理的滤波器来滤除。 另外,在信号检测系统中,有时还需要对某些被测模拟信号的大小先做

章 信号的运算和处理题解 第四版模电答案

第七章信号的运算和处理 自测题 一、现有电路: A. 反相比例运算电路 B. 同相比例运算电路 C. 积分运算电路 D. 微分运算电路 E. 加法运算电路 F. 乘方运算电路 选择一个合适的答案填入空内。 (1)欲将正弦波电压移相+90O,应选用。 (2)欲将正弦波电压转换成二倍频电压,应选用。 (3)欲将正弦波电压叠加上一个直流量,应选用。 (4)欲实现A u=-100的放大电路,应选用。 (5)欲将方波电压转换成三角波电压,应选用。 (6)欲将方波电压转换成尖顶波波电压,应选用。 解:(1)C (2)F (3)E (4)A (5)C (6)D 二、填空: (1)为了避免50Hz电网电压的干扰进入放大器,应选用滤波电路。 (2)已知输入信号的频率为10kHz~12kHz,为了防止干扰信号的混入,应选用滤波电路。 (3)为了获得输入电压中的低频信号,应选用滤波电路。 (4)为了使滤波电路的输出电阻足够小,保证负载电阻变化时滤波特性不变,应选用滤波电路。 解:(1)带阻(2)带通(3)低通(4)有源 三、已知图T7.3所示各电路中的集成运放均为理想运放,模拟乘法器的乘积系数k大于零。试分别求解各电路的运算关系。 图T7.3 解:图(a)所示电路为求和运算电路,图(b)所示电路为开方运算电路。它

们的运算表达式分别为 习题 本章习题中的集成运放均为理想运放。 7.1填空: (1)运算电路可实现A u>1的放大器。 (2)运算电路可实现A u<0的放大器。 (3)运算电路可将三角波电压转换成方波电压。 (4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。 (5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。 (6)运算电路可实现函数Y=aX2。 解:(1)同相比例(2)反相比例(3)微分(4)同相求和 (5)反相求和(6)乘方 7.2 电路如图P7.2所示,集成运放输出电压的最大幅值为±14V,填表。 图P7.2 u I/V 0.1 0.5 1.0 1.5 u O1/V u O2/V 解:u O1=(-R f /R) u I=-10 u I,u O2=(1+R f /R ) u I=11 u I。当集成运放工作到非线性区时,输出电压不是+14V,就是-14V。 u I/V 0.1 0.5 1.0 1.5 u O1/V -1 -5 -10 -14 u O2/V 1.1 5.5 11 14 7.3设计一个比例运算电路,要求输入电阻R i=20kΩ,比例系数为-100。 解:可采用反相比例运算电路,电路形式如图P7.2(a)所示。R=20kΩ,R f=2M Ω。 7.4电路如图P7.4所示,试求: (1)输入电阻; (2)比例系数。 解:由图可知R i=50kΩ,u M=-2u I。

信号分析与处理

信号分析与处理 第一章绪论:测试信号分析与处理的主要内容、应用;信号的分类,信号分析与信号处理、测试信号的描述,信号与系统。 测试技术的目的是信息获取、处理和利用。 测试过程是针对被测对象的特点,利用相应传感器,将被测物理量转变为电信号,然后,按一定的目的对信号进行分析和处理,从而探明被测对象内在规律的过程。 信号分析与处理是测试技术的重要研究内容。 信号分析与处理技术可以分成模拟信号分析与处理和数字信号分析与处理技术。 一切物体运动和状态的变化,都是一种信号,传递不同的信息。 信号常常表示为时间的函数,函数表示和图形表示信号。 信号是信息的载体,但信号不是信息,只有对信号进行分析和处理后,才能从信号中提取信息。 信号可以分为确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;能量信号与功率信号;奇异信号; 周期信号无穷的含义,连续信号、模拟信号、量化信号,抽样信号、数字信号 在频域里进行信号的频谱分析是信号分析中一种最基本的方法:将频率作为信号的自变量,在频域里进行信号的频谱分析; 信号分析是研究信号本身的特征,信号处理是对信号进行某种运算。 信号处理包括时域处理和频域处理。时域处理中最典型的是波形分析,滤波是信号分析中的重要研究内容; 测试信号是指被测对象的运动或状态信息,表示测试信号可以用数学表达式、图形、图表等进行描述。 常用基本信号(函数)复指数信号、抽样函数、单位阶跃函数单位、冲激函数(抽样特性和偶函数)离散序列用图形、数列表示,常见序列单位抽样序列、单位阶跃序列、斜变序列、正弦序列、复指数序列。 系统是指由一些相互联系、相互制约的事物组成的具有某种功能的整体。被测系统和测试系统统称为系统。输入信号和输出信号统称为测试信号。系统分为连续时间系统和离散时间系统。

第七章 lAB VIEW信号分析与处理1

第六章信号处理与分析 6.1概述 数字信号在我们周围无所不在。因为数字信号具有高保真、低噪声和便于信号处理的优点,所以得到了广泛的应用,例如电话公司使用数字信号传输语音,广播、电视和高保真音响系统也都在逐渐数字化。太空中的卫星将测得数据以数字信号的形式发送到地面接收站。对遥远星球和外部空间拍摄的照片也是采用数字方法处理,去除干扰,获得有用的信息。经济数据、人口普查结果、股票市场价格都可以采用数字信号的形式获得。因为数字信号处理具有这么多优点,在用计算机对模拟信号进行处理之前也常把它们先转换成数字信号。本章将介绍数字信号处理的基本知识,并介绍由上百个数字信号处理和分析的VI构成的LabVIEW分析软件库。 目前,对于实时分析系统,高速浮点运算和数字信号处理已经变得越来越重要。这些系统被广泛应用到生物医学数据处理、语音识别、数字音频和图像处理等各种领域。数据分析的重要性在于,无法从刚刚采集的数据立刻得到有用的信息,如下图所示。必须消除噪音干扰、纠正设备故障而破坏的数据,或者补偿环境影响,如温度和湿度等。 通过分析和处理数字信号,可以从噪声中分离出有用的信息,并用比原始数据更全面的表格显示这些信息。下图显示的是经过处理的数据曲线。

用于测量的虚拟仪器(VI) 用于测量的虚拟仪器(VI)执行的典型的测量任务有: ●计算信号中存在的总的谐波失真。 ●决定系统的脉冲响应或传递函数。 ●估计系统的动态响应参数,例如上升时间、超调量等等。 ●计算信号的幅频特性和相频特性。 ●估计信号中含有的交流成分和直流成分。 在过去,这些计算工作需要通过特定的实验工作台来进行,而用于测量的虚拟仪器可以使这些测量工作通过LabVIEW程序语言在台式机上进行。这些用于测量的虚拟仪器是建立在数据采集和数字信号处理的基础之上,有如下的特性: ●输入的时域信号被假定为实数值。 ●输出数据中包含大小、相位,并且用合适的单位进行了刻度,可用来直接进行 图形的绘制。 ●计算出来的频谱是单边的(single_sided),范围从直流分量到Nyquist频率(二 分之一取样频率)。(即没有负频率出现) ●需要时可以使用窗函数,窗是经过刻度地,因此每个窗提供相同的频谱幅度峰 值,可以精确地限制信号的幅值。 一般情况下,可以将数据采集VI的输出直接连接到测量VI的输入端。测量VI的输出又可以连接到绘图VI以得到可视的显示。 有些测量VI用来进行时域到频域的转换,例如计算幅频特性和相频特性、功率谱、网路的传递函数等等。另一些测量VI可以刻度时域窗和对功率和频率进行估算。 本章我们将介绍测量VI中常用的一些数字信号处理函数。 LabVIEW的流程图编程方法和分析VI库的扩展工具箱使得分析软件的开发变得更加简单。LabVIEW 分析VI通过一些可以互相连接的VI,提供了最先进的数据分析技术。你不必像在普通编程语言中那样关心分析步骤的具体细节,而可以集中注意力解决信号处理与分析方面的问题。LabVIEW 6i版本中,有两个子模板涉及信号处理和数学,分别是Analyze 子模板和Methematics子模板。这里主要涉及前者。 进入Functions模板Analyze》Signal Processing子模板。 其中共有6个分析VI库。其中包括: ①.Signal Generation(信号发生):用于产生数字特性曲线和波形。 ②.Time Domain(时域分析):用于进行频域转换、频域分析等。 ③.Frequency Domain(频域分析): ④.Measurement(测量函数):用于执行各种测量功能,例如单边FFT、频谱、比例加窗以及泄漏频谱、能量的估算。 ⑤.Digital Filters(数字滤波器):用于执行IIR、FIR 和非线性滤波功能。

第八章 信号的运算和处理电路讲解

第八章信号的运算和处理电路(6学时) 主要内容: 8.1 加、减、积分和微分电路 8.2 实际运算放大器运算电路的误差分析 8.3 滤波电路的基本概念,一阶、二阶有源滤波电路 基本要求: 8.1 抓住深度负反馈条件下的“虚短”和“虚断”的概念,讨论基本运算电路 8.2 了解实际运放组成的运算电路的误差 8.3 了解有源滤波电路的分类及一阶、二阶滤波电路的频率特性 教学要点: 建立运算放大器“虚短”和“虚断”的概念,重点介绍由运算放大器组成的加法、减法、积分和微分电路的组成和工作原理 讲义摘要: 8.1 基本运算电路 引言 运算电路是集成运算放大器的基本应用电路,它是集成运放的线性应用。讨论的是模拟信号的加法、减法、积分和微分、对数和反对数(指数)、以及乘法和除法运算。为了分析方便,把集成运放电路均视为理想器件,应满足: (1)开环电压增益Au =∞ (2)输入电阻Ri= ∞,输出电阻Ro=0, (3)开环带宽BW= ∞ (4)同相输入端端压与反相输入端端压v P = v N时,输出电压v o =0,无温漂因此,对于工作在线性区的理想运放应满足“虚短”:即v P = v N;“虚断”: 即i P =i N = 0 本章讨论的即是上述“虚短、”“虚断”四字法则的灵活应用。 一、加减法电路 1. 反相输入求和电路 在反相比例运算电路的基础上,增加一个输入支路,就构成了反相输入求和电路,如图8.1.1所示: 图8.1.1 反相输入求和电路

两个输入信号电压产生的电流都流向R f,所以输出是两输入信号的比例和:。 2.同相输入求和电路 在同相比例运算电路的基础上,增加一个输入支路,就构成了同相输入求和电路,如图8.1.2所示: 图8.1.2 同相输入求和电路 因运放具有虚断的特性,对运放同相输入端的电位可用叠加原理求得: 而 可得: 当 3.双端输入求和电路 双端输入也称差动输入,双端输入求和运算电路如图8.1.3所示: 其输出电压表达式的推导方法与同相输入运算电路相似。当v i1=v i2 =0时,用叠加原理分别求出v i3=0和v i4 =0时的输出电压v op。当v i3 = v i4 =0时,分别求出v i1=0,和v i2 =0时的v on。

相关主题
文本预览
相关文档 最新文档