当前位置:文档之家› 第七节变尺度法

第七节变尺度法

第七节变尺度法
第七节变尺度法

约束变尺度法

约束变尺度法 Newton 法最突出的优点是收敛速度快,在这一点上其它算法无法比拟的。因此,建议凡是Hesse 矩阵比较容易求出的问题,尽可能使用Newton 法求解。但是,Newton 法也有一个严重缺陷,就是每次迭代都要计算目标函数的Hesse 矩阵和它的逆矩阵,当问题的维数较大时,计算量迅速增加,从而就抵消了Newton 法的优点。为此,人们开始寻找一种算法既可以保持Newton 法收敛速度快的优点,又可以摆脱关于Hesse 矩阵的计算,这就是变尺度算法。 变尺度法是一种非常好的方法,其中DFP 算法和BFGS 算法。可以说,直到目前为止,在不用Hesse 矩阵的方法中是最好的算法。 一、拟Newton 法 为了吸收Newton 法收敛速度快的优点,同时避免Newton 法每次迭代都要计算目标函数的Hesse 矩阵和它的逆矩阵,人们提出了具有超线性收敛的拟Newton 法。 (一)拟Newton 法的基本原理 在Newton 法中的基本迭代公式 k k k k P t X X +=+1, 其中 1 =k t , ) ()]([12 k k k X f X f P ?? -=- 令 ) ()(2 k k k k X f g X f G ?=? =,

于是有 ,,,,21011=-=-+k g G X X k k k k 其中X0是初始点, gk 和 Gk 分别是目标函数f (X )在点 Xk 的梯度和Hesse 矩阵. 为了消除这个迭代公式中的Hesse 逆矩阵G-1k ,可用某种近似矩阵Hk=Hk(Xk)来替换它,即构造一矩阵序列{Hk}去逼近Hesse 逆矩阵序列{G-1k},此时 k k k k g H X X -=+1 事实上,式中 Pk= -Hk gk 无非是确定了第k 次迭代的搜索方向.为了取得更大的灵活性,考虑更一般的迭代公式 k k k k k g H t X X -=+1 其中步长tk 通过从Xk 出发沿Pk= -Hk gk 作直线搜索来确 定.此式代表很广的一类迭代公式. 例如,当Hk=I (单位矩阵)时,它变为最速下降法的迭代 公式。 附加条件 为了使Hk 确实与G-1k 近似并有容易计算的特点,必须对 Hk 附加某些条件: ⑴ 为保证迭代公式具有下降性质,要求 {Hk} 中的每一个矩阵都是对称正定 的. 因为使搜索方向Pk= -Hk gk 是下降方向, 只要 <-=k k T k k T k g H g P g ⑵ 求Hk 之间的迭代具有简单形式.

拟牛顿法(变尺度法)DFP算法的cc 源码

拟牛顿法(变尺度法)DFP算法的c/c++源码 #include "iostream.h" #include "math.h" void comput_grad(double (*pf)(double *x), int n, double *point, double *grad); //计算梯度 double line_search1(double (*pf)(double *x), int n, double *start, double *direction); //0.618法线搜索 double line_search(double (*pf)(double *x), int n, double *start, double *direction); //解析法线搜索 double DFP(double (*pf)(double *x), int n, double *min_point); //无约束变尺度法 //梯度计算模块 //参数:指向目标函数的指针,变量个数,求梯度的点,结果 void comput_grad(double (*pf)(double *x), int n, double *point, double *grad) { double h=1E-3; int i; double *temp; temp = new double[n]; for(i=1;i<=n;i++) { temp[i-1]=point[i-1]; } for(i=1;i<=n;i++) { temp[i-1]+=0.5*h; grad[i-1]=4*pf(temp)/(3*h); temp[i-1]-=h; grad[i-1]-=4*pf(temp)/(3*h); temp[i-1]+=(3*h/2); grad[i-1]-=(pf(temp)/(6*h)); temp[i-1]-=(2*h); grad[i-1]+=(pf(temp)/(6*h)); temp[i-1]=point[i-1]; } delete[] temp; }

变尺度法

一、变尺度法的基本思想 变尺度法是在牛顿法的基础上发展起来的,它和梯度法亦有密切关系。我们观察一下梯度法和阻尼牛顿法的迭代公式,即: 式——(1) 和——(2) 分析比较这两种方法可知:梯度法的搜索方向为,只需计算函数的一阶偏导数,计算工作量小,当迭代点远离最优点时对突破函数的非二次性极为有利,函数值下降很快,但是当迭代点接近最优点时收敛速度很慢。牛顿法的搜索方向为, 不仅需要计算一阶偏导数而且要计算二阶偏导数矩阵及其逆矩阵.计算工作璧很大,但牛顿法具有二次收敛性,当迭代点接近最优点时收敛速度很快。对这两种方法取其优,去其劣,迭代过程先用梯度法,后用牛顿法并避开牛顿法的赫森矩阵的逆矩阵的繁琐计算,这就是萌生建立“变尺度法”的基本构想。下面对变尺度法的基本思想进行阐述。 变尺度法所构成的迭代公式为: ——(3) 式中为最优步长因子,由一维搜索 而得;对照无约束优化迭代通式。变尺度法的搜索方向应为; 是根据需要人为构造的一个n×n阶对称矩阵,它在迭代过程中随迭代点的位置变化而变化。若在初始点取为单位矩阵取I,则式(3}就成为式(1)表示的梯度法迭代公式,搜索方向为负梯度方向。以后随着迭代过程不断地修正构造矩阵,使它在整个迭代过程中 逐步地逼近目标函数在极小点处的赫森矩阵的逆矩阵。当时。式(3)就成为式(2)表示的阻尼牛顿法迭代公式。这样,当迭代点逼近最优点时,搜索方向就趋于牛 顿方向。如能实现这种构想,那就综合了梯度法和牛顿法的优点,不直接计算,而是用变化的构造矩阵去逼近它,使算法更为有效。构造矩阵在迭代过程中是变

化的,称为变尺度矩阵。由于变尺度法的迭代形式与牛倾法类似,不同的是在迭代公式中用 来逼近,所以又称为“拟牛顿法”,变尺度法的搜索方向 ,最终要逼近牛顿方向,故又称为拟牛顿方向。 实现上述变尺度法的基本思想,关键在于如何产生这一合乎要求的变尺度矩阵,下面对此进行重点讨论。 二、构造变尺度矩阵的基本要求 1.为了使拟牛顿搜索方向朝着目标函 数值下降的方向,必须为对称正定矩阵。证明如下: 若有目标函数f(X}由点沿方向具有下降的性质,即,根 据梯度的性质,可知搜索方向与负梯度方向之间的夹角应成锐角,即两者的点积应大于零 将代入上式,则有 用矩阵表示为或 这表明变尺度矩阵必须是对称正定矩阵才能保证变尺度算法拟牛顿搜索方向是函数值下降方向。 2.要求构造的变尺度矩阵具有简单的迭代形式,能利用本次迭代信息以固定的格式构造下一次迭代的变尺度矩阵,可以写成

分子轨道理论的发展及其应用

分子轨道理论的发展及其应用 北京师范大学段天宇学号201111151097 摘要:分子轨道理论是目前发展最成熟,应用最广泛的化学键理论之一。本文简述了分子轨道理论的基本思想及发展历程,列举了其在配位化学、矿物学、气体吸附领域的应用实例,并对其前景作出展望。 0 前言 化学键是化学学科领域中最为重要的概念之一。通常,化学键被定义为存在于分子或晶体中或两个或多个原子间的,导致形成相对稳定的分子或晶体的强相互作用。从二十世纪初期至今,科学家们为了解释化学键现象相继提出了价键理论、分子轨道理论、配位场理论等化学键理论。其中分子轨道理论(Molecular Orbital Theory)具有容易计算、计算结果得到实验支持的优势,并不断得到完善与拓展,因而自二十世纪五十年代以来,已经逐渐确立了其主导地位[1]。目前,作为相对最为成熟的化学键理论,分子轨道理论的应用已经涵盖了化学研究的几乎全部领域中。 1 分子轨道理论发展 1926至1932年,Mulliken和Hund分别对分子中的电子状态进行分类,得出选择分子中电子量子数的规律,提出了分子轨道理论[2]-[3]。分子轨道理论认为,电子是在整个分子中运动,而不是定域化的。他们还提出了能级相关图和成键、反键轨道等重要概念。 1929年,Lennard-Jones提出原子轨道线性组合(Linear Combination of Atomic Orbitals)的理论[4]。后来,原子轨道线性组合的思想被应用于分子轨道理论中,成为分子轨道理论的基本原理。这一原理指出,原子轨道波函数通过线性组合,即各乘以某一系数相加得到分子轨道波函数。这种组合要遵循三个基本原则,即:组合成分子轨道的原子轨道必须对称性匹配;组成分子轨道的原子轨道须能级相近;原子轨道达到最大程度重叠以降低组成分子轨道的能量。其中,最重要的是对称性匹配原则,对称性相同的原子轨道组合成能量低于自身的成键分子轨道,对称性相反的原子轨道组合成高于自身的反键分子轨道。 1931-1933年,Huckel提出了一种计算简便的分子轨道理论(HMO)[5],是分子轨道理论的重大进展。HMO理论的基本思想是,把两电子间的相互作用近似地当做单电子的平均位场模型处理,导出单电子运动方程: Hψ=Eψ 其中H是该电子的Hamilton算符,ψ是该电子所占据的分子轨道波函数,E为轨道能量。同时,ψ是由原子轨道φk线性组合得到,即 ψ=c1φ 1 +c2φ 2 +?+c kφ k 代入运动方程,利用变分法得到久期方程式 H ij?ES ij=0 其中H和S分别为Hamilton算符和重叠积分的矩阵元,求解久期方程式即可求得分子轨道能量E。这种方法计算简便,发表之处即得到运用,尤其是对于共轭分子性质的讨论取得巨大成功,后来发展成为分子轨道理论的重要分支。 HMO理论虽然简单有效,但只能进行定性讨论,而不能进行严格的定量计算。这个问题的解决,得益于1951年,Roothaan在的Hartree-Fock方程[6]-[7] h fψ k =E kψ k (h f为Hartree-Fock算符)的基础上,将分子 轨道ψ k 写成原子轨道线性组合的形式,得到 Hartree-Fock-Roothaan方程(HFR方程)[8] h f C k=E k C k 而1950年,Boys提出利用Gauss函数研究原子

不变特征

不变特征 0引言 图像局部特征的研究已经有很长的历史,早期研究可以追溯到20世纪70年代的Momvec算子。文献中存在大量关于角点、边缘、blob和区域等局部特征的研究方法。近年来区分性强、对多种几何和光度变换具有不变性的局部不变特征在宽基线匹配、特定目标识别、目标类别识别、图像及视频检索、机器人导航、纹理识别和数据挖掘等多个领域内获得广泛的应用,是国内外的研究热点。 局部不变特征是指局部特征的检测或描述对图像的各种变化,例如几何变换、光度变换、卷积变换、视角变化等保持不变。局部不变特征的基本思想是提取图像内容的本质属性特征,这些特征与图像内容的具体表现形式无关或具有自适应性(即表现形式变化时特征提取自适应的变化以描述相同的图像内容)。局部不变特征通常存在一个局部支撑邻域,与经典的图像分割算法不同,局部支撑邻域可能是图像的任何子集,支撑区域的边界不一定对应图像外观(例如颜色或纹理)的变化。 局部不变特征不仅能够在观测条件变化大、遮挡和杂乱干扰的情况下获得可靠的匹配,而且能够有效的描述图像内容进行图像检索或场景、目标识别等。局部不变特征可以克服语义层次图像分割的需要。从复杂背景中分割出前景目标是十分困难的课题,基于低层特征的方法很难实现有意义的分割,把图像内容表示为局部不变区域的集合(多个区域可能存在重合,图像中一些部分也可能不存在局部不变区域),可以回避分割问题。基于局部不变特征的方法本质上是对图像内容进行隐式分割,局部不变特征既可能位于感兴趣的前景目标上也可能位于背景或目标边界上,后续的高层处理需要基于局部不变特征提取感兴趣的信息。 局部不变特征的研究包含3个基本问题:一是局部不变特征的检测,二是局部不变特征的描述,三是局部不变特征的匹配。根据不同的准则,局部不变特征的研究方法可以分为不同的类别,按照使用的色调空间的不同可以分为局部灰度不变特征和局部彩色不变特征;按照特征层次的不同可以分为角点不变特征、blob不变特征和区域不变特征;按照几何变换不变性的自由度可以分为平移不变特征、旋转不变特征、尺度不变特征、欧氏不变特征、相似不变特征、仿射不变特征和投影不变特征;按照处理思路的不同可以分为基于轮廓曲率的不变特征、

变分法的发展与应用

变分法的发展与应用 应用数学11XX班XXX 104972110XXXX 摘要:变分法是研究泛函卡及值的数学分支,其基本问题是求泛函(函数的雨数)的极值及相应的极值函数。变分法是重要的数学分支,与诸如微分方程、数学物理、极小曲面用论、微分几何、黎曼几何、积分力‘程、拓扑学等许多数学分支或部门均有密切联系。变分法有着广泛的应用:变分法构成了物理学中的种种变分原理,成为物理学理论不可缺少的组成部分,是研究力学、弹性理论、电磁学、相对论、量子力学等许多物理学分支的重要工具;变分法通过“直接方法”而成为近似计算的有效于段,为微分方程边值问题的数值解法开辟了一条途径,形成了有限元方法的基础之一。近年来,变分法又在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 关键词:起源;发展;应用 1.引言 变分法是17世纪末发展起来的一门数学分支,是处理函数的函数的数学领域,和处理数的函数的普通微积分相对。它最终寻求的是极值函数:它们使得泛函取得极大或极小值。变分法起源于一些具体的物理问题学问题,最终由数学家研究解决。变分法在科学与技术的各个领域尤其是在物理学中有着十分重要的作用,它提供了有限元方法的数学基础,它是求解边界值问题的强有力工具。它们在材料学中研

究材料平衡中大量使用。微分几何中的测地线的研究也是显然的变分性质的领域。 近年来,变分法在经济、电子工程和图像处理等领域得以广泛应用。因此研究变分法的思想演化过程,无论从数学史还足从科学史的角度来说,都具有十分重要的理论价值和现实意义。 2.变分法的起源 物理学中泛函极值问题的提出促进了变分学的建立和发展,而变分学的理论成果则不断渗透到物理学中。 费马从欧几里得确立的光的反射定律出发提出了光的最小时间原理:光线永远沿用时最短的路径传播。他原先怀疑光的折射定律,但在1661年费马发现从他的光的最小时间原理能够推导出折射定律,不仅消除了早先的怀疑,而且更加坚信他的原理。 受费尔马的影响,约翰伯努利研究了“最速降线”问题:给 定空间中的两个点,a b,其中a比b高,求一条连接两点的曲线使得一个质点从a沿曲线下降到b用时最少。 变分法对于几何的应用在早期主要是对曲面上的测地线和欧氏空间中给定边界的极小曲面(Plateau问题)的研究。但在很长时间内仅限于一些特殊情形,没有重要进展。 3.变分法的发展 18世纪是变分法的草创时期,建立了极值应满足的欧拉方程并据此解决了大量具体问题。19世纪人们把变分法广泛应用到数学物理中去,建立了极值函数的充分条件。20世纪伊始,希尔伯

尺度不变特征变换(Scale-invariant feature transform,SIFT

SIFT SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。该方法于1999年由David Lowe 首先发表于计算机视觉国际会议(International Conference on Computer Vision,ICCV),2004年再次经David Lowe整理完善后发表于International journal of computer vision(IJCV) 。截止2014年8月,该论文单篇被引次数达25000余次。 算法介绍 SIFT由David Lowe在1999年提出,在2004年加以完善。SIFT在数字图像的特征描述方面当之无愧可称之为最红最火的一种,许多人对SIFT进行了改进,诞生了SIFT的一系列变种。SIFT 已经申请了专利。 SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、微视角改变的容忍度也相当高。基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特征的信息量大,适合在海量数据库中快速准确匹配。 算法的特点 SIFT算法具有如下一些特点: 1.SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性; 2. 区分性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配; 3. 多量性,即使少数的几个物体也可以产生大量的SIFT特征向量; 4.高速性,经优化的SIFT匹配算法甚至可以达到实时的要求; 5.可扩展性,可以很方便的与其他形式的特征向量进行联合。 特征检测 SIFT特征检测主要包括以下4个基本步骤: 1尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。 2. 关键点定位 在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。关键点的选择依据于它们的稳定程度。 3. 方向确定 基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向。所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而提供对于这些变换的不变性。 4. 关键点描述 在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。这些梯度被变换成一种表示,这种表示允许比较大的局部形状的变形和光照变化。 特征匹配 SIFT特征匹配主要包括2个阶段: 第一阶段:SIFT特征的生成,即从多幅图像中提取对尺度缩放、旋转、亮度变化无关的特征向量。第二阶段:SIFT特征向量的匹配。 SIFT特征的生成一般包括以下几个步骤:

图像处理特征不变算子系列之DoG算子(五)

图像处理特征不变算子系列之DoG算子(五) 时间 2013-09-12 00:24:07 CSDN博客原 文https://www.doczj.com/doc/b86309216.html,/kezunhai/article/details/11403733 图像处理特征不变算子系列之DoG算子(五) kezunhai@https://www.doczj.com/doc/b86309216.html, https://www.doczj.com/doc/b86309216.html,/kezunhai 在前面分别介绍了:图像处理特征不变算子系列之Moravec算子(一)、图像处理特征不变算子系列之Harris算子(二)、图像处理特征不变算子系列之SUSAN算子(三)和图像处理特征不变算子系列之FAST算子(四)。今天我们将介绍另外一个特征检测算子---DoG算子,DoG算子是 由 Lowe D.G. 提出的,对噪声、尺度、仿射变化和旋转等具有很强的鲁棒性,能够提供更丰富的局部特征信息,本文将对DoG算子进行详细地分析。 在开始介绍DoG之前,有必要对尺度空间有一定的了解。尺度空间最早是由Tony Lindeberg提出的,并不断的发展和完善。日常生活中,我们自觉或不自觉的在使用尺度的概念。举个我们个人自觉的经历,当我们读小学的时候,同学间互相询问来自哪个组;当我们读中学的时候,同学们互相询问自哪个村;当我们读高中的时候,同学们互相询问来自哪个镇;当读大学的时候,同学们互相询问来自哪个省?这里的组、村、镇、省就是我们不自觉使用的尺寸。还有一个例子,当我们打开google地图的时候,随着鼠标的滚动,地图会由五大洲逐渐定位到国家--》省---》市---》区---》街道办等,这也是尺度的表现。 1)尺度空间 在尺度空间中,尺度越大图像就越模糊,尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟目标由远及近人对目标的感知过程。那为什么要讨论尺度空间呢?因为在用机器视觉系统分析未知场景时,机器并不知道图像中物体的尺度,只有通过对图像的多尺度描述,才能获得对物体感知的最佳尺度。如果在不同尺度上,对输入的图像都能检测到相同的关键点特征,那么在不同尺度下也可以实现关键点的匹配,从而实现关键点的尺度不变特性。尺度空间描述的就是图像在不同尺度下的描述,如果对尺度空间有兴趣,请参考Tony Lindeberg的论文:Scale-Space。 2)金字塔多分辨率 常常有人会将DoG与图像金字塔弄混,从而导致对SIFT算法第一步构造DoG不甚理解。这里首先介绍下金字塔多分辨率。金字塔是早起图像多尺度的表示形式,图像金字塔一般包括2个步骤,分别是使用低通滤波平滑图像;对图像进行降采样(也即图像缩小为原来的1/4,长宽高缩小为1/2),从而得到一系列尺寸缩小的图像。金字塔的构造如下所示:

尺度不变特征

SIFT特征分析与源码解读 分类:机器视觉与模式识别2013-11-19 22:28 10人阅读评论(0) 收藏举报 目录(?)[+] SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果。整个算法分为以下几个部分:1. 构建尺度空间 这是一个初始化操作,尺度空间理论目的是模拟图像数据的多尺度特征。 高斯卷积核是实现尺度变换的唯一线性核,于是一副二维图像的尺度空间定义为: 其中G(x,y,σ) 是尺度可变高斯函数 (x,y)是空间坐标,是尺度坐标。σ大小决定图像的平滑程度,大尺度对应图像的概貌特征,小尺度对应图像的细节特征。大的σ值对应粗糙尺度(低分辨率),反之,对应精细尺度(高分辨率)。为了有效的在尺度空间检测到稳定的关键点,提出了高斯差分尺度空间(DOG scale-space)。利用不同尺度的高斯差分核与图像卷积生成。 下图所示不同σ下图像尺度空间: 关于尺度空间的理解说明:2kσ中的2是必须的,尺度空间是连续的。在 Lowe的论文中,将第0层的初始尺度定为1.6(最模糊),图片的初始尺度定为0.5(最清晰). 在检测极值点前对原始图像的高斯平滑以致图像丢失高频信息,所以Lowe 建议在建立尺度空间前首先对原始图像长宽扩展一倍,以保留原始图像信息,增加特征点数量。尺度越大图像越模糊。

最优控制理论的发展与展望

最优控制理论的发展与展 望 Last revision on 21 December 2020

最优控制理论的发展与展望 摘要:回顾最优控制的基本思想、常用方法及其应用,并对其今后的发展方向和面临的困难提出一些看法。 关键词:最优控制:最优化技术;遗传算法;预测控制 Abstract: The basic idea, method and application of optimal control are reviewed, and the direction of its development and possible difficulties are predicted. Keywords: optimal control; optimal Technology;Genetic Algorithm;Predictive Control 1引言 最优控制理论是本世纪60年代迅速发展的现代控制理论中的主要内容之一,它研究和解决如何从一切可能的方案中寻找一个最优的方案。1948年维纳等人发表《控制论一关于动物和机器中控制与通信的科学》论文,引进信息、反馈和控制等概念,为最优控制理论诞生和发展奠定了基础。我国着名学者钱学森在1954年编着的《工程控制论》直接促进了最优控制理论的发展与形成。在最优控制理论的形成和发展过程中,具有开创性的研究成果和开辟求解最优控制问题新途径的工作,主要是美国着名学者贝尔曼的“动态规划”和原苏联着名学者庞特里亚金的“最大值原理”。此外,构成最优控制理论及现代最优化技术理论基础的代表性工作,还有库恩和图克共同推导的关于不等式约束条件下的非线性最优必要条件(库恩一图克定理)及卡尔曼的关于随机控制系统最优滤波器等口 2最优控制理论的几个重要内容 最优控制理论的基本思想 最优控制理论是现代控制理论中的核心内容之一。其主要实质是:在满足一定约束条件下,寻求最优控制规律(或控制策略),使得系统在规定的性能指标(目标函数)下具有最优值,即寻找一个容许的控制规律使动态系统(受控对象、从初始状态转移到某种要求的终端状态,保证所规足的性能指标达到最小(大)值。

尺度不变的额特征提取代码

function [ pos, scale, orient, desc ] = SIFT( im, octaves, intervals, object_mask, contrast_threshold, curvature_threshold, interactive ) % 功能:提取灰度图像的尺度不变特征(SIFT特征) % 输入: % im - 灰度图像,该图像的灰度值在0到1之间(注意:应首先对输入图像的灰度值进行归一化处理) % octaves - 金字塔的组数:octaves (默认值为4). % intervals - 该输入参数决定每组金字塔的层数(默认值为2). % object_mask - 确定图像中尺度不变特征点的搜索区域,如果没有特别指出,则算法将搜索整个图像 % contrast_threshold - 对比度阈值(默认值为0.03). % curvature_threshold - 曲率阈值(默认值为10.0). % interactive - 函数运行显示标志,将其设定为1,则显示算法运行时间和过程的相关信息;% 如果将其设定为2,则仅显示最终运行记过(default = 1). % 输出: % pos - Nx2 矩阵,每一行包括尺度不变特征点的坐标(x,y) % scale - Nx3 矩阵,每一行包括尺度不变特征点的尺度信息(第一列是尺度不变特征点所在的组, % 第二列是其所在的层, 第三列是尺度不变特征点的sigma). % orient - Nx1 向量,每个元素是特征点的主方向,其范围在[-pi,pi)之间. % desc - Nx128 矩阵,每一行包含特征点的特征向量. % 参考文献: % [1] David G. Lowe, "Distinctive Image Features from Sacle-Invariant Keypoints", % accepted for publicatoin in the International Journal of Computer % Vision, 2004. % [2] David G. Lowe, "Object Recognition from Local Scale-Invariant Features", % Proc. of the International Conference on Computer Vision, Corfu, % September 1999. % % Xiaochuan ZHAO;zhaoxch@https://www.doczj.com/doc/b86309216.html, % 设定输入量的默认值 if ~exist('octaves') octaves = 4; end if ~exist('intervals') intervals = 2; end if ~exist('object_mask') object_mask = ones(size(im)); end if size(object_mask) ~= size(im)

有限元分析的发展趋势

有限元分析的发展趋势 摘要:1965年“有限元”这个名词第一次出现,到今天有限元在工程上得到广泛应用,经历了三十多年的发展历史,理论和算法都已经日趋完善。有限元的核心思想是结构的离散化,就是将实际结构假想地离散为有限数目的规则单元组合体,实际结构的物理性能可以通过对离散体进行分析,得出满足工程精度的近似结果来替代对实际结构的分析,这样可以解决很多实际工程需要解决而理论分析又无法解决的复杂问题。 关键词:有限元分析结构计算结构设计 Abstract: The 1965 "finite" appeared for the first time this term, and today is widely used finite element in engineering, after more than 30 years of history, theory and algorithms have been improved. Finite element discretization of the core idea is to structure, is the actual structure of the supposed discrete combination unit for a limited number of rules, the actual structure to analyse the physical properties can be felt through a discrete body of drawn precision engineering approximation as an alternative to the analysis of actual structures, this would solve a lot of theoretical analysis and practical engineering needed to address complex problems that cannot be resolved. Key words: finite element analysis structural calculation physical design 1 有限元的发展历程 有限元法的发展历程可以分为提出(1943)、发展(1944一1960)和完善(1961-二十世纪九十年代)三个阶段。有限元法是受内外动力的综合作用而产生的。 1943年,柯朗发表的数学论文《平衡和振动问题的变分解法》和阿格瑞斯在工程学中取得的重大突破标志着有限元法的诞生。 有限元法早期(1944一1960)发展阶段中,得出了有限元法的原始代数表达形式,开始了对单元划分、单元类型选择的研究,并且在解的收敛性研究上取得了很大突破。1960年,克劳夫第一次提出了“有限元法”这个名称,标志着有限元法早期发展阶段的结束。 有限元法完善阶段(1961一二十世纪九十年代)的发展有国外和国内两条线索。在国外的发展表现为: 第一,建立了严格的数学和工程学基础;第二,应用范围扩展到了结构力学以外的领域;第三,收敛性得到了进一步研究,形成了系统的误差估计理论;第四,发展起了相应的商业软件包。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器,国防军工,船舶,铁道,石化,能源,科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃,主要表现在以下几个方面: 一、增加产品和工程的可靠性; 二、在产品的设计阶段发现潜在的问题 三、经过分析计算,采用优化设计方案,降低原材料成本

变尺度混沌优化方法及其应用

变尺度混沌优化方法及其应用 X 张 彤(北京航空航天大学14系,100083) 王宏伟 王子才 (哈尔滨工业大学) 摘 要 基于混沌变量,提出一种变尺度混沌优化方法。该方法不断缩小优化变量的搜索空间并不断提高搜索精度,从而有较高的搜索效率。应用该方法对6个测试函数进行优化计算得到了满意的效果。 关键词 变尺度,优化,混沌优化方法分类号 TP 301.6 1 引 言 混沌(Chaos)是一种较为普遍的非线性现象,它看似一片混乱的变化过程实际上含有内在的规律性。一个混沌变量在一定范围内有如下特点:1)随机性,即它的表现同随机变量一样杂乱;2)遍历性,即它不重复地历经空间内的所有状态;3)规律性,该变量是由确定的迭代方程导出的。文献[1]考虑过用混沌变量进行优化搜索。其基本思想是把混沌变量线性映射到优化变量的取值区间,然后利用混沌变量进行搜索。几个测试函数优化实例的仿真结果表明混沌优化方法寻优效率明显优于其它随机搜索算法,如模拟退火、遗传算法。然而进一步的仿真计算表明该方法对于搜索空间小时效果显著,但当搜索空间大时却不能令人满意。基于此,本文提出了变尺度混沌优化方法,其特点在于:1)根据搜索进程,不断缩小优化变量的搜索空间;2)根据搜索进程,不断改变“二次搜索”的调节系数。对几个常用的复杂测试函数的仿真计算表明本文所提算法明显优于文献[1]算法。 2 变尺度混沌优化方法 本文选择(1)式产生的混沌变量来进行优化搜索 x k +1=L ?x k (1.0-x k ) (1) 其中L =4。若需优化n 个参数,则任意设定(0,1)区间n 个相异的初值(注意不能为方程(1)的 不动点0.25,0.5,0.75),得到n 个轨迹不同的混沌变量。 对连续对象的全局极小值优化问题 min f (x 1,x 2,…,x n ) x i ∈[a i ,b i ], i =1,2,…,n (2) 本文提出的优化方法步骤如下(记f (x 1,x 2,…,x n )为f (x i )): Step 1 初始化k =0,r =0。x k i =x i (0),x * i =x i (0),a r i =a i ,b r i =b i ,其中i =1,2,…,n 。这里k 为混沌变量迭代标志,r 为细搜索标志,x j (0)为(0,1)区间n 个相异的初值,x *i 为当前得到的最优混沌变量,当前最优解f *初始化为一个较大的数。 Vol.14No.3  控 制 与 决 策CON TR OL AN D DE CI S I ON 1999年5月  May 1999 X 国家高等学校博士点学科专项科研基金(9521320)资助课题 1997-11-17收稿,1998-04-07修回

结合尺度不变特征的Super 4PCS点云配准方法

第34卷第5期2019年10月 遥感信息 Remote Sensing Information Vol.34,No.5 Oct.,2019 结合尺度不变特征的Super4PCS点云配准方法 鲁铁定3,袁志聪i,郑坤i (1.东华理工大学,南昌330013;2,流域生态与地理环境监测国家测绘地理信息局重点实验室,南昌330013) 摘要:点云配准是三维模型重建中的关键步骤。针对传统初配准方法效率低等问题,提出一种结合点云特征的超四点快速鲁棒匹配算法(super four point fast robust matching algorithm,Super4PCS)。首先对点云数据进行尺度不变特征提取,凸显点云的局部特征;然后把提取的特征点作为Super4PCS算法的初始值,以便实现源点云与目标点云的初配准;最后在初配准的基础上利用最近点迭代(ICP)算法进行精确配准。通过斯坦福兔子点云及实测点云数据对比分析,表明该算法具有更好的配准性能。 关键词:点云配准;尺度不变特征;特征点;超四点快速鲁棒匹配算法;ICP算法 doi:10.3969/j.issn.1000-3177.2019.05.005 中图分类号:P232文献标志码:A文章编号:1000-3177(2019)165-0015-06 Super4PCS Point Cloud Registration Algorithm Combining Scale Invariant Features LU Tieding1'2,YUAN Zhicong1,ZHENG Kun1 (1.East China University of Science and Technology,Nanchang330013t China; 2.Key Laboratory Watershed Ecology and Geographical Environment Monitoring, National Administration of Surveying^Mapping and Geoinformation,Nanchang3300131China} Abstract:Point cloud registration is the key step in3D model reconstruction.In view of the low efficiency of the traditional initial registration methods,a super four point fast robust matching algorithm(Super4PCS)is proposed,which combines the feature of point cloud.Firstly,scale-invariant feature extraction is performed,to highlight the local features of the point cloud. Then,the extracted feature points are used as the initial values of the Super4PCS algorithm so as to realize initial registration between the source and the target point cloud?Finally,the closest point iteration(ICP)algorithm is used for accurate registration on the basis of the initial registration.By comparing and analyzing Stanford rabbit point cloud and measured point cloud data,the results show that the proposed algorithm has better registration performance. Key words:point cloud registration;scale invariant feature;feature point;Super4PCS;ICP algorithm 0引言 随着三维激光扫描技术的快速发展,三维重建技术的应用越来越广泛。点云配准是三维模型重建中的关键环节,点云配准按配准步骤可分为初配准和精配准初配准能够很大程度上减小两点云的旋转和平移错位,为精配准提供一个好的初始位置,提高配准精度和效率。常用的初配准□切方法有主成分分析法、标签法、中心重合法、4PCS算法3等。精配准是在初配准的基础上对点云进行精确配准,使两点云尽可能地重合,即两点云的距离之和最小。应用最广的精配准方法是由Besl和Mkcya提出的最近点迭代金门(ICP)算法。 近年来,Nicolas Mellado等田切提出的Super 收稿日期:2018-04-28修订日期:2019-07-17 基金项目:国家自然科学基金(41464001);国家重点研发计划(2016YFB0501405);国家重点研发计划(2016YFB0502601-04);江西省自然科学基金(2017BAB203032)。 作者简介:鲁铁定(1974—),男,教授,主要研究方向为测绘数据处理。 E-mail:tdlu@https://www.doczj.com/doc/b86309216.html, 15

最优控制理论的发展与展望

最优控制理论的发展与展望 摘要:回顾最优控制的基本思想、常用方法及其应用,并对其今后的发展方向和面临的困难提出一些看法。 关键词:最优控制:最优化技术;遗传算法;预测控制 Abstract: The basic idea, method and application of optimal control are reviewed, and the direction of its development and possible difficulties are predicted. Keywords: optimal control;optimal Technology;Genetic Algorithm;Predictive Control 1引言 最优控制理论是本世纪60年代迅速发展的现代控制理论中的主要内容之一,它研究和解决如何从一切可能的方案中寻找一个最优的方案。1948年维纳等人发表《控制论一关于动物和机器中控制与通信的科学》论文,引进信息、反馈和控制等概念,为最优控制理论诞生和发展奠定了基础。我国著名学者钱学森在1954年编著的《工程控制论》直接促进了最优控制理论的发展与形成。在最优控制理论的形成和发展过程中,具有开创性的研究成果和开辟求解最优控制问题新途径的工作,主要是美国著名学者贝尔曼的“动态规划”和原苏联著名学者庞特里亚金的“最大值原理”。此外,构成最优控制理论及现代最优化技术理论基础的代表性工作,还有库恩和图克共同推导的关于不等式约束条件下的非线性最优必要条件(库恩一图克定理)及卡尔曼的关于随机控制系统最优滤波器等口 2最优控制理论的几个重要内容 2.1最优控制理论的基本思想 最优控制理论是现代控制理论中的核心内容之一。其主要实质是:在满足一定约束条件下,寻求最优控制规律(或控制策略),使得系统在规定的性能指标(目标函数)下具有最优值,即寻找一个容许的控制规律使动态系统(受控对象、从初始状态转移到某种要求的终端状态,保证所规足的性能指标达到最小(大)值。 2.2最优控制问题的常用方法 ·变分法 ·最小值原理 ·动态规划 2.3最优化技术概述及基本方法 一般最优化方法解决实际工程问题可分为三步: ①据所提出的最优化问题,建立数学模型,确定变量,列出约束条件和目标函数;②对所建立的数学模型进行具体分析和研究,选择最优化求解方法;③根据最

改进的整体变分法在图像修复中的应用[1]

2007,43(27)ComputerEngineeringandApplications计算机工程与应用 A B 图1破损区域及其邻域示 1引言 图像修复是指对数字图像中丢失、破损的部分进行还原修 复,是一项出现很早的工艺技术,近年来图像修复技术有了长足的发展。Criminisi等[1]提出了基于纹理的图像修复方法,在未受损图像中寻找与受损模块最为匹配的修复模块并填充到受损区域内,从而实现图像的修复。Bertalmio等[2]人首先提出了基于偏微分方程的图像修补算法,利用待修补区域的边缘信息,将待修补区域外的信息沿梯度的垂直方向扩散到修补区域内,取得了很好的效果。Chan等[3]成功地将整体变分法思想应用于图像修复中。 本文在前人的研究基础上,对整体变分法作了进一步改进,经过计算机仿真试验,改进后的方法和原方法结果相比,所得图像的修复效果更加完善。 2图像修复的整体变分算法 基于整体变分的图像恢复算法由Rudin等[4]提出,本文为 简明描述整体变分法[5-7]在图像修复中的应用,先给出破损区域及其邻域示意图(图1)。其中B为图像破损部分(空信息),A为破损区域的边缘部分,!=A∪B。 在图像修复中,噪声污染的图像uo大多满足加性关系 uo(x )=u(x)+n(x),其中n(x)为均值为0,方差为δ2 的高斯白噪声。通过正则化方法处理得: min 1 2‖u-uo ‖2 +"2 R(u#$)(1) 用TV= ! %|&u|dxdy (整体变分)代替R(u)得到新的能量函数如下: g[u]=12‖u-uo‖2+" 2! %|&u|dxd# ’ y(2) 其中&u表示梯度, "为拉格朗日乘子。同时又有约束条件:12 ‖u-uo‖2=δ2(3) 所以整体变分法对图像的修复过程实际上是在约束条件(3)限制下,最小化图像能量函数(2)的过程。 改进的整体变分法在图像修复中的应用 周密,彭进业,赵健,田艳艳,史晶ZHOUMi,PENGJin-ye,ZHAOJian,TIANYan-yan,SHIJing 西北大学信息科学与技术学院,西安710127SchoolofInformationandTechnology,NorthwestUniversity,Xi’an710127,ChinaE-mail:zm2318283@sohu.com ZHOUMi,PENGJin-ye,ZHAOJian,etal.Improvedtotalvariationmethodforimageinpainting.ComputerEngineeringandApplications,2007,43(27):88-90.Abstract:Animprovedimageinpaintingmethodbasedonthetotalvariationalgorithmispresentedinthispaper.Therelativitycoefficientisintroducedaccordingtothesurroundinginformationofthedamagedarea.Withthehelpoftherelativitycoefficient,wegraduallydiffusethesurroundinginformationtothedamagedareaandrestorethedamagedarea.Arangeofexperimentsshowthatthenewmethodiseffectivefortheimageinpainting,andtheedgeofthedamagedareabecomesmorenatural.Keywords:imageprocessing;imageinpainting;totalvariation;relativitycoefficient摘要:提出了一种改进的整体变分法并且将其应用于图像修复中。在修复的过程中考虑图像破损区域外部参考像素和待修补点的相关度,再利用图像破损区外部参考像素信息从破损区域的边缘逐步地向破损区域内部进行扩散,从而达到图像修复的目的。仿真试验表明,改进后的算法与原方法相比图像边缘过渡更加自然,修复效果得到改善。关键词:图像处理;图像修复;整体变分;相关度系数文章编号:1002-8331(2007)27-0088-03文献标识码:A中图分类号:TP391 基金项目:国家部委基础研究项目;陕西省自然科学基金(theNaturalScienceFoundationofShaanxiProvinceofChinaunderGrantNo.2006F42)。作者简介:周密,硕士研究生,主要研究方向为数字图像处理;彭进业,博士,教授,博导,主要从事图像处理研究;赵健,博士,副教授,硕导,主要从 事图像处理研究;田艳艳,硕士研究生,主要研究方向为图像处理;史晶,硕士研究生,主要研究方向为图像处理。 88

相关主题
文本预览
相关文档 最新文档