当前位置:文档之家› 金刚石微粉种类及应用

金刚石微粉种类及应用

金刚石微粉种类及应用

聚晶金刚石微粉:纳米聚晶金刚石是在爆炸形成的瞬态强冲击波作用下合成的。它是以纳米晶构成的微米和亚微米级聚晶,聚晶由于各向同性,无解理面,抗冲击,抗弯强度高,因此它既具有超硬材料的硬度,同时又兼有纳米材料超常的高强度和高韧性。其双重优点构成了其独一无二的物理性能,在高新技术产业和传统支柱产业中有重要的应用。主要运用于芯片光学晶体\超精细加工、大型硅片超精抛光、表面改性等领域,球状聚晶金刚石微粉外观灰黑色,略呈金属光泽。

单晶金刚石微粉:晶体形状为规则、完整的六-八面体,有很高的强度、韧性和很好的热稳定性,抗冲击能力强。适用于制造电镀制品、砂轮、磨轮的制造,用于高档石材的抛光、雕刻、汽车玻璃、高档家具、陶瓷、硬质合金、磁性材料的加工等。

纳米金刚石微粉:纳米技术是九十年代后兴起的一个高新技术,纳米级金刚石由尺寸为纳米级,即十亿分之一米金刚石微粒组成,是近几年来用爆炸技术合成的新材料。它不但具有金刚石的固有特性,而且具有小尺寸效应、大比表面积效应、量子尺寸效应等,因而展现出纳米材料的特性。在爆轰波中合成的这种金刚石具有立方组织结构,晶格常数为(0.3562+0.0003)nm,晶体密度为3.1g/cm3,比表面积为300m2/g~390m2/g。在不同的化学处理后,金刚石表面可形成多种不同的官能团,这种金刚石晶体具有很高的吸附能力。

纳米级金刚石其它用途:配制高级研磨膏和抛光液:用于超精细加工石英、光学玻璃、半导体、合金和金属表面,能有效提高加工精度。

配制催化剂:爆轰合成的纳米级金刚石和无定形碳,有很大的比表面积,含有各式各样的表面官能团,活性很强,用其配制催化剂,可提高活性数据促进有机化合物的相互作用。

制备纳米复合结构材料:把纳米级金刚石与纳米硅粉、纳米陶瓷和各种纳米金属复合,可制造出新型的纳米结构材料,因其独特的性能,可制造半导体器件,集成电路元件和微机零件。

2-2微粉金刚石(汪 静)1

第二篇金刚石工具用金刚石 第二章金刚石微粉 (作者汪静) 2.1 概述 金刚石微粉的种类很多,用低强度的人造金刚石为原材料,经过破碎、提纯、分级等工艺生产的金刚石微粉是最常见的品种。这类产品涵盖了几十纳米到几十微米的粒度范围,产品性价比高,目前占据金刚石微粉的大部分市场份额。随着应用领域的不断拓展,根据用途不同,市场上出现了多种类别的金刚石微粉。 按照原材料来源不同,可分为天然金刚石微粉和人造金刚石微粉。不能用于珠宝首饰加工的低品级天然金刚石,可以经过球磨破碎生产出金刚石微粉,用于工业研磨抛光,如宝石、精密零件等的后期加工。随着工业的快速发展,研磨抛光领域对金刚石微粉的需求量急剧增加,天然金刚石微粉的产量远远满足不了市场需求。人造金刚石的出现解决了这一问题,它为金刚石微粉提供了充足的原料。据统计2008年国内金刚石产量为50多亿克拉,金刚石微粉的产量约为3亿克拉。人造金刚石微粉在硬、脆材料的磨削方面有着广泛的应用。作为粉体材料可用于多种天然宝石、人造宝石、玻璃、陶瓷等材料的磨削抛光。制成研磨液、研磨膏可用于半导体材料如硅片、蓝宝石晶片等元件的切削和研磨抛光。还可以做成多种制品,如精密砂轮、金刚石复合片、精磨片、拉丝模等。可用于金加工、地质钻探、光学玻璃加工、金属丝线生产等众多领域。 根据原材料金刚石强度高低,可分为高强度金刚石微粉和低强度金刚石微粉。前者是采用高强度金刚石为原材料生产的微粉,微粉单颗粒强度高、内部杂质含量低、磁性低。后者以低强度金刚石为原材料,产品自锐性好。 依据金刚石晶体结构不同可分为单晶金刚石微粉(如图2-1)和多晶金刚石微粉(如图2-2)。单晶金刚石微粉是用单晶金刚石为原材料生产的金刚石微粉,其颗粒保留了单晶金刚石的单晶体特性,具有解理面,受到外力冲击的时候优先沿解理面碎裂,露出新的“刃口”。多晶金刚石微粉是由直径5-10nm的金刚石晶粒通过不饱和键结合而成的微米和亚微米多晶颗粒,内部各向同性无解理面,具有很高的韧性。由于其独特的结构性能,常用于半导体材料、精密陶瓷等的研磨和抛光。 另外还有爆轰法生产的纳米金刚石(如图2-3),这类金刚石是由负氧平衡炸药内部多余的碳原子在适当的爆轰条件下合成的,由5-20纳米粒径的金刚石晶粒组成的二次团聚体,粉体外观一般为灰黑色。纳米金刚石具有良好的耐磨性、耐腐蚀性和导热性,可用于硬盘、半导体等的精密抛光,可以作为润滑油添加剂,显著提高润滑油的润滑性能,减少磨损,可以添加到橡胶和塑胶中强化产品性能,还可以作为优良的功能材料涂覆到金属模具、工具、部件等表面,增强表面硬度、耐磨性、及导热性能,延长使用寿命。

化工导论69道简答题作业答案,可能有一两题的答案不怎么对

课程考核分成两部分,一是完成问答题,二是完成一份文献和网络检索总结小论文。 问答题部分: 1. 解释中文“化工”的含义,它包括哪些内容在现代汉语中,化学工业、化学工程 和化学工艺的总称或其单一部分都可称为化工,这是中国人创造的词。 化工在汉语中常常是多义的,化工可以分别指化学工业、化学工程和化学工艺,也可指其综合。 2. 解释中文“化工”的含义。说明“工程”与“工艺”的关系,并举例说明。 (1)化工在汉语中常常是多义的,化工可以分别指化学工业、化学工程和化学工艺,也可指其综合。 (2)应该说明的是化学工程为化学工艺、生物化工、应用化学、工业催化等学科提供了解决工程问题的基础。 3. 化学工业按原料、产品吨位、和化学特性各如何分类 (1)按原料分:石油化学工业、煤化学工业、生物化学工业、农林化学工业 (2)按产品吨位分:大吨位产品和精细化学品 (3)按化学特性分:无机化学工业、有机化学工业 4. 简述化工的特点是什么 (1)品种多(2)原料、生产方法和产品的多样性和复杂性 (3)化学工业是耗能大户 (4)化工生产过程条件变化大 (5)知识密集、技术密集和资金密集 (6)实验与计算并重 (7)使用外语多 5. 指出按现行学科的分类,一级学科《化学工程与技术》下分哪些二级学科它们的 关系如何在我国当前的学科划分中,以一级学科“化学工程与技术” 概括化工学科,并又分为以下五个二级学科:化学工程、化学工艺、应用化学、生物化工、工业催化。 化学工程为化学工艺、生物化工、应用化学和工业催化等学科提供了解决工程问题的基础。 6. 简述化学工程与化学工艺的各自的学科定义与研究内容 化学工程研究以化学工业为代表的过程工业中有关化学过程和物理过程的一般原理和共性规律,解决过程及装置的开发、设计、操作及优化的理论和方法问题。

金刚石微粉的质量检验

金刚石微粉的质量检验 通常磨料的粒径在54微米以下的粉状物料称为微粉,微粉中颗粒直径小于5微米的又称为精微粉。3.5微米以粗的微粉采用沉降法分选,3.5微粉以细的混合料采用离心法分选。 金刚石微粉主要用于非金属硬脆材料的精磨、研磨和抛光。一般0~0.5微米至6T2微米 用于抛光;5~10微米至12~22微米用于研磨;20~30微米以粗用于精磨。金刚石微粉主要用于以下四个方面:〔1〕直接使用微粉或制成研磨膏,广泛用于硬质合金、高铝陶瓷、光学玻璃、仪表宝石、半导体等材料制成的刃具、量具、光学仪器、电子器件等精密零件,其加工粗糙度可以达到镜面效果。〔2〕金刚石微粉大量用于制造精磨片、超精磨片、电镀制品。〔3〕金刚石微粉是制造多晶金刚石烧结体的主要原料,如地质、石油钻头,切削工具、拉丝模等。 〔4〕用于研磨液和抛光液的制造。 金刚石微粉主要做研磨和抛光用,粒度的控制特别重要,只要有超尺寸的粗颗粒就会造成工件划伤,使前道工序的工作前功尽弃,因此微粉质量检查是保证微粉产品质量的重要环节。只有认真对待才能生产出高质量的微粉,满足用户使用的需求。 金刚石微粉的质量检验,采用国家标准JB/T7990—2012规定的方法检验,主要包括尺寸范围、粒度分布、颗粒形状、杂质含量、标志和包装。主要粒度分别为M0/0.25 M0/0.5 M0/1 M0.5/1 M1/2 M2/4 M3/6 M4/8 M5/10 M6/12 M8/12 M8/16 M10/20 M15/25 M20/30 M25/35 M30/40 M35/55 M40/60 M50/70。特殊应用的粒度尺寸范围由供需双方商定。 下表是M0.5/1的尺寸范围 D50是指一个样品的累计粒度分布百分数达到50%寸候所对应的粒度,它的物理意义是粒径大于它的颗粒数占50%小于它的颗粒数也占50% D50也叫中位径或中值粒径,常用来表示粉体的平均粒度。 在生产实践中,主要采用激光衍射法测量金刚石微粉颗粒直径,常用仪器有英国马尔文Mastersizer 2000激光粒度分析仪、美国Microtrac公司的S3500系列激光粒度分析仪和X100 激光粒度分析仪器等。

CVD钻石19化学气相沉淀法(也称CVD法)合成钻石概述

CVD钻石 化学气相沉淀法(也称CVD法)合成钻石概述 化学气相沉淀法,简称CVD法,可以用于人工合成钻石。最近,由于技术的突破,可以生产出大颗粒的钻石,国检中心在近期日常委托检验中,陆续发现了两批次CVD合成钻石,证明CVD合成钻石已经进入国内市场,引起了大家的关切。笔者从宝石人工合成的角度,介绍一下化学气相沉淀法(也称CVD法)合成钻石。 一、化学气相沉淀法(也称CVD法)合成钻石的历史和现状 但当时CVD法生长钻石的速度很慢,以至很少有人相信其速度能提升到可供商业性生长。 从1956年开始俄罗斯科学家通过研究,显著提高了CVD合成钻石的速度,当时是在非钻石的基片上生长钻石薄膜。 20世纪80年代初,这项合成技术在日本取得重大突破。钻石的生长速度已超过每小时1微米(0.001mm)。这在全球范围内引发了将这项技术用于多种工业目的的兴趣。 图1 无色-褐色CVD合成钻石 一颗由美国CVD钻石公司(CVD钻石中国公司www.cvd.hk,https://www.doczj.com/doc/ba10527753.html,,https://www.doczj.com/doc/ba10527753.html,)

生产的高温高压(HPHT)处理的化学气相沉积法(CVD)合成钻石,重0.226克拉20世纪80年代末,开始从事CVD法合成钻石的研究,并迅速在这个领域取得领先地位,提供了许多CVD合成多晶质钻石工业产品。 这项技术也在珠宝业得到应用,用于某些天然宝石也包括钻石的优化处理。 尽管当时CVD合成钻石的生长速度有了很大提高,使得有可能生长出用于某些工业目的和宝石镀膜的较薄的钻石层,但要生产可供切磨刻面的首饰用材料,因需要厚度较大的单晶体钻石,仍无法实现。一颗0.5克拉圆钻的深度在3mm以上,若以每小时0.001mm速度计算,所需的钻坯至少要生长18周。可见,低速度依然是妨碍CVD法合成厚单晶钻石的主要因素。 进入20世纪90年代,CVD合成单晶体钻石的研发取得显著进展。 进入本世纪,首饰用CVD合成单晶体钻石的研发有了突破性进展: 多年从事CVD合成单晶钻石的研发。2003年秋开始了首饰用CVD合成单晶钻石的商业性生产,主要是Ⅱa型褐色到近无色的钻石单晶体,重量达1ct或更大些。同时,开始实验性生产Ⅱa型无色钻石和Ⅱb型蓝色钻石。阿波罗钻石公司预计其成品刻面钻石在2005年的总产量为5000 - 10000ct,大多数是0.25到0.33ct的,但也可生产1 ct的(图1,图2)。 CVD钻石的设备及合成工艺由于技术方法的改进,他们已能高速度(每小时生长100微米)生长出5到10ct的单晶体,这个速度差不多5倍于用高压高温方法和其他CVD方法商业性生产的钻石。他们还预言能够实现英寸级(约300ct)无色单晶体钻石的生长。 由此可见,首饰用CVD合成钻石的前景是十分喜人的,它对于钻石业的影响也是不可

金刚石微粉质量的评定

1999年第3期 矿产与地质第13卷1999年6月M I NER AL R ESO U R CES A N D G EO L O GY总第71期 金刚石微粉质量的评定 谈耀麟 (有色金属工业总公司矿产地质研究院,桂林541004) 摘 要 从用户和生产厂家的观点阐述如何评定金刚石微粉的质量。着重论述根据金刚 石微粉的粒度、颗粒形状、锐利性、抗磨耗性和强度来评定金刚石微粉的质量。 关键词 金刚石微粉,质量,评价 近十多年来,由于科学技术和工业的发展,60 m以细的金刚石微粉无论是天然的还是人造的,其应用范围和市场需求量都日益增大。金刚石微粉作为一种精细磨料,如何评定其质量的优劣?本文从用户、生产厂家的需求及实验室研究的结果谈谈这一问题。 1 金刚石微粉质量要求 1.1 用户对金刚石微粉的要求 (1)研磨速度,就是使工件达到一定磨光度所需的研磨时间;或者在一定研磨时间内达到的磨光度。 (2)一定量的金刚石微粉所能研磨或抛光的工件总量;或者说在单位时间内所磨削掉的材料的重量,亦即磨削率。 (3)加工表面有无划伤痕迹。 1.2 生产厂家对产品质量的要求 实践说明,金刚石微粉的使用要获得经济的效果,取决于金刚石微粉颗粒的形状、大小、表面特性和内部结构(抗磨耗性和强度)。因此,从生产厂家的观点来说,为了满足用户对金刚石微粉使用性能的要求,应满足以下几个方面的要求。 (1)关于粒度问题 金刚石微粉的粒度指的是一定的粒度范围,以4~8 m的金刚石微粉为例,其粒度不可能是绝对均匀的,只能说其最大公称粒度不超过8 m。这里就有一个粒度分布问题。金刚石微粉在工作过程中,实际上只有一部分颗粒(较大的颗粒)在起研磨作用,较小颗粒是不起作用的,所以用户总是希望金刚石微粉产品的粒度范围越窄越好。生产厂家要生产出粒度范围窄的金刚石微粉就必须在分选过程中减小颗粒重量的差异和形状的差异。实践证明,采用离心分选法比用自由沉降分选法更容易获得窄的粒度范围。因为离心分选法比较容易控制沉降速度而不 1998年12月25日收稿。作者简介:谈耀麟,男,1936年生,高级工程师。 191

材料科学与工程概述

第1节材料科学与工程概述 1.1.1材料科学的内涵 材料科学就是从事对材料本质的发现、分析认识、设计及控制等方面研究的一门科学。其目的在于揭示材料的行为,给予材料结构的统一描绘或建立模型,以及解释结构与性能之间的内在关系。材料科学的内涵可以认为是由五大要素组成,他们之间的关联可以用一个多面体来描述(图1-1)。其中使用效能是材料性能在工作状态(受力、气氛、温度)下的表现,材料性能可以视为材料的固有性能,而使用效能则随工作环境不同而异,但它与材料的固有性能密切相关。理论及材料与工艺设计位于多面体的中心,它直接和其它5个要素相连,表明它在材料科学中的特殊地位。 材料科学的核心内容是结构与性能。为了深入理解和有效控制性 能和结构,人们常常需要了解各种过程的现象,如屈服过程、断裂 过程、导电过程、磁化过程、相变过程等。材料中各种结构的形成 都涉及能量的变化,因此外界条件的改变也将会引起结构的改变, 从而导致性能的改变。因此可以说,过程是理解性能和结构的重要 环节,结构是深入理解性能的核心,外界条件控制着结构的形成和 过程的进行。 材料的性能是由材料的内部结构决定的,材料的结构反映了材料 的组成基元及其排列和运动的方式。材料的组成基元一般为原子、 离子和分子等,材料的排列方式在很大程度上受组元间结合类型的 影响,如金属键、离子键、共价键、分子键等。组元在结构中不是 静止不动的,是在不断的运动中,如电子的运动、原子的热运动等。 描述材料的结构可以有不同层次,包括原子结构、原子的排列、相 结构、显微结构、结构缺陷等,每个层次的结构特征都以不同的方 式决定着材料的性能。 物质结构是理解和控制性能的中心环节。组成材料的原子结构,电子围绕着原子核的运动情况对材料的物理性能有重要影响,尤其是电子结构会影响原子的键合,使材料表现出金属、无机非金属或高分子的固有属性。金属、无机非金属和某些高分子材料在空间均具有规则的原子排列,或者说具有晶体的格子构造。晶体结构会影响到材料的诸多物理性能,如强度、塑性、韧性等。石墨和金刚石都是由碳原子组成,但二者原子排列方式不同,导致强度、硬度及其它物理性能差别明显。当材料处于非晶态时,与晶体材料相比,性能差别也很大,如玻璃态的聚乙烯是透明的,而晶态的聚乙烯是半透明的。又如某些非晶态金属比晶态金属具有更高的强度和耐蚀性能。此外,在晶体材料中存在的某些排列的不完整性,即存在结构缺陷,也对材料性能产生重要影响。 我们在研究晶体结构与性能的关系时,除考虑其内部原子排列的规则性,还需要考虑其尺寸的效应。从聚集的角度看,三维方向尺寸都很大的材料称为块体材料,在一维、二维或三维方向上尺寸变小的材料叫做低维材料。低维材料可能具有块体材料所不具备的性质,如零维的纳米粒子(尺寸小于100nm)具有很强的表面效应、尺寸效应和量子效应等,使其具有独特的物理、化学性能。纳米金属颗粒是电的绝缘体和吸光的黑体。以纳米微粒组成的陶瓷具有很高的韧性和超塑性。纳米金属铝的硬度为普通铝的8倍。具有高强度特征的一维材料的有机纤维、光导纤维,作为二维材料的金刚石薄膜、超导薄膜等都具有特殊的物理性能。 1.1.2 材料科学的确立与作用 (1)材料科学的提出 “材料科学”的明确提出要追朔到20世纪50年代末。1957年10月4日前苏联发射了第一颗人造卫星,重80千克,11月3日发射了第二颗人造卫星,重500千克。美国于1958年1月31日发射的“探测者1号”人造卫星仅8千克,重量比前苏联的卫星轻得多。对此美国有关部门联合向总统提出报告,认为在科技竞争中美国之所以落后于苏联,关键在先进材料的研究方面。1958年3月18日总统通过科学顾问委员会发布“全国材料规划”,决定12所大学成立材料研究实验室,随后又扩大到17所。从那时起出现了包括多领域的综合性学科--“材料科学与工程学科”。 (2)材料科学的形成 材料科学的形成主要归功于如下五个方面的基础发展: 各类材料大规模的应用发展是材料科学形成的重要基础之一。18世纪蒸汽机的发明和19世纪电动机的发明,使材料在新品种开发和规模生产等方面发生了飞跃,如1856年和1864年先后发明了转炉和平炉炼钢,大大促进了机械制造、铁路交通的发展。随之不同类型的特殊钢种也相继出现,如1887年高锰钢、1903年硅钢及1910年镍铬不锈钢等,与此同时,铜、铅、锌也得到大量应用,随后铝、镁、钛和稀有金属相继问世。20世纪初,人工合成高分子材料问世,如1909年的酚醛树脂(胶木),1925年的聚苯乙烯,1931年的聚氯乙烯以及1941年的尼龙等,发展十分迅速,如今世界年产量在1亿吨以上,论体积产量已超过了钢。无机非金属材料门类较多,一直占有特殊的地位,其中一些传统材料资源丰富,性能价格比在所有材料中最有竞争能力。20世纪中后期,通过合成原料和特殊制备方法,制造出一系列具有不可替代作用的功能材料和先进结构材料。如电子陶瓷、铁氧体、光学玻璃、透明陶瓷、敏感及光电功能薄膜材料等。先进结构

人造金刚石微粉的生产及其发展趋势

人造金刚石微粉的生产及其发展趋势 https://www.doczj.com/doc/ba10527753.html, 2011-08-25 来源:中国超硬材料网点击:100次 金刚石微粉是当今国际上一种超硬精细研磨抛光材料。就其粒度而言它属于微米、亚微米及纳米粉体。与粗粒粉体相比,其比表面积和比表面官能团明显增大,因而在生产过程中,颗粒相互之间的作用力大为增加。另外,随着粒度的细化,颗粒本身的缺陷减少,强度必然增大。由此可见,金刚石微粉的生产过程存在相当大的难度,它不仅仅是颗粒细化的过程,同时还伴随着晶体结构和表面物理化学性质等变化。所以说金刚石微粉的生产工艺是一个涉及机械、粉体工程、力学、物理化学、现代仪器与测试技术等多学科的工程技术问题。 随着尖端科技和高端制造业发展的需要,许多精密器件的表面光洁度都要求很高,比如电脑磁盘、磁头、光通信器件、光学晶体、半导体基片等器件,都需要精密的抛光加工,如果表面有任何超出许可范围的凸凹、划伤或者附着异物,所设计的精度及性能将得不到保证。所以,金刚石微粉的生产出现以下发展趋势: 一、金刚石微粉生产设备的自动化 金刚石微粉是由粗颗粒单晶金刚石经过破碎、分级而得。一般来说,将适度粗粒的物料破碎至微米或亚微米粒度有三种基本机理,即压碎,机械冲击{高速(9m/see以上)运动颗粒之间的直接碰撞和研磨,滚筒式球磨机就是以压碎作用为主兼有适量低速机械冲击作用的破碎设备。就方法而论,用球磨机对金刚石破碎加工来生产金刚石微粉是最常用的方法,球磨破碎法在我国金刚石微粉生产中已使用了许多年,曾经取得了较为满意的效果。但由于存在生产效率低的缺点,目前已被一种气流粉碎机所取代,气流粉碎机是以压缩空气为工作介质,压缩空气通过特殊的超音速喷嘴向粉碎室高速喷射,该气流携带物料高速运动,使物料与物料之间产生强烈碰撞、磨擦与剪切从而达到粉碎的目的。根据动能公式可知,动能的大小与质量及速度的平方成正比。当作用在颗粒上的力大于它的破坏应力时就产生破碎。高速冲击碰撞使颗粒产生体积破碎,而剪切和研磨作用则使颗粒产生表面破碎。这种破碎方式对金刚石微粉的生产是很有利的,因为可以生产出比较理想的颗粒形状。气流粉碎机最大的优点是不受机械线速度的限制,能够产生很高的气流速度,特别是超音速气流粉碎机能产生数倍于音速的流速,因而能产生巨大的动能,比较容易获得微米级和亚微米级的超细粉体。从粉碎原理上说,这种机型用于金刚石微粉的生产是较有发展前景的。 粒度分级是金刚石微粉生产工艺中很重要的一道工序。它涉及金刚石微粉的生产效率和质量,目前国内最为广泛使用的一种金刚石微粉粒度分级法是自然沉降法和离心法相结合的工艺生产微粉。自然沉降法是一种直接应用斯托克斯定律的分选方法,根据同一比重的颗粒因粒径不同在水中沉降速度亦不同的原理,通过控制其沉降高度和沉降时间来分级粒度,虽然设备简单、操作容易、质量稳定,但生产周期较长、劳动效率低下。为此,国内外不少厂家研究出自动化的分级设备,采用计算机技术和变频控制技术,设置有自动搅拌、自动抽料、自动水循环和计算机控制四大系统,全数字化设计,控制精确,节能省电,具有人工无法比拟的高效率、高可靠性和良好的操控性。比人工分选效率可提高10~20倍,具有自动化程度高、分选速度快、分选精度准、无杂质污染、无人为因素干扰、产品品质稳定性强、重现性好、工人劳动强度小、企业劳动力成本低、一次性投料量大的十大显著优点。符合了微粉产业未来发展的方向。 二、粒度分级细分化、粒径范围集中化 随着科技的进步,各种加工精度要求都是越来越高,所用的微粉粒度都在向更加细微化的方向发展。比如,电脑硬盘的纹理加工自从上世纪90年代开始使用金刚石微粉以来,粒度大小一直迅速在变化,从开始的1微米左右,到现在的0.1微米,近期很快将要过渡到0.05微米(50nm)甚至更细的水平。就2微米

工程训练B比较全的答案

制造技术工程实训 实习报告 参考答案 一、工程材料基础知识 (一)工程材料 1、工程材料按其性能可分为结构材料和功能材料。前者通常以力学性能为主,兼有一定的物理、化学、性能。而后者是以特殊物理化学性能为主的功能材料。工程上通常按化学分类法对工程材料进行分类,可分为金属材料、陶瓷材料、高分子材料、复合材料。 2、组成合金的结构形式有固溶体、金属化合物、机械混合物三种。刚和铁的基本组成元素是铁和碳,统称为铁碳合金,其中碳含量大于2.11%为铁,小于2.11%为钢。 3、碳素钢是指碳含量小于2.11%和含有少量硅、锰、硫、磷等杂质元素所组成的铁碳合金,简称碳钢;合金钢是在碳钢的基础上加入其它金属(如硅、锰、铬、镍等)元素的铁碳合金;铸铁是含碳量大于2.11%的铁碳合金。碳素钢价格低廉,工艺性好,广发应用与机械制造中;合金钢按加入合金元素的不同,具有不同的性能(高耐磨性、耐蚀性、耐低温、高磁性等),按用途可分为结构钢、特殊性能钢;铸铁按其碳的存在形态可分为灰口铸铁和百口铸铁。

4、常用的非金属材料有种:工程塑料、复合材料、工业橡胶、工业陶瓷等。 工程塑料具有密度小、耐腐蚀、耐磨减模型好、良好的绝缘性能以及成型性等优点,此外还有强度硬度较低、耐热性差、易老化和儒变等缺点; 复合材料具有较高的比强度和比模量、较好的疲劳强度、耐蚀、耐热、耐磨、减震的特点; 工业陶瓷:高硬度、高耐磨、高弹性模量、高抗压强度、高熔点、耐高温、耐腐蚀、脆性大等特点; 合成橡胶:耐热、耐磨、耐老化;耐寒;耐臭氧 (二)材料处理技术 1、热处理工艺主要是通过控制加热温度、保温时间、冷却速度,从而改变材料的表面或内部组织结构,最终达到改善工件的工艺性能和使用性能的目的。常用的热处理方法有:退火、正火、回火、淬火、调质。 2、说明一下热处理工艺的主要目的: 退火:降低硬度,改善切削加工性能;消除残余应力,稳定尺寸;减少变形与裂纹倾向细化晶粒,调整组织,消除组织缺陷。 回火:消除工件淬火产生的残余应力,防止变形与开裂,调节性能获得工艺所求力学性能和加工性能,稳定组织与尺

简述人造金刚石

人造金刚石制造方法综述 人造金刚石取得成功的方法有许多种,兹将具有代表性的几种分类列举如下: 静压触媒法是国内外工业生产上应用最为广泛的方法,人造金刚石的绝大部分(约90%)都是用这种方法生产的。爆炸法在某些国家被应用于金刚石微粉的生产,产量占1%左右。CVD薄膜生长法近年来开始了工业应用。其它一些方法,目前都还处于试验研究阶段。 静压法,又称静态超高压高温合成法。静压触媒法是指在金刚石热力学稳定的条件下,在恒定的超高压高温和触媒参与的条件下合成金刚石的方法。就是以石墨为原料,以过渡金属或合金作触媒,用液压机产生恒定高压,以直流或交流电通过石墨产生持续高温,使石墨转化成金刚石。转化条件一般为5~7GPa,l300~1700℃。这个方法就是传统的高压高温合成法,至今已有40多年的历史了。现在它还在继续发展和完善中,国内外都在致力于高压设备和加热方法的改进以及碳素原料和合金触媒的研究。 静压触媒法合成金刚石的工艺程序大致分为以下三个阶段: 原材料准备(石墨、触媒、叶蜡石的选择、加工与组装) 高压高温合成(p、T、t参数,控制方法与设备) 提纯分选与检验(原理、方法、标准、仪器) 静压触媒法制造金刚石的原理与工艺,是本书所要讨论的主要内容。 所谓静压直接转变法,是指没有触媒参与下的静压法。由于不用触媒,因而需要更高的压力和温度条件,对压机提出了更高的要求,这也正是它不能用于工业生产的原因。

静压法有两种情况,一是固相转化,二是熔融冷暖。 (1) 固相转化 固相转化,要求提供12GPa以上的压力、2000℃以上的温度,保持时间很短(千分之几秒),只能生长细微的多晶体。 (2) 熔融冷凝 此法比固相转化要求更高的压力和温度。日本有人曾经在20GP,和4000℃条件下,使金刚石熔融,然后逐渐冷凝成为块状大单晶。这是液相金刚石向固相金刚石的转变。也可以通过石墨→熔融→重结晶的过程生成金刚石。石墨在高压高温下熔融,晶格解体,然后冷凝,在重结晶过程中建立起金刚石键,成为金刚石晶体。这种方法的困难在于要有耐高温容器。 动压法主要是爆炸法,爆炸法压力温度条件与不用触媒的静压法相似(压力一般在20GPa以上),但产生高压高温的方法不同,不是用压机,而是用炸药。利用TNT(三硝基甲苯)和RDX(黑索金)等烈性炸药爆炸后产生的强冲击波作用于石墨,在几微秒的瞬间可得到几十GPa和几千度高温,使石墨转变为金刚石,产品一般为5~20nm的细小多晶体。结晶缺陷严重,脆弱,可作为研磨膏或者制造聚晶的原料。纳米金刚石的用途有待研究开发。 爆炸法的优点是不需要贵重设备,单次产量高,每次使用15kg炸药(TNT 40%+RDX60%)可生产约120克拉的金刚石微粉,缺点是温度压力不好控制,尤其无法分别控制温度和压力并且样品回收提纯手续繁多。 爆炸法常用的一种装置是单飞片装置,图1-1为其剖面简图。平面波发生器使顶端的点爆源变成面爆源,产生平面激波,引爆主炸药包,驱动飞片以每秒几千米的速度撞击石墨,使之转变成金刚石,所得产品占石墨的3%~5%。 假若碳源不用石墨而改用球墨铸铁或者普通生铁,铁就能起触媒作用,促使其中的碳变成金刚石。 如果用含有石墨小包裹体的触媒金属块作原料,由于金属比石墨难以压缩,压缩波通过时,没有象石墨那样热起来,造成了石墨包裹体的猝灭。这种猝灭作用使得在冲击压缩过程中形成的金刚石在随后的卸压膨胀过程中得以保存下来,产量大大提高。 日本人漱同信雄采用无定形碳素和改进过的单飞片装置(飞片速度为 3.6

金刚石微粉化学镀镍技术概述

金刚石微粉化学镀镍技术概述 摘要:传统金刚石微粉镀覆难以做到镀覆镍层的完整性,存在镀覆的镍层厚度不均匀,并且无法避免金刚石颗粒之间的粘连,镀覆金刚石微粉过程中及镀覆后金刚石微粉中混杂大量的镍粉,镍铠科技推出的金刚石微粉化学镀镍工艺流程,在传统工艺流程的基础上,优化前处理流程,采用成熟的高磷化学镀镍工艺,实现多周期镀镍,在大幅度提高镀覆品质的情况下,降低镀覆成本,减少镀镍废液的抛弃。 关键词:金刚石线锯;金刚石微粉;金刚石微粉镀覆;金刚石微粉化学镀镍; 前言 金刚石粉体化学镀镍是个很早就实用化的工艺技术,早期称为金刚石金属化镀覆,上世纪70年代后期与化学镀镍有关的技术书籍,在非金属、难镀材料化学镀镍有相关章节的介绍,当时的金刚石镀覆后主要用于金刚石刀具、金刚石砂轮的复合镀,以增强金刚石与刀具、磨具基体的把持力(我们称为结合力)。目前的通行的工艺流程基本上还是遵循了传统的工艺流程(除油-粗化-敏化-钯活化-化学镀镍)。 自2015年以来,随着光伏产业大量推广应用金刚石线锯取代传统的砂浆+钢线切割硅材料,金刚石线锯作为一个相对冷僻的产品,一下子火热起来,光伏行业的有关行业的报告指出,目前的金刚石线锯市场产量产值大约每年在数百亿元的量级,最近四年来,专门生产金刚石线锯的上市公司近十家,没有上市的规模化金刚石线锯生产企业数十家,由此而带来了金刚石线锯线材连续镀行业的大发展,作为金刚石线锯的主要材料——金刚石微粉,金刚石微粉化学镀镍也伴随此风口,近年来成为了一个飞速发展的工艺技术。 金刚石及金刚石微粉:这里所说的金刚石是人造金刚石晶体,由石墨和触媒在六面顶压机的模具中,在高温高压下人工生产出来的,密度在3.5克/立方厘米,具有天然金刚石的物理化学性能,是目前硬度最高的材料,往往用于高硬度刀具、磨具的生产。人造金刚石晶体经过破碎、粒径分选、形状分类分级后,作为确定了规格的金刚石微粉,应用于金刚石线锯的,目前的常规使用粒径从5微米到50微米之间,分类级别大致为(5—10、8—12、10—20、20—30、30—40、40—50、单位是微米),遵循粗线使用大粒径金刚石,细线使用小粒径金刚石的模式,2019年5月份,金刚石线锯行业在南京召开了年度行业会议,会上的报告说明,规模化生产的金刚石线锯母线最小直径已经达到了50微米(5丝),用于硅材料切割,用于稀土永磁体切割的金刚石线锯最小母线直径是120微米(12丝)。

关于金刚石砂轮中金刚石粒度

关于金刚石砂轮中金刚石粒度、浓度等的选用一金刚石砂轮系列:人造金刚石又称“工业钻石”,它和天然金刚石一样,是当今人们已知自然界中最硬的物质。由于它具有极高的硬度,抗压强度和耐磨性,抗酸碱性以及良好的导热性和半导体性能,因而它被制成的各种工具制品能广泛应用于冶金、机械、地质、石油、电子、光学、建筑、石材等各个领域。人造金刚石砂轮是以人造金刚石为主要原材料配以其他金属粉料经过高温、高压形成的一种人造金刚石制品,能广泛应用于硬质合金、有色金属和非金属的磨削加工。 二粒度选用人造金刚石粒度的粗细以粒度号表示。粒度的粗细直接影响工件表面粗糙度、磨削效率和磨具损耗。选择粒度原则上是在满足加工工件要求的条件下选用尽可能粗的粒度,这样可以提高磨削效率和降低磨具的损耗,金刚石粒度一般分磨削工序选用粒度粗磨30#-120# 中磨120#-240# 精磨240#-W40 研磨、抛光W40-W1 三结合剂选用人造金刚石砂轮根据结合剂的不同一般分为树脂砂轮、金属砂轮、陶瓷砂轮和电镀砂轮。不同的结合剂有着不同的性能,要根据不同的加工对象、要求来选用合适的结合剂。结合剂代号主要用途树脂结合剂 B 用于硬质合金、玻璃、陶瓷、石材和宝石的切割、磨削。金属结合剂M 用于硬质合金、玻璃、陶瓷、石材、宝石等重负荷切割、磨削耐磨性好。陶瓷结合剂V 用于各种钢材和铸铁等的干磨和湿磨,更适合磨削长轴和丝轩。电镀结合剂D 用于各种材料特殊型面、小孔的磨削及贵重材料的切割下料。 四浓度选用浓度是指人造金刚石在磨具磨料层中的含量。①树脂结合剂砂轮一般采用50%-100%的浓度;其中大部分用75%,要求光洁度较高时可低于75%,成型磨削和要求使用寿命较长的砂轮,可用100%或以上。②金属结合剂制品中一般采用25%-150%的浓度;其中粗粒度的切割锯片、浓度一般较底,即25-50%,细粒度的较高;而其他金属结合剂砂轮一般要求浓度要50%-100%的浓度。总体而言,粗磨用较高浓度,半精磨用中等浓度,

金刚石微粉的生产及应用浅析

金刚石微粉的生产及应用 金刚石微粉是指颗粒度细于60微米的金刚石颗粒,有单晶金刚石微粉和多晶金刚石微粉两种类型。 A:单晶金刚石微粉是由人造金刚石单晶磨粒,经过粉碎、整形处理,采用特殊的工艺方法生产。 B:多晶金刚石微粉是利用独特的定向爆破法由石墨制得,高爆速炸药定向爆破的冲击波使金属飞片加速飞行,撞击石墨片从而导致石墨转化为多晶金刚石。 金刚石微粉硬度高、耐磨性好,可广泛用于切削、磨削、钻探等。是研磨抛光硬质合金、陶瓷、宝石、光学玻璃等高硬度材料的理想原料。金刚石微粉制品是利用金刚石微粉加工制成的工具和构件。 金刚石微粉就其粒度而言它属于微米、亚微米及纳米粉体。与粗粒粉体相比,其比表面积和比表面官能团明显增大,因而在生产过程中,颗粒相互之间的作用力大为增加。另外,随着粒度的细化,颗粒本身的缺陷减少,强度必然增大。由此可见,金刚石微粉的生产过程存在相当大的难度,它不仅仅是颗粒细化的过程,同时还伴随着晶体结构和表面物理化学性质等变化。所以说金刚石微粉的生产工艺是一个涉及机械、粉体工程、力学、物理化学、现代仪器与测试技术等多学科的工程技术问题。 金刚石微粉生产设备 金刚石微粉是由粗颗粒单晶金刚石经过破碎、分级而得。用球磨机对金刚石破碎加工来生产金刚石微粉是最常用的方法,球磨破碎法在我国金刚石微粉生产中已使用了许多年,曾经取得了较为满意的效果。但由于存在生产效率低的缺点,目前已被气流粉碎机所取代,气流粉碎机是以压缩空气为工作介质,压缩空气通过特殊的超音速喷嘴向粉碎室高速喷射,该气流携带物料高速运动,使物料与物料之间产生强烈碰撞、磨擦与剪切从而达到粉碎的目的。气流粉碎机最大的优点是不受机械线速度的限制,能够产生很高的气流速度,特别是超音速气流粉碎机能产生数倍于音速的流速,因而能产生巨大的动能,比较容易获得微米级和亚微米级的超细粉体。从粉碎原理上说,这种机型用于金刚石微粉的生产是较有发展前景的。 金刚石粉体的力度分级工艺 粒度分级是金刚石微粉生产工艺中很重要的一道工序。它涉及金刚石微粉的生产效率和质量,目前国内最为广泛使用的一种金刚石微粉粒度分级法是自然沉降法和离心法相结合的工艺生产微粉。 自然沉降法是一种直接应用斯托克斯定律的分选方法,根据同一比重的颗粒因粒径不同在水中沉降速度亦不同的原理,通过控制其沉降高度和沉降时间来分级粒度,虽然设备简单、操作容易、质量稳定,但生产周期较长、劳动效率低下。为此,国内外不少厂家研究出自动化的分级设备,采用计算机技术和变频控制技术,设置有自动搅拌、自动抽料、自动水循环和计算机控制四大系统,全数字化设计,控制精确,节能省电,具有人工无法比拟的高效率、高可靠性和良好的操控性。比人工分选效率可提高10~20倍,具有自动化程度高、分选速度

无机合成

第二章 试述气体的来源和净化步骤。如何除去气体中的水分。(P11---P12) 答: ⑴来源:工业制备和实验室制备 ⑵净化步骤:a除去液雾和固体颗粒。b 干燥。c 除氧。d 除氮 ⑶一是让气体通过低温冷阱,是气体中的水分冷却下来,已达到除水的目的 二是让气体通过干燥剂,将水分除去。 干燥气体的干燥剂有几种类型?选择干燥剂应该考虑哪些因素?P12 答: 种类:一类是可同气体中的水分发生化学反应的干燥剂 一类是可吸附气体中水分的干燥剂 因素:a干燥剂的吸附量,干燥剂的吸附量越大越好 b吸附速率,吸附速率愈快愈好。 c残留水的蒸气压,吸附平衡后残留水的蒸气压愈小愈好 d干燥剂的再生,干燥剂越易再生成本越低 如何进行无水无氧实验操作?P16 答 1 无水无氧操作室2保护气体及其净化3 试剂的储存和转移4 反应、过滤和离心分离及升华提纯5 样品的保存和转移 溶剂有哪些类型?质子溶剂有哪些特点?质子惰性溶剂分为几类?举例说明P18 和P34 答: 溶剂类型:质子溶剂,质子惰性溶剂,固态高温溶剂 质子溶剂的特点:都能自电离,这些溶剂主要是些酸碱 质子惰性溶剂分类:

a惰性溶剂,基本不容计划不自电离。如四氯化碳,环己烷等 b偶极质子惰性溶剂,即极性高但电离程度不大的溶剂。乙腈,二甲基亚砜等 c两性溶剂,三氟化溴 d无机分子溶剂,二氧化硫,四氧化二氮 使用溶剂时应考虑哪些因素?依据哪些原则?P35--P40 答: 因素:①反应物的性质②生成物的性质③溶剂的性质 原则:a反应物充分溶解b反应物不与溶剂作用c使副反应最少d易于使产物分离 什么叫拉平效应和区分效应?P40/P41 答: 拉平效应:但一种酸溶于任一溶剂时,酸中的质子完全转移给溶剂分子,这种现象被称为拉平。当不同的酸在同一溶剂中被拉平时,它仍在该溶剂中所表现的酸性强度时相同的。即原有的酸性差别因溶剂无法区分而被拉平,这种效应被称为溶剂的拉平效应。 区分效应:能区分酸(或碱)强弱的作用为区分效应。具有区分效应的溶剂为区分溶剂。 第三章 化学气相沉积法有哪些反应类型?该法对反应体系有什么要求?在热解反应中用金属烷基化物和金属烷基氧化物作为源物质时,得到的沉积层分别为什么物质?如何解释?P47--- 答: 1、反应类型:热分解反应;化学合成反应;化学输运反应。 2、要求: ①反应物在气温下最好是气态,或在不太高的温度下就有相当的蒸气压,且容易获得高纯产品。 ②能够形成所需要的材料沉积层,反应副产物均易挥发

金刚石微粉种类及应用

金刚石微粉种类及应用 聚晶金刚石微粉:纳米聚晶金刚石是在爆炸形成的瞬态强冲击波作用下合成的。它是以纳米晶构成的微米和亚微米级聚晶,聚晶由于各向同性,无解理面,抗冲击,抗弯强度高,因此它既具有超硬材料的硬度,同时又兼有纳米材料超常的高强度和高韧性。其双重优点构成了其独一无二的物理性能,在高新技术产业和传统支柱产业中有重要的应用。主要运用于芯片光学晶体\超精细加工、大型硅片超精抛光、表面改性等领域,球状聚晶金刚石微粉外观灰黑色,略呈金属光泽。 单晶金刚石微粉:晶体形状为规则、完整的六-八面体,有很高的强度、韧性和很好的热稳定性,抗冲击能力强。适用于制造电镀制品、砂轮、磨轮的制造,用于高档石材的抛光、雕刻、汽车玻璃、高档家具、陶瓷、硬质合金、磁性材料的加工等。 纳米金刚石微粉:纳米技术是九十年代后兴起的一个高新技术,纳米级金刚石由尺寸为纳米级,即十亿分之一米金刚石微粒组成,是近几年来用爆炸技术合成的新材料。它不但具有金刚石的固有特性,而且具有小尺寸效应、大比表面积效应、量子尺寸效应等,因而展现出纳米材料的特性。在爆轰波中合成的这种金刚石具有立方组织结构,晶格常数为(0.3562+0.0003)nm,晶体密度为3.1g/cm3,比表面积为300m2/g~390m2/g。在不同的化学处理后,金刚石表面可形成多种不同的官能团,这种金刚石晶体具有很高的吸附能力。

纳米级金刚石其它用途:配制高级研磨膏和抛光液:用于超精细加工石英、光学玻璃、半导体、合金和金属表面,能有效提高加工精度。 配制催化剂:爆轰合成的纳米级金刚石和无定形碳,有很大的比表面积,含有各式各样的表面官能团,活性很强,用其配制催化剂,可提高活性数据促进有机化合物的相互作用。 制备纳米复合结构材料:把纳米级金刚石与纳米硅粉、纳米陶瓷和各种纳米金属复合,可制造出新型的纳米结构材料,因其独特的性能,可制造半导体器件,集成电路元件和微机零件。

刀具习题及答案

刀具习题及答案Last revision on 21 December 2020

《金属切削原理与刀具》试题(1) 一、填空题(每题2分,共20分) 1.刀具材料的种类很多,常用的金属材料有、、;非金属材料有、等。 2.刀具的几何角度中,常用的角度有、、、、 和六个。 3.切削用量要素包括、、三个。 4.由于工件材料和切削条件的不同,所以切削类型有、、和四种。 5.刀具的磨损有正常磨损的非正常磨损两种。其中正常磨损有、和 三种。 6.工具钢刀具切削温度超过时,金相组织发生变化,硬度明显下降,失去切削能力而使刀具磨损称为。 7.加工脆性材料时,刀具切削力集中在附近,宜取和。 8.刀具切削部分材料的性能,必须具有、、和。 9.防止积削瘤形成,切削速度可采用或。 10.写出下列材料的常用牌号:碳素工具钢、、;合金工具 钢、;高速工具钢、。 二、判断题:(在题末括号内作记号:“√”表示对,“×”表示错)(每题1分,共20分)

√1.钨钴类硬质合金(YG )因其韧性、磨削性能和导热性好,主要用于加工脆性 材料,有色金属及非金属。 √2.刀具寿命的长短、切削效率的高低与刀具材料切削性能的优劣有关。 √3.安装在刀架上的外圆车刀切削刃高于工件中心时,使切削时的前角增大,后 角减小。 ×4.刀具磨钝标准VB 表中,高速钢刀具的VB 值均大于硬质合金刀具的VB 值,所 以高速钢刀具是耐磨损的。 √5.刀具几何参数、刀具材料和刀具结构是研究金属切削刀具的三项基本内容。 √6.由于硬质合金的抗弯强度较低,冲击韧度差,所取前角应小于高速钢刀具的 合理前角。 √7.切屑形成过程是金属切削层在刀具作用力的挤压下,沿着与待加工面近似成 45°夹角滑移的过程。 ×8.积屑瘤的产生在精加工时要设法避免,但对粗加工有一定的好处。 ×9.切屑在形成过程中往往塑性和韧性提高,脆性降低,使断屑形成了内在的有 利条件。 √10.一般在切削脆性金属材料和切削厚度较小的塑性金属材料时,所发生的磨损 往往在刀具的主后刀面上。 √11.刀具主切削刃上磨出分屑槽目的是改善切削条件,提高刀具寿命,可以增加 切削用量,提高生产效率。 √12.进给力f F 是纵向进给方向的力,又称轴向力。 √13.刀具的磨钝出现在切削过程中,是刀具在高温高压下与工件及切屑产生强烈 摩擦,失去正常切削能力的现象。

金刚石粒度对照表

金刚石粒度对照表 中国日本欧洲 粒度旧标号尺寸μm粒度尺寸μm粒度尺寸μm 16/18201000/118016/18100/1180D11801000/1180 18/2022850/100018/20850/1000D1001850/1000 20/2524710/850 20/30600/850D851710/850 25/3030600/710D711600/710 30/3536500/600 30/40425/600D601500/600 35/4040425/500D501425/500 40/4546355/425 40/50300/425D426355/425 45/5054300/355D356300/355 50/6060250/30050/60250/300D301250/300 60/7070212/250 60/80180/250D251212/250 70/8080180/212D213180/212 80/10090150/18080/100150/180D181150/180 100/120100125/150100/120125/150D151125/150 120/140120106/125120/140106/125D126106125 140/170 15090/106140/17090/106D10790/106 170/20075/90170/20075/90D9175/90 200/23018063/75200/23063/75D7663/75 230/27024053/63230/27353/63D6453/63 270/32528045/53270/32543/53D5443/53 325/40032038/45325/40038/45D4638/45 M36/54 W4036/5440034/38D4540/50 M22/3622/3650028/34D3532/40 M20/30 W2820/3060024/28D2525/32 M12/2212/2270020/24D2025/40 M10/20 W2010/2080016/20D20A25/30 M8/168/16 100013/16D20B30/40 M8/128/12 M6/12W146/12120010/13D1515/25 M5/10W105/1015008/10D15A10/15 M4/8 W74/820006/8D15B15/20 M3/63/625005/6D15C20/25 M2.5/5 W52.5/530004/5D75/10 M2/42/440003/4D32/5 M1.5/3W3 1.5/350002/3D11/2 M1/2 W1.51/2 80001/2D0.70.5/1 M0/20/2 M0.5/1.5 W10.5/1.5150000/1D0.250.5 M0.5/10.5/1 M0/10/1 M0/0.50/0.5

金刚石微粉的发展现状

金刚石微粉的发展现状 金刚石微粉就其粒度而言属于80μm以细的粉体,颗粒大小应包括几个层次:纳米1-100nm、亚微米0.03-1μm、微粒1-10μm、细粒10-100μm、粗粒0.1-1mm等等。 纳米颗粒与亚微米颗粒以粗粒粉体相比,其比表面积和比表面能明显增大,因此在生产过程中颗粒相互之间的作用力大大增加。由此可见,金刚石微粉的生产过程存在一定的难度,这不仅仅是颗粒细化和粒度分级的过程,同时还伴随着晶体结构和表面物理、化学性质等变化。所以说金刚石微粉的生产工艺是一个涉及机械、粉体工程、力学、物理、化学、矿物加工、现代仪器与测试技术等多学科的工程技术问题。 一、金刚石微粉生产中常见的工艺方法 金刚石微粉生产中常采用的生产工艺是: 金刚石原料→粉碎→整形→酸处理→水洗→超声波分散处理→粒度分级→单号粒度酸处理→烘干→粒度检查→称重、包装、入库。 从上述生产流程来看,金刚石微粉是一种劳动密集型的生产方式,需耗费大量的人工劳动和时间,而且生产效率很低。为满足国内外客户对不同产品使用的要求,从54-80至0-0.1μm要分级出18或24种规格,所以生产周期较长。 二、金刚石微粉质量影响因素和控制 如何评价微粉的质量,是微粉的生产和使用者所共同关心的问题。 实践表明,要获得质量好的金刚石微粉必须对以下四项指标进行严格的控制:(1)粗颗粒的尺寸和含量;(2)粒度分布范围;(3)颗粒形状;(4)金刚石原料的强度。 粒度分布范围和粗颗粒尺寸及含量是最重要的。微粉的强度决定于金刚石的内在质量,也是直接影响到粉碎整形后的颗粒形状。 微粉的质量检测是保证微粉产品质量是否符合标准规定的重要环节,只有选择合适的检测仪器和认真对待才能生产出符合使用要求的高质量微粉,满足客户需要。因此,自20世纪80年代中期以来,国内外前后出现了一些生产金刚石微粉的现代设备、仪器。 (一)金刚石微粉的粉碎及整形设备 一般来说,将粗颗粒金刚石粉碎至微米或者亚微米级有三种基本机理,即压碎、机械冲击、高速(9m/s 以上)运动颗粒之间的直接碰撞和研磨。球磨机就是以压碎作用为主兼有适量低速机械冲击作用的粉碎设备。就粉碎方法而论,用球磨机对金刚石进行粉碎是生产微粉最常用的方法。国内金刚石微粉生产中多数企业采用此种粉碎方法,国外原De Beers Co.、原G.E.Co.的微粉生产均采用球磨粉碎,曾获得满意的效果,但由于生产效率低,目前已被一种快速粉碎法所取代。 日本SEISHIN公司研制的CO-JETSYSTEMa-MKⅡ型气流粉碎机,据称可用于金刚石的超细粉碎,其粉碎原理是利用高速运动的颗粒之间直接碰撞和研磨,而实现金刚石的粉碎和整形。 我国在20世纪80年代初开始研制气流粉碎机,以净化的压缩空气为工作介质,通过加料喷射器形成高速射流,将被粉碎物料射入粉碎腔。粉碎腔周围还有粉碎喷嘴,以一定方向喷射高速气流,使金刚石颗粒之间产生激烈的直接碰撞、剪切、研磨作用。高速冲击碰撞使颗粒产生体积粉碎,而剪切和研磨作用则使颗粒产生表面粉碎,使颗粒得到整形。实践表明,只要工艺参数设置合理,这种气流粉碎机能生产出比较理想的颗粒形状,因此说这种气流粉碎机用于金刚石微粉的生产是有发展前景的,

相关主题
文本预览
相关文档 最新文档