当前位置:文档之家› 高纯度芦丁树脂纯化工艺研究

高纯度芦丁树脂纯化工艺研究

高纯度芦丁树脂纯化工艺研究
高纯度芦丁树脂纯化工艺研究

应用大孔吸附树脂分离纯化工艺生产

附件10 应用大孔吸附树脂分离纯化工艺生产 的保健食品审评规定 第一条 为规范应用大孔吸附树脂分离纯化工艺生产的保健食品评审工作,确保保健食品的食用安全,根据《中华人民共和国食品卫生法》和《保健食品注册管理办法》,制定本规定。 第二条 应用大孔吸附树脂分离纯化工艺生产的保健食品是指产品生产过程中及原料生产过程中应用了大孔吸附树脂分离纯化工艺的保健食品。 第三条 申报应用大孔吸附树脂分离纯化工艺生产的保健食品除按照保健食品的有关规定提交资料外,还应提供以下资料: (一)大孔吸附树脂的相关资料 1、大孔吸附树脂规格标准。标准内容应包括大孔吸附树脂名称、牌(型)号、结构、合成原料(主要原料、交联剂、致孔剂、分散剂等名称和规格)、外观、极性和粒径范围、含水量、湿密度、干密度、比表面积、孔径、孔隙率、孔容等,并提供大孔吸附树脂标准级别等。 2、大孔吸附树脂使用说明书。使用说明书的内容应包括: (1)大孔吸附树脂性能简介、适用范围、主要原料和添加剂种类与名称; (2)残留物(包括未聚单体、交联剂、主要添加剂)及其残留量检测方法和限量标准及依据; (3)使用方法和注意事项,包括新大孔吸附树脂的预处理方法、再生处理方法和操作注意事项、贮存条件等,以及可能出现异常情况的处理方法。 3、生产批号、生产时间、产品试验报告书。 4、相关证明文件。大孔吸附树脂生产企业的企业名称、地址、电话、营业执照及相关生产许可证件的复印件等。 (二)应用大孔吸附树脂进行分离纯化的制备工艺研究资料 1、制备工艺中应用大孔吸附树脂进行分离纯化的目的与依据。详细说明应用大孔吸附树脂进行分离、纯化的目的和必要性,并提供相关研究或文献资料。 2、大孔吸附树脂的预处理方法和合格标准。预处理方法包括考察预处理溶剂的种类、用量、浸泡时间、流速、温度、pH等工艺参数和操作规程。 3、生产工艺的研究资料。大孔吸附树脂型号的选择、比上柱量、

芦丁的提取分离及鉴定A4

2011届本科生毕业论文 题目芦丁的提取分离及鉴定作者单位陇东学院化学化工学院指导老师胡浩斌 作者姓名张娜娜 专业班级2007级化学本科(2)班提交时间二〇一一年四月

2011届本科生毕业论文 芦丁的提取分离及鉴定 张娜娜,胡浩斌 (陇东学院化学化工学院,甘肃庆阳745000)摘要:目的以芦丁为例学习黄酮类化合物的提取方法,掌握黄酮类成分的主要性质及黄酮甙,甙元和糖的部分鉴定方法。方法采用水提法、碱水(石灰水) 提取法、有机溶剂(乙醇) 回流法对芦丁进行提取分离,并对其进行定性分析及色谱鉴定。结果水提法、碱水(石灰水) 提取法、有机溶剂(乙醇) 回流法,三种方法均可制的芦丁,且质量合格。结论从提高芦丁产率和纯度的角度出发,乙醇回流是较理想的提取方法。制得芦丁产率高,且测定方法简单、迅速、灵敏度高。 关键词:槐花米;芦丁;槲皮素;提取;分离;鉴定 Extraction, Seperation and Identification of Rutin Zhang Nana, Hu Haobin (College of Chemistry and Chemical Engineering, Longdong University, Qingyang 745000, Gansu) Abstraction: Objection Rutin as an example to learn the extraction of flavonoids square. Grasp the main properties and flavonoids ingredients flavonoids glucoside. Method W ith the water extraction method, buck (limewater) extraction,organic solvent (alcohol) extraction to extraction and separation of rutin and chromatographic identification. Result With water formulation,Buck (limewater) extraction,organic solvent (alcohol) method of extraction rutin backflow separation,three methods are made rutin and obtaining rutin quality qualified. Conclusion From improve yield and purity of rutin angle, ethanol refluxing was ideal extraction method. Preparation of rutin of high yield,high sensitivity. determination method is simple to rutin rapid. Key word: Sophora japonica; rutin; quercetin; extraction; separation; identification 引言 随着人们生活水平及质量的不断提高,心脑血管病的发病率也呈上升趋势,而且死亡率居各种疾病之首,因此,对治疗和预防心脑血管病的药品与保健品的开发研究就显得尤为重要, 1

芦丁的提取分离和鉴定

综合化学实验: 芦丁的提取分离和鉴定 芦丁简介: 芦丁(Rutin)又名芸香苷化学式: C27H30O16·3H2O,是一种浅黄色针状结晶有机化合物,广泛存在于自然界植物中,是一种被人们广泛使用的有机天然产物。目前已发现含有芦丁的植物至少在70种以上,常见的如烟叶、槐花、荞麦和蒲公英中均有不同含量。尤其以中药槐米(豆科、槐属,槐树Sophorajaponica的花蕾)和荞麦中含量最高,因此槐米可作为大量提取芦丁的天然植物原料。 中药槐米(炒碳)味苦性凉、具清热凉血、止血之功。常用于治疗多种出血症:肠风便血、痔血、尿血、衄血、崩漏下血、赤血下痢等。西医研究其主要有效成分为有机化合物“芦丁”而中药槐米中芦丁的含量可高达12~16%,是主要的芦丁天然来源。槐米中还含有槲皮素、三萜皂苷、槐花米甲素、槐花米乙素、槐花米丙素等。研究文献证明芦丁具有VitP(维生素P)样作用(VitP具有生物类黄酮的功能,可防止维生素C被氧化而受到破坏,增强维生素功效;增加毛细血管壁强度,防止瘀伤。有助于牙龈出血的预防和治疗,有助于因内耳疾病引起的浮肿或头晕的治疗等)。而芦丁具有类似作用如可降低毛细血管脆性和调节通透性等,在医学临床上常将其用作毛细血管脆性引起的出血症以及防治高血压病等的辅助治疗药物。 芦丁是由槲皮素(quercetin)3位上的羟基与芸香糖(rutinose,一种由葡萄糖glucose与鼠李糖rhamnose组成的双糖)脱水合成的苷,是一种浅黄色粉末或极细的针状结晶,含有三分子的结晶水,熔点为174~178℃,无结晶水时188~190℃。溶解度:冷水中为1:10000;热水中1:200;冷乙醇1:650;热乙醇1:60;冷吡啶1:12。微溶于丙酮、乙酸乙酯,不溶于苯、乙醚、氯仿、石油醚,溶于碱而呈黄色。 补充知识:

树脂基玻璃纤维复合材料注塑成型工艺研究

树脂基玻璃纤维复合材料注塑成型工艺研究树脂基玻璃纤维复合材料一种性能优异的轻量化材料,其材料的收缩率小,产品的比强度高,精度好,能很好的满足汽车轻量化需求。树脂基短切玻璃纤维复合材料很大程度上可以满足我们轻量化及性能要求,但是如何有效的控制纤维取向,为优化产品中的纤维分布,得到性能更好的产品,成为了新的挑战,本文在传统注塑成型工艺的基础上,提出了动态注塑成型方案,来优化成型过程中的纤维取向,从而获得更优性能的产品。 本文提出了新的生产工艺,在工艺设计、模具设计、工艺优化及实验验证方面做出了大量研究,本论文所做的具体研究如下:(1)根据树脂基短切玻璃纤维复合材料的特性,为优化玻璃纤维在产品中取向和分布,本文提出了动态注塑成型工艺,并阐述了动态注塑成型工艺的基本原理及过程,根据动态注塑成型的原理,动态注塑模具需要在合模状态下,使模腔空间根据需要变化,根据这一需求,本文引入活动型芯机构来进行模腔拓展,分析了动态注塑模具的工作过程,并根据模具的设计要点对动态注塑模具的整体结构设计。(2)利用Moldflow软件对16组不同工艺参数组合的成型过程分别进行了模拟,得到了纤维取向张量和翘曲量两个质量指标结果,并采用正交试验方法,对模拟结果进行了统计分析,结果显示初始型腔厚度对纤维分布有着显著影响,注射时间对产品的翘曲有着显著影响,得出了最佳的工艺参数设置,验证了动态注射成型工艺及模具的正确性。 (3)进行了生产实验,并生产过程中需注意的问题进行介绍和分析。试件注塑完成后,对试件进行了拉伸测试,弯曲测试以及断面组织观测,总结了在动态注塑成型工艺下各参数对塑件机械性能的影响,发现经动态注塑成型工艺优化后,产品的内部组织更加均匀,试件的拉伸强度得以提升,但弯曲强度略有提升。

芦丁的提取及鉴定

实验二芦丁的提取及鉴定 (一)概述 芦丁(Rutin)广泛存在于植物界中,现已发现含芦丁的植物至少在70种以上,如烟叶、槐花、荞麦和蒲公英中均含有。尤以槐花米(为植物Sophora japonica 的未开放的花蕾)和荞麦中含量最高,可作为大量提取芦丁的原料。芦丁是由斛皮素(Quercetin)3位上的羟基与芸香糖(Rutinose)〔为葡萄糖(Glucose)与鼠李糖(Rhamnose)组成的双糖〕脱水合成的苷。 芦丁为浅黄色粉末或极细的针状结晶,含有三分子的结晶水,熔点为174~178℃,无水物188~190℃。溶解度:冷水中为1:10000;热水中1:200;冷乙醇1:650;热乙醇1:60;冷吡啶1:12。微溶于丙酮、乙酸乙酯,不溶于苯、乙醚、氯仿、石油醚,溶于碱而呈黄色。 芦丁具有维生素P样作用。有助于保持及恢复毛细血管的正常弹性,主要用作防治高血压病的辅助治疗剂,亦可用于防治因缺乏芦丁所致的其他出血症。实验目的和要求 实验目的 ①通过芦丁的提取与精制掌握碱-酸法提取黄酮类化合物的原理及操作。 ②通过芦丁结构的检识,了解苷类结构研究的一般程序和方法。 ③了解UV及NMR在黄酮类化合物结构鉴定中的应用。 要求 ①要拿到以下三个化合物:芦丁、槲皮素、芦丁的全乙酰化合物。 ②能够拿根据化学试验及UV、NMR数据初步推断出芦丁的结构。并对黄酮类化合物的结构测定有一般性的了解。 试验方法 芦丁的提取与分离(见下图) 芦丁的鉴定 ①芦丁的定性反应 取芦丁3~4mg,加乙醇5~6ml使其溶解,分成三份作下述试验: A. 取上述溶液1~2ml,加2滴浓盐酸,在酌加少许镁粉,注意观察颜色变化情况。 B. 取上述溶液1~2ml,然后滴加2%柠檬酸的甲醇溶液,注意观察颜色变化情况,在继续向试管中加入2%ZrOCl2的甲醇溶液,并详细记录颜色变化情况。 C. 取上述溶液1~2ml,然后再加入10%α-等体积的萘酚乙醇溶液,摇匀,沿管壁滴加浓硫酸,注意观察两液面产生的颜色变化。 ②芦丁的紫外光谱解析 取芦丁溶于色谱纯甲醇中,加入规定的试剂,测定其UV光谱,试解析光谱并初步判断其结构。

热固性树脂

树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,也不能溶解。热固性树脂其分子结构为体型,它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是机械性能较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。 指在加热、加压下或在固化剂、紫外光作用下,进行化学反应,交联固化成为不溶不熔物质的一大类合成树脂。这种树脂在固化前一般为分子量不高的固体或粘稠液体;在成型过程中能软化或流动,具有可塑性,可制成一定形状,同时又发生化学反应而交联固化;有时放出一些副产物,如水等。此反应是不可逆的,一经固化,再加压加热也不可能再度软化或流动;温度过高,则分解或碳化。这也就是与热塑性树脂的基本区别。 在塑料工业发展初期,热固性树脂所占比例很大,一般在50%以上。随着石油化工的发展,热塑性树脂产量剧增,到80年代,热固性树脂在世界合成树脂总产量中仅占10%~20%。 热固性树脂在固化后,由于分子间交联,形成网状结构,因此刚性大、硬度高、耐温高、不易燃、制品尺寸稳定性好,但性脆。因而绝大多数热固性树脂在成型为制品前,都加入各种增强材料,如木粉、矿物粉、纤维或纺织品等使其增强,制成增强塑料。在热固性树脂中,加入增强材料和其他添加剂,如固化剂、着色剂、润滑剂等,即能制成热固性塑料,有的呈粉状、粒状,有的作成团状、片状,统称模塑料。热固性塑料常用的加工方法有模压、层压、传递模塑、浇铸等,某些品种还可用于注射成型。 热固性树脂多用缩聚(见聚合)法生产。常用热固性树脂有酚醛树脂、脲醛树脂、三聚氰胺-甲醛树脂、环氧树脂、不饱和树脂、聚氨酯、聚酰亚胺等。热固性树脂主要用于制造增强塑料、泡沫塑料、各种电工用模塑料、浇铸制品等,还有相当数量用于胶粘剂和涂料。 从发展看,热固性树脂还在进一步改进质量,研制新品种,以满足新加工工艺开发的要求。用弹性体和热塑性树脂进行改性、开发注塑级热固性模塑料以及反应注射成型用专用树脂及配方,近年来已受到很大重视。采用互穿聚合物网络技术将为热固性树脂的合成开辟新途径。[1] 固化和玻璃化是两个完全不同的过程,热固型树脂固化温度以上才能发生交联反应,而玻璃态到高弹态转变是相变问题。一个是化学过程、一个是物理过程,研究玻璃化的时候可以不理固化的问题。对应到工程上就是固化的时候看固化温度,树脂的最高工作温度看玻璃化温度。 环氧树脂溶解液固化剂

槐米中芦丁的提取

O HO O HO O OH OH O HO OH CH2 HO O OH OH HO O H3C 槐米中芦丁的提取、提纯和鉴定 一、实验目的 1.掌握芦丁提取和提纯的基本原理和方法。 2.掌握重结晶及过滤等基本操作。 3.学习芦丁及槲(hū)皮素的鉴定方法。 二、实验原理 芦丁(Rutin)亦称芸香苷,广泛存在于植物组织中,其中以槐花米和荞麦叶含量较高,槐米中含量高达12~16%,是提取芦丁的最佳原料。芦丁有减少毛细血管通透性的作用,临床上用作毛细血管止血药和高血压病的辅助治疗药物。近年来,芦丁及槲皮素作为抗癌药物的研究,取得了大量成果。芦丁属黄酮苷,其结构如下: 芦丁为淡黄色针状结晶,含有三分子结晶水(C27H36O16·3 H2O),熔点为177~178 ℃,无水物熔点为190~192 ℃,难溶于冷水,微溶于冷乙醇,可溶于热水和热乙醇中。此外,还难溶于乙酸乙酯、丙酮,不溶于苯、氯仿、乙醚及石油醚等溶剂。易溶于碱性溶液中呈黄色,酸化后又析出。本实验利用芦丁在冷热水和冷热乙醇中溶解度的差异进行提取与精制。 芦丁在不同溶剂中的溶液度: 芦丁的紫外吸收波长(CH3OH溶液):λmax = 259mm,266nm sh,299nm sh,359nm。 槲皮素(Quercetin)是芦丁水解得到的黄酮苷元,是芦丁药用功能的主要部分,大多数黄酮类物质都具有较高的药用价值。 槲皮素为黄色结晶,含两分子结晶水(C15H10O7·2 H2O),熔点313~314 ℃,无水

物熔点为316 ℃。可溶于甲醇、乙酸、吡啶、丙酮、乙酸乙酯等溶剂,不溶于水、乙醚、苯、氯仿、石油醚。在沸腾的无水乙醇中溶解度为4.4 ,在室温下乙醇中的溶解度为0.35 。可利用槲皮素在冷热乙醇中的溶解度差进行提纯。槲皮素的结构式如下: 槲皮素的紫外吸收波长(CH 3OH 溶液):λmax = 259nm ,266nm ,299nm ,359nm 。 三、实验步骤 (一)芦丁的提取 取15 g 槐米研成粉状,置烧杯中,加水300 mL ,煮沸30分钟(注意适量加水,补充蒸发损失),趁热过滤,滤渣再提取两次(每次用水250 mL ,煮沸15分钟),过滤,合并滤液,放置24小时,使沉淀完全析出。过滤,粗产物用少量水洗涤,得芦丁粗品,烘干,称重,计算提取率。 (二)芦丁的精制 将芦丁粗品研细,倒入圆底烧瓶中,加入100 mL 95% 乙醇,加热回流至芦丁完全溶解,再加少量活性炭回流10分钟,然后趁热过滤于另一圆底烧瓶中,得黄色澄清溶液。蒸馏滤液并回收乙醇,待溶液剩10~15 mL 时停止加热,将浓缩液倒入小烧杯中,用少量乙醇洗涤烧瓶,将洗涤液合并于小烧杯中,放置使结晶完全析出。过滤(滤液回收),得芦丁精品,烘干,称重,计算产率,测其熔点。 (三)芦丁水解制取槲皮素 取芦丁精品1.0 g 于烧杯中,研细,加30%乙醇水溶液150 mL ,再加浓盐酸4 mL ,加热煮沸30分钟(注意观察)。放置冷却,过滤,水洗至滤液呈中性,烘干,称重,计算产率。测其熔点(如质量不合格,可用75%乙醇重结晶),计算产率。 (四)性质试验 取芦丁及槲皮素精品少许,用95%乙醇溶解,作为样品溶液,进行下列试验,并比较两者试验结果的差异。 1.Molish 反应 取两试样各l mL ,各加入10%α—萘酚溶液10滴,充分摇匀,将试管倾斜,沿管壁慢慢加入1 mL 浓硫酸,勿摇,观察溶液界面的颜色变化。 O OH HO OH OH O OH

聚酰胺树脂纯化

第一章前言 1.1 甘草简介 甘草 (Licorice)是豆科(Leguminosae)蝶形花亚科(Papiliantae Taub)甘草属植物,是一种应用极广的中药,素有“十方九草”之称[1]。深秋,荚果裂开,籽粒随风散步大地上,天然繁殖。茎挺拔直立,根如圆柱,直径三四厘米,大的五六厘米,长一米多,最长者达三四米。甘草多生长在干旱、半干旱的荒漠草原、沙漠边缘和黄土丘陵地带,在引黄灌区的田野和河滩地里也易于繁殖。它适应性强,抗逆性强,不愧是植物界抗干旱的能手,斗风沙的先锋。 甘草在中草药中具有“众药之王”的美誉,是重要市用中药, 来源于豆科(leguminosae) 植物甘草、欧甘草、胀果甘草的干燥根和茎。国产甘草主要有:乌拉尔甘草(Glycyrrhiza uralensis Fisch)、胀果甘草(G. inflata Batal)、光果甘草(Glucyrrhizic acid)、黄甘草(G. eurycarpa P.C.Li)、粗毛甘草(Glycyrrhiza aspera Pall.)、云南甘草(Glycyrrhiza yunnanensis Cheng f.et L.K.Ti)、园果甘草(G. squamulosaFranch)、刺果甘草(G. pallidifloraMaxim)、欧甘草(Glycyrrhiza glabra L.)和欧甘草变种(G. glabra var.glandalifera)等。其中以乌拉尔甘草(Glycyrrhiza uralensis Fisch)分布最广、产量最大[2]。甘草具有补脾益气,清热解毒,祛痰止咳,缓急止痛,调和诸药的功效。用于脾胃虚弱,倦怠乏力,心悸气短,咳嗽痰多,脘腹,四肢疼痛,痈肿疮毒,缓解药物毒性、烈性[3]。 1.2 主要有效成分及药理作用 国内外学者对甘草的化学成分和药理作用进行了许多研究,主要有效成分是黄酮类化合物和三萜皂苷。据现有资料报道,甘草的化学组成极为复杂,已从甘草中分离得到100多种黄酮类化合物,60多种三萜类化合物以及香豆素类、18种氨基酸、多种生物碱、雌性激素和多种有机酸等[4]。其中,黄酮类成分具有明显的抗溃疡、解痉、抗炎、降血脂、镇痛和雌性激素样作用[5]。近年来还发现甘草黄酮对艾滋病毒(HIV)有很强的抑制增殖作用,对甘草黄酮的研究应用已经引起人们的重视[6]。 1.2.1 甘草黄酮的化学成分 近年来的研究表明,甘草中存在着一种重要的生理活性物质,即黄酮类化合物。黄酮类化合物的基本母核早期是指2-苯基色原酮,近年来泛指两个苯基通过三碳链相连形成的化合物,即具有 C6-C3-C6 基本骨架,包括黄酮、黄酮醇、异黄酮、查尔酮及它们的二氢衍生物和黄烷醇、花青素等。甘草黄酮(Glycyrrhiza flavonoids ,FG) 是从甘草提取物中得到的一类生物活性较强的成分,许多学者对其化学成分进行了大量的研究工作。邢国秀等人[7]在文章中给出甘草黄酮类150 多个化合物的结

芦丁的提取

实验从槐花米中提取芦丁P.198 【实验目的】 通过从槐花米中提取芦丁的实验,掌握用酸碱调节提取中药活性成分的方法. 【实验原理】 槐花米又名槐米,是槐花的花蕾.性凉,味苦,功能凉血,止血,主治肠风,痔血,便血等症.槐花米的主要活性成分是芦丁. 芦丁又名芸香苷,不仅存在于槐花米中(含量达10-20%),在荞麦叶等中,也有存在.结构式如下: 从结构式中不难看出,芦丁实际上是由黄酮与糖(葡萄糖和鼠李糖)形成的苷.由于含有黄酮结构,所以,呈黄色.黄酮部分连有许多酚-OH,故易溶于碱液,酸化复析出,这是本实验采用酸-碱调节法来提取芦丁的依据. 纯芦丁为淡黄色针状结晶,不溶于乙醇,氯仿等有机溶剂,熔点为188℃(理论值),带三个结晶水的熔点为174-178℃. 芦丁能增强毛细管的韧性,适用于毛细管脆弱的患者. 【实验步骤】 称取15g槐花米,用粉碎机研成粉状.置于250ml烧杯中,加入150ml饱和石灰水[1],于石棉网上加热至沸,并不断搅拌,煮沸15分钟后,抽滤[2].滤渣再用100ml饱和石灰水煮沸10分钟,抽滤. 合并两次滤液,用5%盐酸调节至pH3-4[3].放置1-2小时,使沉淀完全,抽滤,并用水洗涤2-3次,即得芦丁粗品. 将粗品置于250ml的烧杯中,加水150ml,在石棉网上加热至沸,不断搅拌,并慢慢加入约50ml 饱和石灰水,调节溶液pH值为8-9,待沉淀溶解后,趁热过滤.滤液置于250ml的烧杯中,用5%盐酸调节至pH4-5,静置30分钟.芦丁即以浅黄色结晶析出,抽滤,并用水洗涤1-2次,烘干,称重[4],测熔点. 【注解】 [1] 加入饱和石灰水既可达到用碱液提取芦丁的目的,同时,还可除去槐花米中的多糖粘液质. [2] 抽滤时,宜先小心倾出上层清液,再慢慢倒出带结晶的溶液,以防结晶过早堵住滤纸孔.后面的抽滤均需如此. [3] 注意小心滴加,约需7-8ml稀盐酸.如果滴加过多,pH值过低,芦丁(苷类)则易水解. [4] 产量约为1.5g. 【实验结果】 产品的外观性状 产量 【问题与讨论】 1 本实验中,开始用饱和石灰水提取,再用酸调节到pH3-4,这段pH值范围较宽;后来又用饱和石灰水调节到pH3-4,再用酸调节到pH4-5,这段pH值范围较窄.为什么要这样做如果反过来(先调窄后调宽)行不行 2 在一开始用酸调节pH值时,某生不小心,加入的稀盐酸过量,pH值小于3-4,请问对实验会产生什么后果为什么 3 根据这个实验,请总结出用酸碱调节法提取中药活性成分的适用条件及一般原理.

酚醛树脂及复合材料成型工艺的研究进展

酚醛树脂是最早工业化的合成树脂,已经有100年的历史。由于它原料易得,合成方便以及树脂固化后性能能满足很多使用要求,因此在模塑料、绝缘材料、涂料、木材粘接等方面得到广泛应用。近年来,随着人们对安全等要求的提高,具有阻燃、低烟、低毒等特性的酚醛树脂重新引起人们重视,尤其在飞机场、火车站、学校、医院等公共建筑设施及飞机的内部装饰材料等方面的应用越来越多[1]。 与不饱和聚酯树脂相比,酚醛树脂的反应活性低,固化反应放出缩合水,使得固化必须在高温高压条件下进行,长期以来一般只能先浸渍增强材料制作预浸料(布),然后用于模压工艺或缠绕工艺,严重限制了其在复合材料领域的应用。为了克服酚醛树脂固有的缺陷,进一步提高酚醛树脂的性能,满足高新技术发展的需要,人们对酚醛树脂进行了大量的研究,改进酚醛树腊的韧性、提高力学性能和耐热性能、改善工艺性能成为研究的重点。近年来国内相继开发出一系列新型酚醛树脂,如硼改性酚醛树脂、烯炔基改性酚醛树脂、氰酸酯化酚醛树脂和开环聚合型酚醛树脂等。可以用于smc/bmc、rtm、拉挤、喷射、手糊等复合材料成型工艺。本文结合作者的研究工作,介绍了酚醛树脂的改性研究进展及rtm、拉挤等酚醛复合材料成型工艺的研究应用情况。 1酚醛树脂的改性研究 1.1聚乙烯醇缩醛改性酚醛树脂 工业上应用得最多的是用聚乙烯醇缩醛改性酚醛树脂,它可提高树脂对玻璃纤维的粘结力,改善酚醛树脂的脆性,增加复合材料的力学强度,降低固化速率从而有利于降低成型压力。用作改性的酚醛树脂通常是用氨水或氧化镁作催化剂合成的苯酚甲醛树脂。用作改性的聚乙烯醇缩醛一般为缩丁醛和缩甲乙醛。使用时一般将其溶于酒精,作为树脂的溶剂。利用缩醛和酚醛羟甲基反应合成的树脂是1种优良的特种油墨载体树脂。 1.2聚酰胺改性酚醛树脂 经聚酰胺改性的酚醛树脂提高了酚醛树脂的冲击韧性和粘结性。用作改性的聚酰胺是一类羟甲基化聚酰胺,利用羟甲基或活泼氢在合成树脂过程中或在树脂固化过程中发生反应形成化学键而达到改性的目的。用该树脂制成的渔竿等薄壁管具有优良的力学性能。 1.3环氧改性酚醛树脂 用热固性酚醛树脂和双酚a型环氧树脂混合物制成的复合材料可以兼具2种树脂的优点,改善它们各自的缺点,从而达到改性的目的。这种混合物具有环氧树脂优良的粘结性,改进了酚醛树脂的脆性,同时具有酚醛树脂优良的耐热性,改进了环氧树脂耐热性较差的缺点。这种改性是通过酚醛树脂中的羟甲基与环氧树脂中的羟基及环氧基进行化学反应,以及酚醛树脂中的酚羟基与环氧树脂中的环氧基进行化学反应,最后交联成复杂的体型结构来达到目的,是1种应用最广的酚醛增韧方法。 1.4有机硅改性酚醛树脂 有机硅树脂具有优良的耐热性和耐潮性。可以通过使用有机硅单体与线性酚醛树脂中的酚羟基或羟甲基发生反应来改进酚醛树脂的耐热性和耐水性。 采用不同的有机硅单体或其混合单体与酚醛树脂改性,可得不同性能的改性酚醛树脂,具有广泛的选择性。

聚酰胺树脂分离纯化神香草提取液工艺研究

聚酰胺树脂分离纯化神香草提取液工艺研究 目的考察聚酰胺树脂分离纯化神香草提取液的最佳工艺条件。方法以总黄酮和迷迭香酸为检测指标,采用单因素考察法筛选树脂纯化工艺中的最大上样量、水洗脱体积、洗脱剂用量、上样液浓度、树脂吸附时间、上样液pH值和洗脱速率等参数。结果最佳纯化工艺参数为:神香草提取液浓度为10 mg/mL,最大上样量为12 mL,水洗脱2 BV去除杂质,40%乙醇洗脱9 BV,上样液迷迭香酸浓度86.3 μg/mL、总黄酮浓度117.8 μg/mL左右,树脂吸附时间为14 h,上样液pH值调至6.5,洗脱速度3.0 BV/h。结论该方法简便易行,分离效果良好,适用于神香草提取液的分离纯化。 Abstract:Objective To investigate the optimal process conditions for the separation and purification of extract from Hyssopus cuspidatus Boriss. by polyamide resins. Methods The total flavonoids and rosmarinic acid were used as the indexes. The maximum amount of sample solution,elution volume,concentration of sample solution,adsorption time of resin,loading time of sample solution and the amount of eluting solvent,pH and elution rate in the resin purification process were screened by single factor method. Results The optimal purification parameters were as follows:10 mg/mL of extract,12 mL of sample amount, 2 BV of water to remove impurities,40% ethanol to elute 9 BV;the concentration of rosmarinic acid in sample solution was 86.3 μg/mL,and the total flavonoid concentration was 117.8 μg/mL;the resin adsorption time was 14 h;the pH of sample solution was 6.5;the elution rate was 3.0 BV/h. Conclusion This method is simple and feasible,fit for separating and purifying of extract from Hyssopus cuspidatus Boriss. Key words:Hyssopus cuspidatus Boriss.;polyamide resins;total flavonoid;rosmarinic acid;purification process 神香草為唇形科植物硬尖神香草Hyssopus cuspidatus Boriss.的干燥地上部分,维吾尔名为“祖发奇尼”,是维吾尔族民间习用药材[1],性质干热,有很强的香味,具有镇咳、袪痰、平喘作用,作为维吾尔医和民间用药已有几百年历史,疗效显著。以神香草为主药的寒喘祖帕颗粒收载于《中华人民共和国卫生部药品标准·维吾尔药分册》1999年版,在新疆维吾尔医院临床用于治疗哮喘具有很好的疗效。 神香草含有黄酮类、多糖及苷、酚酸类、甾醇类、萜类化合物以及醛类、脂类、有机酸[2-4]等。近年来,随着分离纯化技术的进步,对神香草的化学成分有了 新的认识。赵军等[5]报道,神香草中含有大量黄酮类化合物,具有抗炎、抗过敏及抑制细菌的作用。迷迭香酸是神香草药材中质量分数较高的成分,具有抗炎、抗菌、抗病毒、抗血栓和抑制透明质酸酶等多种生物活性[6]。

实验槐米中芦丁的提取分离和鉴定

实验一槐米中芦丁的提取、分离和鉴定 一、概述 槐米系豆科植物槐树(Sophora japonica L.)的花蕾(槐米)。具有清热、凉血、止血的功效,用于治疗便血、痔血,尿血、血淋,崩漏,赤血痢下,风热目赤,痛疽疮毒,还可用于预防中风。近年来被用作治疗高血压的辅助药物。 药理实验证明,槐花米具有调节毛细血管的渗透作用,抗炎作用,解痉、抗渍疡作用,影响脂质代谢,抗菌等多种生物活性。槐花米中主要含有黄酮苷,皂苷、甾醇和鞣质等成分,其中芦丁(Rutin)含量最高,达12~20%。 主要化学成分的结构及理化性质: 芦丁(rutin):C 27H 30 O 16 ·3H 2 O,浅黄色针状结晶,mp174~178℃(含三分子 水);188℃(无水物)。难溶于冷水(1:8000~10000),可溶于热水(1:180~200),热甲醇(1:10),冷甲醇(1:100),热乙醇(1:60),冷乙醇(1:650);难溶于乙醚、三氯甲烷、石油醚、乙酸乙酯、丙酮等,易溶于碱液。 槲皮素(quercetin):C 15H 10 O 7 ·2H 2 O,黄色结晶,mp313~314℃(2分子结 晶水),316℃(无水物)。能溶于冷乙醇(1:290),易溶于沸乙醇(1:23),可溶于甲醇、乙酸乙酯、冰醋酸、吡啶、丙酮等;难溶于水、苯、石油醚等溶剂。 二、实验部分 (一)实验目的 1、通过芦丁的制备,掌握黄酮类化合物提取分离的原理和操作。 2、掌握酸水解将芦丁生成槲皮素的方法。 3、掌握芦丁与槲皮素的鉴别方法,聚酰胺薄膜的操作方法,电子天平的使用方法。 (二)实验原理 1、芦丁的提取原理:芦丁中含有多个酚羟基,具有酸性,故用碱提酸沉法。 2、芦丁的分离原理:芦丁在沸水中溶解,在冷水中析出。 3、芦丁的鉴定原理:芦丁与槲皮素分别为黄酮类化合物的苷与苷元,用Molish反应可以进行鉴别,也可以利用聚酰胺的氢键吸附性质进行定性分析,Rf值也应不同。 (三)实验药材、仪器与试剂 1、药材:槐米50g(每组)。

大孔吸附树脂分离纯化技术专题讨论会会议纪要

发布日期20011216 栏目中药药物评价>>中药质量控制 标题大孔吸附树脂分离纯化技术专题讨论会会议纪要 作者审评管理与协调部 部门 正文内容 时间:2000年11月28日 地点:北京好苑建国酒店 主持人(略) 参加人员(略) 2000年11月28日,国家药品审评中心组织召开了“大孔吸附树脂分离纯化技术专题讨论会”。有关专家就大孔吸附树脂的规格标准、残留物限量、 安全性、前处理及再生合格的评价标准等问题进行了充分的讨论,提出许多 建设性的意见与建议。现归纳如下: 一、中药用大孔吸附树脂的技术要求 1.规格标准:标准内容应包括“大孔吸附树脂分离纯化中药 提取液的技术要求(暂行)”所要求的内容,并增加重金属含量检查。苯乙 烯骨架型大孔吸附树脂残留物检查项目暂订为:苯(<2ppm)、甲苯(< 890ppm)、二甲苯(<2170ppm)、苯乙烯、烷烃类、二乙基苯类(二乙 烯基)及树脂残留物总量检查;其限量不能高于国家标准或国际通用标准。 关于树脂残留物总量检查,建议可参照美联邦条例3卷21条(98年修订) 有关交换树脂残留有机物的限量规定及检测方法。若采用其它类型的大孔吸 附树脂,或在树脂生产过程中应用了其它可能有安全性问题的致孔剂等添加 剂,则应对相应基团或添加剂进行检查,并制订合理的限量标准。建议在规 格项中列入所用型号大孔树脂的结构式,以明确其骨架上是否有其他基团。 2.使用说明书:使用说明书应提供规格标准中所要求检查 的树脂残留物的检查方法及控制其限量的方法。说明书中应就树脂的安全性

提供相关说明。 二、大孔吸附树脂用于中药分离纯化工艺的技术要求 1.采用依据:应明确纯化目的,充分说明采用树脂纯化的必要性及合理性。应提供采用大孔树脂纯化药物的安全性及有效性研究资料。对已使用的同牌号苯乙烯型大孔吸附树脂,可免做动物安全性实验,但需根据树脂残留物可能产生的毒性反应,在新药的毒理学实验中适当延长观察周期,增加观察项目,如考察对神经系统、骨髓等的影响。对从未做过动物安全性试验,第一次用于新药申报的大孔树脂,应以定型产品进行动物安全性实验,提供安全性研究资料,以说明应用该树脂的安全性。中药注射剂采用大孔树脂纯化应慎重,需提供充足的依据,确保经树脂纯化药物的安全性和有效性。注射剂纯化用大孔树脂,应选用同类树脂中有机残留物量最低者,或采用注射剂专用树脂。 用大孔树脂纯化技术制备的药物,应建立成品中树脂残留物及裂解产物的检测方法,制订合理的限量(二类以上新药可仅控制原料),并列入质量标准正文。中药复方采用大孔树脂纯化者,应对树脂纯化前后的药物按新药药效学研究要求进行对比研究,以充分保证上柱前与洗脱后药物的“等效性”。 2.大孔吸附树脂的前(预)处理:应建立大孔吸附树脂前处理的合理方法及合格标准,前处理应能将树脂残留物控制在安全范围内。树脂投入使用前应按前处理合格树脂的有关标准进行验收,残留物量及吸附性能等指标符合要求后方可使用。 3.药液的上柱吸附分离:上柱、吸附、洗脱为大孔树脂纯化的主要步骤,建议以比吸附量、比洗脱量、保留率及纯度等为指标,考察树脂纯化各步骤对有效成分的影响,防止有效成分的泄漏或漏洗。应提供树脂用量、上柱及洗脱流速、洗脱剂种类及用量确定的依据,建立树脂吸附泄漏点及洗脱终点的判定方法。对于中药复方应尽可能考察树脂对每味药中有效成分(或指标成分)含量的影响,考察树脂对相关成分的吸附选择性,以保证纯化工艺的有效性和稳定性。应提供树脂纯化的具体工艺参数(如:树脂柱的径高比;吸附温度;药液浓度;药液的pH等) 4.大孔吸附树脂的再生:树脂的再生工艺应能保证再生后树脂性能的相对稳定。建议以有效成分的比吸附量、比洗脱量、保留率及纯度等为评价指标,考察再生树脂的性能,并制订树脂再生合格的标准,以保

芦丁提取

实验一槐米中芦丁及槲皮素的提取分离及鉴定 [目的要求] 1.通过芦丁的提取与精制掌握碱酸法提取黄酮类化合物的原理及操作。 2.掌握槲皮素的制备原理及操作。 3.熟悉紫外光谱在黄酮结构鉴定中的应用 4.通过芦丁的结构检识,了解苷类结构研究的一般程序和方法。 [实验原理] 芦丁(rutin):C27H30O16·3H2O,浅黄色针状结晶,mp174~178℃(含三 分子水);188℃(无水物)。难溶于冷水(1:8000~10000),可溶于热水(1:180~200),热甲醇(1:10),冷甲醇(1:100),热乙醇(1:60),冷乙醇(1:650);难溶于乙醚、三氯甲烷、石油醚、乙酸乙酯、丙酮等,易溶于碱液。 槲皮素(quercetin):C15H10O7·2H2O,黄色结晶,mp313~314℃(2分 子结晶水),316℃(无水物)。能溶于冷乙醇(1:290),易溶于沸乙醇(1:23), 可溶于甲醇、乙酸乙酯、冰醋酸、吡啶、丙酮等;难溶于水、苯、石油醚等溶剂。 +鼠李糖+葡萄糖 芦丁为黄酮苷,分子中具有酚羟基,显酸性,可溶于稀碱液中,在酸液中沉 淀析出,可利用此性质进行提取分离。利用芦丁易溶热水、热乙醇,较难溶于冷水、冷乙醇的性质选择重结晶方法进行精制。芦丁可被稀酸水解生成槲皮素及 葡萄糖、鼠李糖,依此进行制备槲皮素。通过纸色谱及紫外光谱进行黄酮及糖的 鉴定。 [实验内容] 一、芦丁的提取分离及精制 方法⑴ 槐米粗粉(50g) 置1000ml烧杯中,加入500ml饱和石灰水,加热,并维持pH8~9 煮沸20分钟,趁热滤过

滤液药渣 用300ml饱和石灰水煮沸10分钟,维持pH8~9 趁热滤过 滤液药渣(×) 合并 在60℃~70℃下用浓HCl调pH至4 ~5 静置,抽滤 沉淀 低温(80℃)干燥,称重。按1:200的比例加水, 加热使溶解,趁热滤过 滤液 静置,抽滤,减压干燥,计算收率 芦丁精制品 方法⑵利用芦丁在冷热溶剂中的溶解度不同进行提取分离。 槐米粗粉 沸水煮沸5~10分钟,反复2次 趁热滤过 水提取液药渣 放冷 沉淀析出(粗芦丁) 热水重结晶 或乙醇重结晶 芦丁结晶 二、槲皮素的制备 称取精品芦丁1g 置250ml烧瓶中 加2%H2SO4200ml 加热回流1小时 放冷,静置,抽滤 酸性滤液沉淀

胶粘剂专用松香树脂生产技术及市场行情研究报告

胶粘剂专用松香树脂生产技术及市场行 情研究报告 出版日期:2013-9-5 目录 第一部分:有机化工行业概述 (1) 第一节:有机化工行业范围、基本原料和用途介绍 (1)

第二节:化工市场跌宕起伏,有机化工产品表现上佳 (2) 第三节:生物基有机化工产业正在兴起 (3) 第二部分:胶粘剂专用松香树脂生产技术及市场行情研究报告目录 (5) 第三部分:研究方法、数据来源和编写资质 (9) 第一部分:有机化工行业概述 第一节:有机化工行业范围、基本原料和用途介绍 有机化工是有机化学工业的简称,又称有机合成工业。是以石油、天然气、煤等为基础原料,主要生产各种有机原料的工业。 基本有机化工的直接原料包括氢气、一氧化碳、甲烷、乙烯、乙炔、丙烯、碳四以上脂肪烃、苯、胶粘剂专用松香树脂、胶粘剂专用松香树脂、乙苯等。从原油、石油馏分或低碳烷烃的裂解气、炼厂气以及煤气,经过分离处理,可以制成用于不同目的的脂肪烃原料;从催化重整的重整汽油、烃类裂解的裂解汽油以及煤干馏的煤焦油中,可以分离出芳烃原料;适当的石油馏分也可直接用作某些产品的原料;由湿性天然气可以分离出甲烷以外的其他低碳烷烃;从煤气化和天然气、炼厂气、石油馏分或原油的蒸气转化或部分氧化可以制成合成气;由焦炭制得的碳化钙,或由天然气、石脑油裂解均能制得乙炔。此外,还可从农林副产品获得原料。 基本有机化工产品的品种繁多,按化学组成可分类如表。这种划分具有一定的灵活性,因很多物质含有两种以上的特定元素或两种以上的基团,它们常又按其主要特点划入某一类。 基本有机化工产品也可按所用原料分类: ①合成气系产品(见合成气)。 ②甲烷系产品(见甲烷)。 ③乙烯系产品(见乙烯)。 ④丙烯系产品(见丙烯)。

大孔树脂纯化总黄酮工艺

大孔树脂提取银杏叶中总黄酮最佳工艺 摘要: <目的>考察大孔树脂对银杏叶中总黄酮的静态吸附和动态吸附以及解吸的最佳工艺条件。<方法>采用多种树脂对银杏叶中总黄酮进行静态和动态吸附, 以总黄酮的吸附量或解吸量为指标, 分别考察了过柱次数、时间、水洗量、上样浓度、洗脱机浓度和用量以及泄露曲线的考察。关键词:银杏叶/化学; 总黄酮/分析; 大孔树脂;静态吸附;动态吸附; 紫外线,分光光度法 一、实验器材 1.1 主要实验材料与试剂 大孔吸附树脂,:AB-8、LKY-02、HPD750、MD130、D101、HPD450、HPD5000、MD131; 银杏叶、工业乙醇 1.2 主要实验器材与设备 紫外可见分光光度计、粉碎机、真空干燥器、水浴锅、提取装置、电子天平、旋转蒸发器、恒温振荡器。 二、实验步骤与结果 1.1 标准曲线的绘制 精确称取芦丁1mg。用60%乙醇溶解并定容到25ml容量瓶中,摇均配制得0.4mg/ml的标准溶液。分别准确量取该芦丁标准溶液0、0.25、0.5、0.75、1.00、1.25、1.50mL到10mL容量瓶中,分别加60%乙醇到溶液3ml,摇匀;分别加入5%NaNO2溶液0.30mL,摇匀静置6min;再每个容量瓶分别加入10%A1(NO3)3溶液0.30mL,摇匀后静置6min;再每个容量瓶分别加入4.00mlL4%NaOH溶液,用60%乙醇溶液稀释定容至刻度线,摇均静置15min后,在510nm处测吸光度。以不加芦丁标准品的溶液为空白对照。(吸光度为纵坐标,浓度为横坐标作图一) 图一

2、提取银杏叶中总黄酮 2.1提取时间探究:称取银杏叶粉末5g五份,分别加体积分数60%的乙醇加热回流提取, 每份15倍量的溶剂,保持在75°C下分别提取1、2、3、4小时后过滤。测吸光度。结果如下 时间(h) 1 2 3 4 吸光度0.178 0.183 0.213 0.195 提取率(%) 0.516 0.516 0.71 0.64 乙醇浓度60% 物料比1:15 温度80°C 2.2乙醇浓度探究:称取银杏叶粉末5g四份,分别加体积分数20%40%60%80%的乙醇加热回流提取, 每份6倍量的溶剂,保持在75°C下提取2小时后过滤。测吸光度。结果如下 乙醇浓度(%)20 40 60 80 吸光度0.600 0.704 0.661 0.649 提取率(%) 0.6 1.16 1.29 1.01 时间2h 物料比1:6 温度75°C 2.3物料比探究:称取银杏叶粉末5g五份,分别加体积分数60%的乙醇加热回流提取, 分别以4、6、8、10、12倍量的溶剂,保持在75°C下提取2小时后过滤。测吸光度。结果如下

树脂基复合材料成型工艺发展研究

树脂基复合材料成型工艺发展研究 技术发展、科技进步、人才素质的提高,推动材料工艺改进和完善,在整个工业领域也发挥着重要作用。文章探讨分析树脂基复合材料成型工艺,并对其发展进行分析。随着技术发展和改进,复合材料呈现智能化和自动化趋势,将在工业领域得到更加广泛的应用。 标签:树脂基复合材料;成型工艺;挤压成型;智能化 引言 复合材料在工业领域得到广泛应用,也是衡量一个国家科技和经济实力的重要标志。先进复合材料不仅强度高,而且耐热性能和抗疲劳性能优良,在航空航天、交通运输、机械化工等领域得到广泛应用。树脂基复合材料是先进的材料类型之一,在航空航天领域得到广泛应用,并且随着技术发展与进步,材料性能不断改进和完善。文章探讨分析树脂基复合材料成型工艺,并对其发展进行展望,希望能为实际工作提供指导借鉴。 1 树脂基复合材料成型工艺 成型工艺是一项系统复杂的工艺,不仅要满足制品的形状和尺寸要求,还要确保材料的综合性能,减少制品空隙率,并降低甚至避免对操作人员健康带来的负面影响,促进材料综合效益提升。经过几十年发展与技术进步,树脂基复合材料成型工艺取得不断发展,种类进一步增多,并存在相同点和不同点,主要体现在以下方面。 1.1 接触低压成型 利用手工作业方式,将玻璃纤维织物和树脂铺在模具上,粘结一起后固化成型,工艺流程非常简单,可在不同部位添加补强材料,满足复杂产品外形设计需要。但该工艺耗费时间长,效率低,不适合批量生产。生产环境也比较差,加工时容易出现较多的粉尘,影响人的身体健康,这是今后需要改进和完善的地方。接触低压先将材料在阴膜、阳模或对模上制成设计形状,加热或常温固化,脱模后辅助加工获得制品。该工艺设备简单,成本低,投资少,但劳动强度大,生产效率低,需要对工艺进行改进。目前高产量、连续生产的玻璃纤维复合材料生产线已经形成,促进工艺的自动化、高效化和专业化,对复合材料发展产生重要影响。 1.2 拉挤成型 将已浸润的连续纤维束在牵引结构拉力下,用成型模成型,在模中固化,连续生产出复合型材。成型过程需要成型模挤压和外牵引拉拨,整个生产过程是连续的。该工艺控制方便,产品质量稳定,成本低,生产效率高,制品的拉伸强度

相关主题
文本预览
相关文档 最新文档