当前位置:文档之家› 略论几种常见引起GNSS测量出现误差的因素

略论几种常见引起GNSS测量出现误差的因素

略论几种常见引起GNSS测量出现误差的因素
略论几种常见引起GNSS测量出现误差的因素

龙源期刊网 https://www.doczj.com/doc/bf8074452.html,

略论几种常见引起GNSS测量出现误差的因素

作者:钟梓敏

来源:《科技资讯》2018年第10期

摘要:在GNSS体系用户数目日趋变大的大背景下,该体系被更多的人利用,体系在检

测方面的偏差同样日渐被更多使用者给予了更多的重视,怎样减少体系在检测方面的偏差就是GNSS研究开发在未来的工作关键点。本次研究利用出现次数较多的几类造成GNSS检测存在偏差的原因完成研究,同时有针对性的研究出解决办法来提高GNSS检测作业的精确程度。

关键词:GNSS测量误差 GNSS精度控制误差分析与解决

中图分类号:P228.4 文献标识码:A 文章编号:1672-3791(2018)04(a)-0057-02

1 GNSS定义的解释

GNSS完整的名字是全球导航卫星系统,该系统即含有全部的卫星导航体系,像美国的GPS体系、我国的北斗卫星导航体系和欧洲的伽利略等一系列的系统,并且也含有有关的强化体系,像美国的大范围强化体系WAAS、日本的多用途输送卫星强化体系MSAS,还有欧洲

静地导航重叠体系EGNOS等一系列强化体系。整个GNSS在前文所说的各项系统的基础上,仍然有后期建立的别的卫星导航体系和相关强化体系。GNSS的作业原理和已存的GPS体系的区别并没有多大,该系统也是利用地面的相关设备完成在数颗卫星之间数据的随时获取作业,随时捕获多颗卫星于自身轨道的方位和地上设施的真实差距,同时利用三维坐标把这类信息完成转变,最后精确地计算出该设施的具体三围坐标,同时于时速方面同样非常精确。

2 对GNSS计量发挥作用的要素

GNSS定位误差主要有7种:轨道误差、卫星钟差、电离层误差、对流层误差、多路径误差、接收机钟差和接收机噪声。其中,电离层误差对GNSS定位的影响最大,由此引起的测距误差最大有150m,其次是多路径误差和对流层误差,如图1所示,下面只选择其中三个因素进行分析。

2.1 轨道条件

地球表面的设施在获取源于不确定的一颗卫星数据时必须通过有关单位发布的星历去定下这个卫星于自身轨道的精确方位,进一步完成在该部分卫星随时观察和数据的捕获。因为星历相同卫星路线间有非常紧密的联系,所以这些方面出现的偏差也叫星历偏差。导致星历偏差的原因不少,像地面掌控设施对卫星星历完成测量作业过程中必须在卫星追踪方面做好工作,同

测量误差产生的原因

测量误差产生的原因 测量时,由于各种因素会造成少许的误差,这些因素必须去了解,并有效的解决,方可使整个测量过程中误差减至最少。测量时,造成误差的主要有系统误差和随机误差,而系统误差有下列情况:误读、误算、视差、刻度误差、磨耗误差、接触力误差、挠曲误差、余弦误差、阿贝(Abbe) 误差、热变形误差等。系统误差的大小在测量过程中是不变的,可以用计算或实验方法求得,即是可以预测,并且可以修正或调整使其减少。这些因素归纳成五大类,详细内容叙述如下: 1. 人为因素 由于人为因素所造成的误差,包括误读、误算和视差等。而误读常发生在游标尺、分厘卡等量具。游标尺刻度易造成误读一个最小读数,如在10.00 mm处常误读成10.02 mm或9.98 mm。分厘卡刻度易造成误读一个螺距的大小,如在10.20 mm常误读成10.70 mm或9.70 mm。误算常在计算错误或输入错误数据时所发生。视差常在读取测量值的方向不同或刻度面不在同一平面时所发生,两刻度面相差约在0.3~0.4 mm之间,若读取尺寸在非垂直于刻度面时,即会产生的误差量。为了消除此误差,制造量具的厂商将游尺的刻划设计成与本尺的刻划等高或接近等高,(游尺刻划有圆弧形形成与本尺刻划几近等高,游尺为凹V 形且本尺为凸V形,因此形成两刻划等高。 2. 量具因素 由于量具因素所造成的误差,包括刻度误差、磨耗误差及使用前未经校正等因素。刻度分划是否准确,必须经由较精密的仪器来校正与追溯。量具使用一段时间后会产生相当程度磨耗,因此必须经校正或送修方能再使用。 3. 力量因素 由于测量时所使用接触力或接触所造成挠曲的误差。依据虎克定律,测量尺寸时,如果以一定测量力使测轴与机件接触,则测轴与机件皆会局部或全面产生弹性变形,为防止此种弹性变形,测轴与机件应采相同材料制成。其次,依据赫兹(Hertz) 定律,若测轴与机件均采用钢时,其弹性变形所引起的误差量 应用量表测量工件时,量表固定于支持上,支架因被测量力会造成弹性变形,如图2-4-3所示,在长度的断面二次矩为,长的支柱为,纵弹性系数分别为、,因此测量力为P 时,挠曲量为。为了防止此种误差,可将支柱增大并尽量缩短测量轴线伸出的长度。除此之外,较大型量具如分厘卡、游标尺、直规和长量块等,因本身重量与负载所造成的弯曲。通常,端点标准器在两端面与垂直线平行的支点位置为0.577全长时,其两端面可保持平行,此支点称之为爱里点(Airey Points) 。线刻度标准器支点在其全长之0.5594位置,其全长弯曲误差量为最小,此处称之为贝塞尔点(Bessel Points) 4. 测量因素 测量时,因仪器设计或摆置不良等所造成的误差,包括余弦误差、阿贝误差等。余弦误差是发生在测量轴与待测表面成一定倾斜角度,如图2-4-5所示其误差量为,为实际测量长度。通常,余弦误差会发生在两个测量方向,必须特别小心。例如测量内孔时,径向测量尺寸需取最大尺寸,轴向测量需取最小尺寸。同理,测量外侧时,也需注意取其正确位置。测砧与待测工件表面必须小心选用,如待测工件表面为平面时需选用球状之测砧、工件为圆

测量常见偏差原因分析

测量偏差常见原因分析 测量工作必须严谨细心,千万不能心存侥幸,不得有一丝马虎。测量是施工的眼睛,引导施工前进,关系施工的进度、质量,因此测量工作必须精确、快速,以下是我对测量偏差常见原因的分析。 1、全站仪建站时,只记得精平,忘记了对中,从而导致对中粗差, 定向偏差,放样偏差。 2、全站仪测量标高时,棱镜杆高度与全站仪设置棱镜高度不一 致,从而导致测量标高错误。 3、全站仪网格因子因后方交会产生变化,使用后交后未及时修改 网格因子,从而导致下次固定控制点建站测距偏差。 4、全站仪大气压及温度被修改后,没有及时修正,导致测距偏差。 5、全站仪反射物设置不正确,如棱镜、反射片、免棱镜等,每种 反射物常数均不同,因设置错误从而导致测距偏差(需注意不同规格的棱镜常数也会有差别)。 6、全站仪在使用过程中,三脚架螺栓未拧紧或脚架未踩实,产生 不均匀沉降,全站仪发生倾斜,从而导致放样偏差。 7、建站时,测站点坐标、后视点坐标或方位角输入错误,定向错 误,并且未进行坐标反测,从而导致放样错误。 8、放样时,放样点坐标输入错误,从而导致放样错误,该情况应 引起足够重视。建议预先将测量数据用数据线上传全站仪后直接调取桩号,上传前应对坐标数据进行核对,放样时再次核对,该

方法可节省坐标输入的时间,提高工作效率。 9、放样时,放样点角度偏离0度0分0秒较大,从而导致放样偏 差。 10、对讲机传话时,表达或理解错误导致放点偏差,如向前5公分 打桩,结果说成或理解成向后5公分打桩,就将导致10公分的偏位。 11、放样距离超过建站距离,从而导致放样偏差。(要充分理解, 角度发散原理,放样距离越远偏差越大。) 12、除以上操作问题外,挤土效应,机械行走,都会使放好的桩位 发生位移,从而导致桩位偏差。此外,管桩施打过程中,桩身垂直度控制不好,造成桩身倾斜。同样会造成施工好的桩位发生偏差。 全站仪自身有补偿功能,在工地检查过程中,发现很多工地测量员在放点过程中,都未打开补偿器,补偿失去意义。建议各工地测量员在测量过程中打开补偿器,以减少仪器轻微倾斜带来的测量误差。 2012年12月15日 郭越

测量工作常见错误与控制措施

测量工作常见错误与控制措施 的环节,也是最容易出错的环节。因其施工测量条件差,要求高,其成果的隐蔽性和处理纠正错误比较麻烦,我们在实际施工中,应该给予足够的重视的。 关键词】测量;基础施工;错误;质量控制 1 测量工作常见错误 1.1 轴线定位错误 轴线定位错误造成的后果相当的严重,会造成整体建筑物的定位错误,涉及到规划布局以及前期的设计工作全部否定,会造成极大的经济损失和社会影响。 1.2 单根桩位定位错误 造成这种错误的因素有很多,因桩基础测量定位的过程比较琐碎和其特性决定。这样的错误在施工中较为常见,如在基础开挖之前发现,一般都可以补救,如在开挖后发现,则处理和补救相当的麻烦。但是不管怎样, 造成的经济损失都是很大的。

1.3 造成测量放样错误的原因 造成测量错误的原因有很多的,具体有如下几种: 对红线交点与设计图纸尺寸未复核或理解错误,对所交的红线点未全面的与图纸上的建筑尺寸复核,因红线放样是根据设计图纸相关座标定位,这个过程也是一个错误容易出现的地方。当红线交点与设计图纸不符合的 时候,如果按照有误的红线点来进行施工测量,错误就出现了。 红线点交接时候,如果没有理解所交点是设计图纸上的那个具体位置,或者记录错误,都可能出现这些错误。 1.4 对图纸理解错误 这种情况主要出现在联体大型基础工程或地下室(车库)与建筑物相连接的工程中。一般设计出图时,会将其分成几张图纸出图,在测量放样时,会造成局部和整体的关系出错. 1.5 绘制施工桩位编号图时,尺寸标注出错 桩基础施工单位会对设计基础平面图桩位进行编号出图。在原来手工描图时这种错误较少出现,现在大多用CAD绘图,反而会造成绘图错误,如不及时改正,就会引起施工测量时出错。

联轴器偏差和找正分析和实测题

旋转设备安装轴不对中联轴器中心偏差分析与找正技术培训 内 部 学 习 材 料 编制:邓华伟 委员:郭先军王洪赵安华 张运森万谊熊建平攀钢集团工程技术有限公司西昌分公司

旋转设备安装轴不对中联轴器中心偏差 分析与找正 摘要:旋转设备在安装或维修后始终存在轴对中的问题,对中精度的高低对设备运行周期及运行效率有着直接的影响,找正的目的是保证设备在工作时使主动轴和从动轴两轴中心线在同一直线上.找正的精度关系到设备是否能正常运转,对高速运转的设备尤其重要。 关键词:对中基准找正调整 1、概况 旋转设备在安装或维修后始终存在轴对中的问题,对中精度的高低对设备运行周期及运行效率有着直接的影响。设备对中精度高,会使旋转支承部位振动小、温升低、磨损小、设备故障率低等特点;设备对中精度低,会使旋转支承部位振动加剧、温升高、磨损加快、设备故障率高,甚至会造成转子轴断裂等设备事故。可以说,旋转设备轴对中精度高低直接影响设备是否能够正常运转,对生产重点设备、高运转设备尤其重要。

2、轴不对中联轴器偏移情况分析 2.1、偏移情况 轴不对中联轴器轴线位置偏差指铅垂方向和水平方向的偏移量,其中水平方向偏心分别存在如下四种情况: (1)、两轴线平行且同心(理 想状态)如图1(a)所示; (2)、两轴线平行但不同心如 图1(b)所示; (3)、两轴线同心但不平行如 图1(c)所示; (4)、两轴线不同心但不平行 如图1(d)所示; 2.2、偏移分析 图1所示的四种情况,两轴绝对对中属是理想状态,对在线运转 设备始终保持轴线对中是难以达到理想状态的,各部位的不均匀膨 胀、轴的弯曲、轴承的游隙、设备转子的动不平衡等原因,都可能造 成轴在运转不对中的现象发生,所以在设备制造、安装、检修中都规 定有允许的偏差值,因此,设备静态下轴不对中联轴器轴线位置偏差 的控制显得尤为重要。 3、检测方法与测量 3.1、基准部位的选择 轴不对中联轴器轴线位置偏差找正确定基准部位是非常重要的,

矿井测量工作应注意的事项

矿井测量工作应注意的事项 摘要:介绍了测量工作中的产生错误原因及注意事项。内容通俗易懂具有指导性。 关键词:测量工作注意事项 矿井测量工作是矿井在生产建设中一项重要的基础工作,它是煤矿建设、生产的“眼睛”,主要包括地面测量、联系测量、井下控制测量、采区测量及施工放线等方面,但工作量最大、时间性最强、一旦发生差错就可能影响生产且照成经济损失的,主要是井下日常施工放样测量和导线测量。而施工放样测量又是依据各种测量成果进行的,因而上述各方面测量又是相互联系的,不可分割的。 尽管现代社会科技飞速发展,电子经纬仪、全站仪、电子手簿、陀螺仪、GPS、计算机得到了普及和广泛应用,但是由于井下受空间限制等自然条件特殊性的制约,各种传统的测量仪器和测量方法仍然在井下使用,主要工作仍然是测角和量边。在一些大型贯通中,由于领导重视,测量人员精心施测和计算,导线资料认真处理和核对,测量成果基本上都能满足设计和施工要求,但是在日常施工测量中,往往容易发生这样或那样的差错事故。有的事故后果还比较严重,影响了安全生产,有的造成重大经济损失,有的还造成人身伤亡。 笔者根据我矿30多年的实践经验,经过分析、总结,在测量工作中,应该在以下几个方面引起重视,避免发生测量事故。 认真校核起算数据 由于工程时间紧迫,测量人员没有足够的时间对起算数据进行校核,就仓促测量、计算、标定,结果发生测量事故。该类测量事故经常发生,为了预防和避免该类测量事故发生,应由两人独立查阅抄录起算数据并互相校对,确定无误后方可使用。避免在同一地点使用相同点号。测点如果丢失或者损坏重新补测的测点,其编号不得与原点号相同。在接测导线时,必须对原有的测点进行测角和量边检查,在确定测点未移动的情况下方可接测导线。例如我矿一副上山贯通中导线接测由于未进行测角和量边检查,用错点,又未能及时复测导线,结果导致贯通错误的事故,给矿造成重大经济损失。 原始记录错误

细菌菌落总数检测常见误差原因分析

细菌总数监测常见误差分析 细菌菌落总数就是水源地与地面废水样品检测必做得一项指标。菌落总数检测同其她检验一样,也存在检测误差。平板计数法就是细菌总数常用方法之一, 因此,该值准确与否直接关系水质好坏。微生物平板计数得通常方法为每个样品用3个稀释度,每个稀释度常做3个重复。但如何对平板菌落进行正确计数、3个稀释度以哪一个稀释度进行计数及微生物检测允许误差等问题,在饲料标准中并未有所规定,而这些问题与统计值得准确性密切相关。我们就实际检测芽孢杆菌工作中遇到一些菌落计数得问题,与大家进行探讨。 1材料与方法 1.1试验材料 1。1。1样品:随机抽取微生态饲料添加剂合生素样品3份。 1。1.2培养基:营养琼脂。 1.1.3仪器设备:磁力搅拌器,无菌培养皿,培养箱,振荡器。 1.2 试验方法 1。2。1样品得振荡时间对菌数检测得影响 选择1个样品,称取10 g,放人无菌锥形瓶内,加入90 mL无离子水,磁力搅拌分别为l0、20、30、40与60 rain、用1 mL移液枪从中吸取1 mL样品悬浊液加入到盛有9mL去离子水得试管中,用振荡器使样品充分均匀,以此类推,制成10一~1O一’不同稀释度得样品溶液。平板涂布法检测菌含量:用移液枪从样品稀释液中各吸取200L,每个样品稀释液3个重复;将平板倒置于35—37 cC培养箱中培养24 h。

1.2。2 检测方法对菌数检测得影响 各个样品称取l0 g,放入无菌锥形瓶内,加入90 mL无离子水,磁力搅拌分别为40 rain。并稀释成10~~l0 不同稀释度得样品溶液。倾注平板法检测菌含量:用移液枪从各个平行样品相应稀释液中各吸取1 mL,每个样品稀释液3个重复,待培养基表面干燥后,将平板倒置于35 37~(2培养箱中培养24 h、平板涂布法检测菌含量:用移液枪从各个平行样品相应稀释液中各吸取200 L涂布平板,每个样品稀释液3个重复;将平板倒置于 35~37℃培养箱中培养24h、2结果 2.1样品得振荡时间对菌数检测结果得影响 采用细菌平板计数得方法,不同振荡时间对合生素中芽孢杆菌检出量得结果见表1。从表l中可见:不同振荡时间获得得细菌菌落数量有较大差别。总体而言,在一定时间内,随着振荡时间得延长检出有效菌含量增加,说明细菌从载体上解析需要一定得时间;当振荡时间为40rain后产品中得菌含量基本稳定。采用适当振荡时间才能更精确得显示产品中有效菌得含量。表1 震荡时间对有效菌含量结果得影响’["/_。CFU/g 震荡时间对有效菌落含量结果得影响 3分析与讨论 3.1样品处理对结果得影响 取样时对样品取样口与取样工具要消毒,防止样品交叉污染。 3、2样品得均质处理对结果得影响

谈谈系统误差的产生原因及其消除或减少的方法(精)

谈谈系统误差的产生原因及其消除或减少的方法 在讨论随机误差时,总是有意忽略系统误差,认为它等于零。若系统误差不存在,期望值就是真值。但是,在实际工作中系统误差是不能忽略的。所以要研究系统误差,发现和消除系统误差。 一、系统误差产生的原因 在长期的测量实践中人们发现,系统误差的产生一般的与测量仪器或装置本身的准确程度有关;与测量者本身的状况及测量时的外界条件有关。 1、在检定或测试中,标准仪器或设备的本身存在一定的误差。在进行计量检定,向下一级标准量值传递时,标准值的误差是固定不变的,属于系统误差。又称为工具误差或仪器误差。如:标称值为100g的砝码,经检定实际值为99.997g,即误差为 0.003g。用此砝码去秤量其他物体的质量,按标称值使用,则始终把被测量秤大,产生 0.003g的恒定系统误差。 某些仪器或设备,在测量前须先进行调零位,若因测量前未调零位或存在调零偏差,使得标准仪器在测量前即具有某一初始值,该初始值必然直接影响测量结果,给测量结果带来误差。这种误差,一般称零位误差,或简称零差。 某些仪器或设备,如未按要求放置,特别是某些电磁测量和无线电测量仪器或设备,未正确接地或屏蔽,或未用专用连接导线,也会给测量结果带来误差。这种误差称为装置误差。 2、测量时的客观环境条件(如温度、湿度、恒定磁场等),也会给测量结果带来误差。如,重力加速度因地点不同而异,若与重力加速度有关的某些测量,未按测量地点的不同加以适当的修正,也会给测量结果带来误差。因这种误差是由客观环境因素引起的,一般把它称为环境误差。 3、由于某些测量方法的不完善,特别是检定与测试中所使用的某些仪器或设备,在设计制造时受某些条件的限制(如元器件,制造工艺等),不得不降低某些指标,采用一些近似公式,这也会给测量结果带来误差。这种误差称方法误差或称理论误差。 4、在测量中,测量者本身生理上的某些缺陷,如听觉、视力等缺陷,也会给测量结果带来误差。此项误差又称为人员误差。 二、消除或减少系统误差的方法 mad消除或减少系统误差有两个基本方法。一是事先研究系统误差的性质和大小,以修正量的方式,从测量结果中予以修正;二是根据系统误差的性质,在测量时选择适当的测量方法,使系统误差相互抵消而不带入测量结果。 1.采用修正值方法 对于定值系统误差可以采取修正措施。一般采用加修正值的方法。 对于间接测量结果的修正,可以在每个直接测量结果上修正后,根据函数关系式计算出测量结果。修正值可以逐一求出,也可以根据拟合曲线求出。 应该指出的是,修正值本身也有误差。所以测量结果经修正后并不是真值,只是比未修正的测得值更接近真值。它仍是被测量的一个估计值,所以仍需对测量结果的不确定度作出估计。 2.从产生根源消除 用排除误差源的办法来消除系统误差是比较好的办法。这就要求测量者对所用标准装置,测量环境条件,测量方法等进行仔细分析、研究,尽可能找出产生系统误差的根源,进而采取措施。

测量常见错误精品文档5页

1.建筑物沉降观测,前视读数,后视读数,前视标高,什么 意思? 在水准测量里,要测量仪点标高,必须要知道原始点的标高(即标高的计算起点) 仪器架好,首先对准的后视点,因为后视点地面有标高,将已知的地面标高加上仪器读出水准尺的读数,就是仪器的标高,然后再对准要测量的点,前视点,(建筑物上的标识点),因为水准仪的视线是水平的,所以看到前视点上的标尺读数与仪器是同标高,而标尺的底部标高就是仪器高减去读数 所以就有  前视点标高=仪器标高-前视点读数=后视点标高+后视点读数-前视点度数 沉降观测:如果把前视点作为观测点,在规定日期里观测,通过观测记录的标高比较,就可以知道前视点的沉降量了。 测量工作,就是把设计施工图中的位置及标高在现场定出来。基本上所用的仪器是水准仪定标高和全站仪定位置。经常是一个主测量和一个助手在现场完成任务。 首先说测标高,施工方的测标高就是在放了线定出桩位后,测出相应点的现有标高,然后用相应点的设计标高减去现有标高,得出的高差就是现场的标高交底。然后把高差交由施工员或施工班组进行施工并对他们进行必要的现场说明。测标高都认为很简单,但往往测量问题总是出现在测标高上面,因为测标高容易出错。经常是没有算准设计标高,计算过程有误,读尺读错等原因导致测量出错甚至造成返工。

然后说放线,基本上目前工地上一般都是用全站仪进行坐标放点。两点决定一条线段。其次也可用一些手工的数学方法交出圆弧啊,画出半圆等。放线一般学会难一点,但学会了后只要坐标算准和放线时操作无误就没有测标高那样容易出错。而且一旦有错,马上可以感觉到。放线用的坐标也是从设计施工图中计算出,可用可编程计算器算,可用算坐标的小软件算,也可在电子施工图中用CAD点出坐标用来放线。放线完后对施工班组进行必要的现场说明则完成了放线工作。 2.做过市政测量的工作心得? 下列是一些施工方测量经验的详细解说。 一、标高计算方法: 交底高差=相应点设计标高—相应点现有标高=相应点设计标高—(水准点标高+后视—前视) 其中:后视指塔尺立在已知标高点上的读数,前视指塔尺立在未知标高点上的读数。 个别情况下,现场不适宜用施工图中理论上的设计标高来控制,只适宜用现场某一个已固定的结构物标高来决定即将施工的结构物的标高,则此种情况下的计算方法为: 交底高差=相应点设计标高—相应点现有标高=(水准点标高+后视—已定结构物的前视—已定结构物与即将施工结构物的结构高差)—(水准点标高+后视—即将施工结构物的前视) 此式又可简化为:交底高差=(0—已定结构物的前视—已定结构物与即将施工结构物的结构高差)—(0—即将施工结构物的前视)

测量误差基本知识

四、测量误差基本知识 1、测量误差分哪两类?它们各有什么特点?测量中对它们的主要处理原则是什么? 2、产生测量误差的原因有哪些?偶然误差有哪些特性? 3、何谓标准差、中误差和极限误差? 4、对某个水平角以等精度观测4个测回,观测值列于下表(表4-1)。计算其算术平均值x、一测回的中误差m及算术平均值的中误差m x。 表4-1 5、对某一三角形(图4-1)的三个内角重复观测了九次,定义其闭合差?=α+β+γ-180?,其结果如下:?1=+3",?2=-5",?3=+6",?4=+1",?5=-3",?6=-4",?7=+3",?8=+7",?9=-8";求此三角形闭合差的中误差m?以及三角形内角的测角中误差mβ。

图 4-1 6、在一个平面三角形中,观测其中两个水平角(内角)α和β,其测角中误差均为m=±20",根据角α和角β可以计算第三个水平角γ,试计算γ角的中误差m γ。 7、量得某一圆形地物直径为64.780m ,求其圆周的长S 。设量测直径的中误差为±5㎜,求其周长的中误差m S 及其相对中误差m S /S 。 8、对某正方形测量了一条边长a =100m ,a m =±25mm ;按S=4a 计算周长和P=a 计算面积,计算周长的中误差m 和面积的中误差p m 。 9、某正方形测量了四条边长a 1=a 2=a 2=a 4=100m ,m =m =m =m =±25mm ;按 S=1a +2a +3a +4a 计算周长和P=(1a ?2a +3a ?4a )/2计算面积,求周长的中误差m 和面积的中误差p m 。 10.误差传播定律应用 (1)(1)已知m a =m c =m ,h=a-b ,求m 。 (2)已知a m =m =±6",β=a-c ,求βm 。 (3)已知a m =m =m ,S=100(a-b) ,求m 。 (4)已知D=() h S -,m =±5mm ,m =±5mm ,求m 。

电子测量中实验误差分析与控制

目录 摘要 .......................................................................................... 错误!未定义书签。 一、绪论 ........................................................................................ 错误!未定义书签。 二、测量误差的基本原理 ............................................................ 错误!未定义书签。 2.1、研究误差的目的 ...................................................................................... 错误!未定义书签。 2.2、测量误差的表示方法?错误!未定义书签。 2.3、电子测量仪器误差的表示方法 .......................................................... 错误!未定义书签。 三、测量误差的分类 .................................................................... 错误!未定义书签。 3.1、误差的来源?错误!未定义书签。 3.2、测量误差的分类 ................................................................................... 错误!未定义书签。 3.3、测量结果的评定 .................................................................................... 错误!未定义书签。 四、随机误差的统计特性与估算方法 ........................................ 错误!未定义书签。 4.2、贝塞尔公式及其应用?错误!未定义书签。 4.3、均匀分布情况下的标准差 ...................................................................... 错误!未定义书签。 4.4非等精密度测量 .................................................................................... 错误!未定义书签。 五、系统误差的特性及减小方法 ................................................ 错误!未定义书签。 5.1、系统误差的特征?错误!未定义书签。 5.2、判断系统误差的方法 ......................................................................... 错误!未定义书签。 5.3、控制系统误差的方法?错误!未定义书签。 5.3.1.从产生误差的根源上采取措施。?错误!未定义书签。 5.3.2.用修正法减小系统误差?错误!未定义书签。 六、疏失误差及其判断准则 ........................................................ 错误!未定义书签。 6.1、测量结果的置信问题 .............................................................................. 错误!未定义书签。 6.2、不确定度与坏值的剔除准则?错误!未定义书签。 七、测量数据的处理 .................................................................... 错误!未定义书签。 7.1、数据的舍入规则?错误!未定义书签。 7.2、测量结果的处理步骤?错误!未定义书签。 7.3、最小二乘法原理?错误!未定义书签。 八、最佳测量条件的确定与测量方案的设计?错误!未定义书签。 8.1、最佳测量条件的确定 ........................................................................... 错误!未定义书签。 8.2、测量方案设计 .......................................................................................... 错误!未定义书签。 8.2.1、在设计测量方案时,可以从下属几个方面考虑?错误!未定义书签。 8.2.2、测量过程可分为三个阶段 ..................................................... 错误!未定义书签。 致谢?错误!未定义书签。 参考文献?错误!未定义书签。

井下测量工作总结最新总结

井下测量工作总结 井下测量工作总结 我担任新建煤业有限公司生产副矿长,分管煤矿生产、开拓掘进煤矿调度工作,根据公司安排,下面我对xx年上半年工作进行总结汇报:第 (一)、思想上能和上级保持一致,在矿上能和班子保持团结一致,积极维护大局,推动我矿发展;能自觉学习,认清形式,与时俱进,积极参加和组织公司和矿的各种活动;认真学习,增强反腐倡廉教育,端正作风,廉洁自律,时刻提醒自己“拒腐蚀、永不沾”,严格遵守领导干部廉洁自律的各项规定,始终做到自重、自省、自警、自励,以无愧于组织的信任和员工的期望,坚决抵制各种不正之风,树立良好的公仆形象,积极深入现场,深入井下,不摆官架子,与职工打成一片,深获基层干部和职工的好评。 第 (二)、在生产中,紧密围绕生产布局,扎实做好生产准备工作。积极同技术人员对矿生产布局进行探讨安排布置,克服不利因素,针对井下采场实际情况、生产格局的总体安排,合理调整开拓布局,努力做好采掘系统的安全生产管理工作,确保生产正常接替。 第 (三)、xx年上半年以来,我矿掘进总进尺累计;其中303运输巷过空区,调向,系统改造;303机轨运输大巷系统顺利改造完成;采煤工作

面回采累计。30205采煤工作面遇到建矿以来地质变化带最多,地质条件最为复杂的时候。遇地质构造带,导致煤层变薄、煤炭质量差、构造区域安全工作带来极大隐患。 为全面解决此问题,提高煤炭日产量、煤炭质量,保障安全生产工作顺利进行,对工作面暂时安排放炮过断层,6月中旬,顺利推进到停采线,并为工作面回收做准备工作;为7月中旬30205外工作面、8月份30201东工作面安排工作面扩切眼,为下半年安装做好准备工作。 第 (四)、狠抓职工职业培训,严格基层干部管理,深化基层队伍建设。近年来,我矿掘进队伍调出频繁,新进职工多,从年初至今,为满足矿井发展需求,矿对现有掘进队伍进行了改建重组,招收新职工50余人,相对管理难度增加,安全压力较大。依据班组建设平台,本人认真贯彻落实建立教育培训等严格的制度,通过亲自参加班前会、到井下迎头现场考察等方式深入调查、熟悉,进行教育引导强化队伍建设管理,提高队伍素质。合理抓好劳动组合,搞好优化组合。在队伍新、人员新,新掘巷道开口多、采煤搬家频繁的情况下,重点抓工时工序利用,减少浪费与提效。 第 (五)、大力配合加强安全质量标准化建设。结合井下和队伍自身实际情况,为安全生产积极营造良好的工作环境和氛围,狠抓标准化,不断打造示范工程,矿多处系统环境和工程质量得到极大改善,事故

测量误差产生的原因及其避免途径

测量误差产生的原因及其避免途径 测量工作的实践表明,在任何几何量测量工作中,无论是测角、测高还是测量距,当对同一量进行多次观测时,不论测量仪器多么精密,观测进行得多么仔细,测量结果总是存在着差异,彼此不相等。测量误差的来源与下列因素有关:基准件的误差、测量方法的误差、计量器具的误差、测量环境以及测量人员引起的误差等。 一、基准件的误差 任何基准都不可避免存在误差,当用它作基准时,其误差会带入测量值中。因此,在选择基准件时,一般都希望基准件的精度选高一些。但是,基准件的精度太高也不经济,在生产实践中一般取基准件的误差占总测量误差的1/5~1/3。 二、测量方法误差 方法误差是指测量时选用的测量方法不完善而引起的误差。测量时,采用的测量方法不同,产生的测量误差也不一样。例如,测量大型工件的直径,可以采用直接测量法,也可以采用测量弦长和弓高的间接测量法,其测量误差是不相同的。直接测量与间接测量相比较,前者的测量误差只取决于被测参数本身的计量与测量环境和条件所引起的误差;而后者则取决于被测参数有关的各个间接测量参数的计量器具与测量环境和条件所引起的误差,以及它们之间的计算误差。 三、计量器具的误差 1.理论误差 由于仪器设计时,经常采用近似机构代替理论上所要求的运动机构,用均匀刻度的刻度尺近似的代替理论上要求非均匀刻度的刻度尺,或者仪器设计时违背阿贝原则等,这样造成的误差称理论误差。 2.仪器制造和装配调整误差 仪器零件的制造误差和装配调整误差都会直接引起仪器误差。例如,仪器读数装置中刻度尺、刻度盘的刻度误差和装配时的偏斜或偏心引起的误差;仪器传动装置中杠杆、齿轮副、螺旋副的制造误差以及装配误差;光学系统的制造、调整误差;传动件间的间隙、导轨的平面度、直线度误差等。这些都会影响仪器的示值误差和稳定性。 影响仪器制造、装配误差的因素很多,情况比较复杂,也难于消除掉。最好的方法是在使用中,对一台仪器进行检定,掌握它的示值误差,并列出修整表,以消除其系统误差。另外,用多次测量的方法以减少随机误差。 四、测量力引起的误差

GNSS在线数据处理系统在工程控制网中的运用

GNSS在线数据处理系统在工程控制网中的运用 发表时间:2019-09-08T17:24:49.033Z 来源:《基层建设》2019年第17期作者:张伟[导读] 摘要:本文主要对卫星定位系统的发展历程进行了分析,并对卫星定位技术在工程控制当中的意义进行了阐述,通过目前我国城市连续运行参考网站发展的方向以卫星定位系统应用在施工放样和国土资源调查中的情况,探讨了在信息采集和城市信息管理中卫星定位技术的重要性,希望能够提供参考价值,让GNSS在线数据处理系统得到更加广泛的应用。 正元地理信息集团股份有限公司山东分公司 250014摘要:本文主要对卫星定位系统的发展历程进行了分析,并对卫星定位技术在工程控制当中的意义进行了阐述,通过目前我国城市连续运行参考网站发展的方向以卫星定位系统应用在施工放样和国土资源调查中的情况,探讨了在信息采集和城市信息管理中卫星定位技术的重要性,希望能够提供参考价值,让GNSS在线数据处理系统得到更加广泛的应用。 关键词:GNSS技术;在线数据处理系统;工程控制网随着社会经济的不断发展,科学技术不断进步,计算机技术、GNSS技术等一些新兴技术的出现是必然趋势,目前正在不断完善一种以网络GNSS定位技术和数据处理方法,使各种网络的GNSS在线处数据处理系统更加完善和优质,在一定程度上推动了我国工程控制的发展,具有十分广大的应用前景和应用价值。 1.GNSS技术的发展历程 互联网科学技术的不断发展,让GPS等卫星导航技术拥有了更加广阔的发展空间,各种DNSS数据处理系统应运而生,网络在线数据处理系统不仅能将处理的成本有效降低,也能让用户的体验更加方便和便捷,不会受到时间、空间的限制,用户随时随地都可以通过邮件获取处理数据的过程以及结果,目前有许多国家以及科研机构都以互联网技术为基础,建造了GNSS在线数据处理系统。其中美国的SCOUT 系统以及澳大利亚的AUSPOS系统已经开始实现自动化运作,在处理数据时会自动选择与上传站点相邻的参考站,并对和平差进行计算和统计,整个处理过程非常迅速,而且在时代不断发展过程中,科学网络技术和经济不断进步,卫星定位系统的性能也在不断优化,卫星导航系统兼容与互相商户操作已经逐渐实现。在俄罗斯、美国都有了空中的卫星定位系统。目前多星座卫星定位系统的发展也为接收机带来了非常大的变化,卫星定位有着高精准度,并且其能通过与GSM、GPRS等通讯网络结合使用,整个操作非常方便、便捷,用户只需要通过卫星定位接收机,就可以定位远距离位置,让定位的高精度和快速度的功能有效实现。 2.GNSS在线数据处理系统在工程控制网中的运用 在现代社会当中,全球的卫星定位系统不仅是卫星技术自身的优化突破,并且在工程控制中也拥有非常广泛的应用价值,让工程设计能拥有更加科学的技术手段。应用卫星技术在工程网的每一个环节中,能够使该项工程更加便利和快捷,其不仅是只对测量进行控制,还会对地形进行测绘,具有非常大的功效。 2.1在工程控制测量中的应用 在工程控制测量中卫星定位技术的优势有许多,因为卫星定位技术的处理速度快,而且精度较高,所以广泛运用在各种类型的工程控制网中。随着社会的不断发展,对测量的要求更高,大地水准面的测量数据要求也更加准确。应用卫星定位技术测量我国东部平原地区,其精度可以高达3cm,在丘陵地区测量其精度可以高达5cm,控制网实现了从二维到三维的转变,能够颠覆传统的测量方法,在让测量成果质量得到保证的同时,也让运作效率不断提升,具有非常大的使用价值。今年来我国经济正在呈现快速发展的趋势,推动了大型工程建立,比如长江三峡工程、南水北调工程等,在对其控制网建设过程中,卫星定位系统都发挥了很大的作用和功效,为整个工程的建设提供了非常坚实的技术基础和后盾。 2.2应用于地形图测绘以及国土资源调查中 GNSS在线数据处理系统还包括RTK技术,RTK技术具有一定的优越性,目前已经在测绘地形图、测量地籍以及施工放样得到了应用,是非常重要的技术手段,在这类工程中有效采用RTK技术,不仅可以极大发挥出RTK技术的高精度、快速度的优势,而且还能有效提升工程进度。大型工程建设的施工要求更加严谨和严格,比如一些桥梁建设、高速公路建设、水坝工程建设等,这类工程施工具有一定的复杂性,而且工期比较紧凑,所以其建成必须要卫星定位技术辅助才能开展施工。目前随着卫星定位技术的不断发展,取得了更多优秀的成果,在PDA上已经可以使用GPSRTK技术进行施工放样,并且这一技术已经在西气东输工程中得到了应用,整个工程中对油管道的施工放样非常严谨,输油管线长达6000多公里,而需要在有限的时间内完成施工,就必须要进行分段施工,运用卫星定位技术不仅将其运行效率有效提高,而且也能精准把握控制网的准确度。 2.3应用于精密机械控制与土木工程机械控制 卫星定位技术不仅可以测量和控制工程网,还可以控制一些精密机械,比如大型集装箱吊装自动控制以及土木工程机械控制。这些机械控制都离不开卫星定位技术,在对机械进行控制时应用卫星定位技术,能够将该技术的高精准度、快速等特点充分发挥出来,结合无线通讯设备,可以自动控制野外施工作业,有效提高了施工进度,而且还能减少工人的施工量,让整个施工的质量和效率得到保障。 2.4应用于GIS信息采集以及城市信息管理当中 目前我国GPS信息采集工作的开展就是运用遥感技术和卫星定位RTK技术,使用RTK技术对GPS信息进行采集和更新是目前信息收集使用的重要手段,投入使用网络RTK技术不仅可以将城市信息化进程不断加快,还能够将城市基础设施信息采集过程中的实时性和可靠性提高。 由于在参考战网当中具有一定的特殊性和服务性能,有效的利用卫星定位技术以及通信网对信号进行统一采集和散播,可以让一网多用的功能实现,从而有效节约资源,也提高经济效益。而且在此基础上对城市进行管理规划时,能以提供更加快速的信息更新服务为基础开展规划工作。参考网站的静态观测数据还能对其他范畴进行服务,比如地震监测等,这种参考网站具有较为广泛的服务范围,所以也被称之为卫星定位的综合服务网。 目前我国已经有许多城市进行了参考战网的建立和运行工作,比如上海、深圳等。进一步推广卫星参考站网可以以我国目前发展的实际情况为基础,让参考战网能够由省级向市级、县级等方向发展。如今在苏州、南京等城市已经实现了网连网,并且其覆盖范围较广,江苏省的参考战网主要由64个站组成,广东省的参考战网主要由46个站组成。 3.结束语

试验检测误差产生原因及改善措施

试验检测误差产生原因及改善措施 1.概述 工程质量的评价是以各种试验检测数据为依据的,而大量实践表明:一切试验测量结果均具有误差。因此作为从事试验检测工作的专业技术人员和管理人员有必要了解误差的种类,分析这些误差产生的原因及影响因素,以便在工作过程中采取针对性的措施最大限度的加以减少和消除误差。同时应具备科学地解析检测数据的能力,确保检测结果能最大限度地反应真值,及时、准确、可靠地测定检测对象,为管理部门提供真实可靠的工程质量状况及其变化规律。 2.试验检测的误差分类及成因 根据误差产生的原因及产生性质,可以把测量误差分为系统误差、随机误差和过失误差三大类。 2.1系统误差原因分析 系统误差是由人机系统产生的误差,是由一定原因引起的在相同条件下多次重复测量同一物理量时产生的。它具有测量结果总是朝一个方向偏离,其绝对值大小和符号保持恒定,或按照一定规律变化的特点。因此系统误差有时称之为恒定误差。系统误差主要由些列原因引起: (1)仪器误差 由于测量工具、设备、仪器结构上的不完善,电路的安装、布置、调整不得当,仪器刻度不准确或刻度的零点发生变动,样品不符合要求等原因引起的误差。 (2)人为误差 指试验检测操作人员感官的最小分辨力和某些固有习惯引起的误差。例如,由于观察者的最小分辨力不同,在测量数值的估读或与界面的接触程度上,不同

观测者就有不同的判断误差。有的试验检测人员的固有习惯,如在读取仪表读数时总是把头偏向一边,也可能会引起误差。 (3)外界误差 外界误差也称环境误差,是由于测试环境,如温度、湿度等的影响而造成的误差。 (4)方法误差 由于测试者未按规定的方法进行试验检测,或测量方法的理论依据有缺点,或引用了近似的公式,或试验条件达不到理论公式所规定的要求等造成的误差。 (5)试剂误差 在材料的成分分析及某些性质的测定中,有时要用一些试剂,当试剂中含有被测成分或含有干扰杂质时,也会引起测试误差,这种误差称为试剂误差。 一般来说,系统误差的出现是有规律的,其产生原因往往是可知或可掌握的,只要仔细观察和研究各种系统误差的具体来源,就可设法消除或降低其影响。 2.2随机误差原因分析 随机误差往往是由不能预料、不能控制的原因造成的。例如试验检测人员对仪器最小分度值的估读很难每次严格相同;测量仪器的某些活动部件所指示的测量结果在重复测量时很难每次完全相同,尤其是使用年久或质量较差的仪器设备时更为明显。 无机非金属材料的许多物化性能都与温度有关。在试验检测过程中,温度应控制恒定,但温度恒定有一定的限制,在此限度内总有不规则的变动,导致测量结果发生不规则的变动。此外,测量结果与室温、气压和湿度也有一定的关系。由于上述因素的影响,在完全相同的条件下进行重复测量时,测量值或大或小,

水文测量误差产生的原因分析及对策研究`

水文测量误差产生的原因分析及对策研究` 发表时间:2016-10-17T16:52:01.323Z 来源:《基层建设》2015年10期作者:刘红[导读] 摘要:测量工作能够使人们更好的了解客体状况,是对事物的一个综合的认识过程,在水文环境的检测中,水文测量就是一项重要的工作内容,但是在实际操作中因为人为因素或者计算方式的不同造成测量数值存在误差的情况,这为水文测量工作的准确性带来了困难,本文通过分析水文测量的误差产生原因提出了相应的解决措施。 新县水利局 2965554 摘要:测量工作能够使人们更好的了解客体状况,是对事物的一个综合的认识过程,在水文环境的检测中,水文测量就是一项重要的工作内容,但是在实际操作中因为人为因素或者计算方式的不同造成测量数值存在误差的情况,这为水文测量工作的准确性带来了困难,本文通过分析水文测量的误差产生原因提出了相应的解决措施。 关键词:水文测量;误差;原因与对策 水是人类与动植物都离不开的生命资源,水文的检测工作不仅是自身学科的研究基础,而且对于水利工程的建设、水资源评价、优化配置等多个方面都有很重要的科研意义,测量工作是人们对某些区域信息收集的主要方式,在实际的工作中出现误差在所难免,但是通过对测量工作进行一定的控制,有效的将误差控制在合理的范围之内也是可以实现的。 一、水文测量误差产生的原因 1、设备以及测量方法造成的误差 水文测量工作会受到测量设备的影响,测量设备在生产之后可能会由于一些原因存在相应的测量误差,这就是所说的设备误差,例如水准仪或者水准尺,无论进行多么认真仔细的校正,都会存在一定的误差值[1]。如果测量设备的水准管轴与视准轴之间存在不平行的问题就很可能造成误差的产生,这种由于设备原因产生的误差一般被称为系统误差,在实际的工作中这类误差是完全可以减小的,比如将设备前后的两个视距保持在统一水平上就可以有效的减小误差的数值。此外,因为设备使用原因而产生的误差还包括水准尺工具自身的内部原因,比如水准尺上面的刻度的划分不规范或者是水准尺在使用之前存在弯曲的现象等。除了因设备而产生的误差之外,还有因为测量方法不规范、不科学而产生的误差问题,通常人们把这种误差叫做方法误差,比如在水文环境的检测中,水体的流量以及水面位置都不是固定的,会随着时间的变化而改变,所以在水文测量中如果时间间隔过长就会产生同一水文环境下的误差。 2、模型误差和人员误差 在水文测量工作中,模型误差也会导致测量的结果不准确,在测量过程中,会选用一些模型进行概化,这些模型一般都是数学模型,并且在原基础上对其进行相应的概化,但是概化后的模型就会出现相应的误差[2]。比如在进行水体流量的计算过程中,水体两侧形状不规则的河道一般都会按照平行状态处理,测量工作中的模型的控制形成都是按照这一标准进行记录、计算的,在最终的检测结果中就会产生与实际数值之间的误差。另一方面,工作人员造成的误差在水文测量产生的误差中也比较常见,这种类型的误差是由于测量人员自身专业素质以及掌握的技术水平存在差异而产生的,如果工作人员对水文测量工作的步骤进程了解不清楚也会造成误差的扩大。测量人员在进行水文测量工作时有时会因为经验不足造成检测结果数据的偏差,在水准尺的使用过程中有时候也会因为数值的估算读取而出现误差,这可能是由于工作人员自身或者测量距离不准确而造成的,这也体现了测量人员自身技术水平的重要性。 二、水文测量误差产生的对策研究 1、维护测量设备,改善测量环境 在进行水文测量工作时,对于一些误差的出现是不可避免的,一些误差也是能够减少的,因此必须根据误差的成因进行相应对策的处理,对于水文测量工作误差的处理,可以从以下几点进行解决[3]。首先是加强对水文测量设备的维护,测量设备是水文测量中的物质基础,其中误差产生的主要原因是设备自身的问题造成的,为了减少这种硬件设施存在的误差问题,就必须重视测量设备的维护工作,定期对设备进行检查校正,产生问题需要及时的检修,避免因为细节上的问题造成误差的增大。其次,减少误差的另一个方式就是在野外环境中作业时通过人为的干涉来改善测量环境,水文测量结果必须保证真实、准确,在测量环境的选择中,应该选择环境比较稳定的水体,如果水面风浪过大或者漂浮物过多就会对测量结果产生影响,造成误差的加大。因此在环境的选择上必须综合考虑多方面的因素,这样既可以确保结果的准确性又可以对测量设备起到一个保护的作用,避免环境的恶劣对设备造成的损坏。 2、提高测量人员的专业技术水平 提高水文测量工作人员的专业技术水平能够大大减少实际工作中产生的误差,测量工作中人员专业素质的培养和管理是至关重要的,如果工作人员技术水平不达标,即使测量设备非常精准和很难不出现误差,他们不仅能够影响水文测量的结果还能够对设备的使用造成很大的影响,人员误差的减少能够延长设备的使用期限,出现问题时也能够及时发现、几时处理,避免了因为使用过程中的不恰当对机器设备造成的损坏。另外,在日常工作中也要不断的提高测量人员的工作积极性,使其在水文测量中保持一个正确的工作态度,因此要对测量人员进行定期的专业素质的教育和培训。测量误差的出现离不开测量人员技术水平的影响,加强测量人员的技术水平同时也是水文测量工作质量不断提高的客观要求。 结束语 造成水文测量工作中的误差产生的原因多种多样,有检测系统造成的,也有因为外界因素的影响产生的误差,水文测量的工作必须保证测量结果的真实性和准确性,这样才能保证收集到的信息数据不会受到较大程度的干扰。解决误差的具体措施是减小误差出现的重要方法,必须对误差的解决对策进行详细的分析,以此来确保测量结果的精准性。 参考文献: [1]马腾.浅谈水文测量误差的成因及对策[J].城市地理,2015,02:112. [2]张留柱.水文测量误差研究[D].河海大学,2005. [3]刘颖,张成龙,李迎春.水文测量误差的成因及对策[J].产业与科技论坛,2012,17:113.

相关主题
文本预览
相关文档 最新文档