当前位置:文档之家› 高中数学抛物线经典例题

高中数学抛物线经典例题

高中数学抛物线经典例题
高中数学抛物线经典例题

抛物线

(1)抛物线——二次曲线

【例1】P 为抛物线px y 22

=上任一点,F 为焦点,则以PF 为直径的圆与y 轴( )

.A 相交 .B 相切 .C 相离 .D 位置由P 确定

【解析】如图,抛物线的焦点为,02p F ??

???,准线是 :2p

l x =-.作PH ⊥l 于H ,交y 轴于Q ,那么PF PH =,

且2p

QH OF ==.作MN ⊥y 轴于N 则MN 是梯形PQOF 的

中位线,()111222

MN OF PQ PH PF =+==.故以

PF 为直径的圆与y 轴相切,选B.

【评注】相似的问题对于椭圆和双曲线来说,其结论则 分别是相离或相交的.

(2)焦点弦——常考常新的亮点弦

有关抛物线的试题,许多都与它的焦点弦有关.理解并掌握这个焦点弦的性质,对破解这些试题是大有帮助的.

【例2】 过抛物线()022

φp px y =的焦点F 作直线交抛物线于()()1122,,,A x y B x y 两点,求证:

(1)12AB x x p =++ (2)

p

BF AF 211=+ 【证明】(1)如图设抛物线的准线为l ,作

1AA l ⊥11111,2

p

A B

B l B AA x ⊥==+于,则AF ,

122

p

BF BB x ==+.两式相加即得:

12AB x x p =++

(2)当AB ⊥x 轴时,有

AF BF p ==,

112

AF BF p

∴+=成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:

2p y k x ?

?=- ??

?.代入抛物线方程:

2

222p k x px ??-= ??

?.化简得:()()222222014p k x p k x k -++=

∵方程(1)之二根为x 1,x 2,∴12

24

k x x ?=.

()1221112

1212111111

2224

x x p p p p p AF BF AA BB x x x x x x +++=+=+=

+++++ ()()12122212122

2424

x x p x x p p p p p p x x p x x ++++=

==+++++

. 故不论弦AB 与x 轴是否垂直,恒有p BF AF 211=+成立.

(3)切线——抛物线与函数

l X

Y F

A(x,y)11

B(x,y)

22

A 1

B 1l

【例3】证明:过抛物线2

2y px =上一点M (x 0,y 0)的切线方程是:y 0y=p (x+x 0)

【证明】对方程2

2y px =两边取导数:22.p

y y p y y

''?=∴=,切线的斜率 0

0x x p k y y ='

==

.由点斜式方程:()()2000000

1p y y x x y y px px y y -=-?=-+

2

0021y px =Q ,代入()即得: y 0y=p (x+x 0)

(4)定点与定值——抛物线埋在深处的宝藏

例如:1.一动圆的圆心在抛物线x y 82

=上,且动圆恒与直线02=+x 相切,则此动圆必过定点 ( )

()

()()().4,0.2,0.0,2.0,2A B C D -

显然.本题是例1的翻版,该圆必过抛物线的焦点,选B. 2.抛物线2

2y px =的通径长为2p ;

3.设抛物线2

2y px =过焦点的弦两端分别为()()1122,,,A x y B x y ,那么:212y y p =-

以下再举一例

【例4】设抛物线2

2y px =的焦点弦AB 在其准线上的射影是A 1B 1,证明:以A 1B 1为直径的圆必过一定点

【分析】假定这条焦点弦就是抛物线的通径,那么A 1B 1=AB=2p ,而A 1B 1与AB 的距离为p ,可知该圆必过抛物线的焦点.由此我们猜想:一切这样的圆都过抛物线的焦点.以下我们对AB 的一般情形给于证明. 【证明】如图设焦点两端分别为()()1122,,,A x y B x y , 那么:22

121112.y y p CA CB y y p =-??== 设抛物线的准线交x 轴于C ,那么.CF p =

2

111111.90A FB CF CA CB A FB ∴?=?∠=?中故.

这就说明:以A 1B 1为直径的圆必过该抛物线的焦点.

● 通法 特法 妙法

(1)解析法——为对称问题解困排难

解析几何是用代数的方法去研究几何,所以它能解决纯几何方法不易解决的几何问题(如对称问题等). 【例5】(07.四川文科卷.10题)已知抛物线 y=-x 2+3上存在关于直线x+y=0对称的相异两点 A 、B ,则|AB|等于( )

A.3

B.4

C.32

D.42 【分析】直线AB 必与直线x+y=0垂直,且线段 AB 的中点必在直线x+y=0上,因得解法如下.

【解析】∵点A 、B 关于直线x+y=0对称,∴设直线AB 的方程

为:y x m =+.

由()22

3013y x m x x m y x =+??++-=?=-+?

设方程(1)之两根为x 1,x 2,则121x x +=-.

11,22M ??

- ???

. 设AB 的中点为M (x 0,y 0),则120122x x x +=

=-.代入x+y=0:y 0=1

2

.故有从而1m y x =-=.直线AB 的方程为:1y x =+.方程(1)成为:2

20x x +-=.解得:

2,1x =-,从而1,2y =-,故得:A (-2,-1)

,B (1,2).AB ∴=,选C.

(2)几何法——为解析法添彩扬威 虽然解析法使几何学得到长足的发展,但伴之而来的却是难以避免的繁杂计算,这又使得许多考生对解析几何习题望而生畏.针对这种现状,人们研究出多种使计算量大幅度减少的优秀方法,其中最有成效的就是几何法.

【例6】(07.全国1卷.11题)抛物线2

4y x =的焦点为F ,准线为l ,经过F x 轴

X

Y

A

B F

A 1

B 1

1

M C

X

O

Y A

B

M

l x y +=?

x

y

M(x,y)

F 1(-c ,0)

F 2(c,0)

O H

2:a l x c

=-

r 1

r 2

r 2

上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积( ) A .4

B .33

C .43

D .8

【解析】如图直线AF 3AFX=60°. △AFK 为正三角形.设准线l 交x 轴于M ,则2,FM p == 且∠KFM=60°,∴2

34,43AKF KF S ?==

=选C. 【评注】(1)平面几何知识:边长为a 的正三角形的

面积用公式2

3S ?=计算. (2)本题如果用解析法,需先列方程组求点A 的坐标,,再计算正三角形的边长和面积.虽不是很难,但决没有如上的几何法简单.

(3)定义法——追本求真的简单一着

许多解析几何习题咋看起来很难.但如果返朴归真,用最原始的定义去做,反而特别简单. 【例7】(07.湖北卷.7题)双曲线

22

122:1(00)x y C a b a b

-=>>,的左准线为l ,左焦点和右焦点分别为1F 和2F ;抛物线2C 的线为l ,焦点为

21F C ;与2C 的一个交点为M ,则121

12

F F MF MF MF -等于( )

A .1-

B .1

C .12-

D .1

2

【分析】 这道题如果用解析法去做,计算会特别繁杂,而平面几何知识又一时用不上,那么就从最原始的定义

方面去寻找出路吧.

如图,我们先做必要的准备工作:设双曲线的半 焦距c ,离心率为e ,作 MH l H ⊥于,令 1122,MF r MF r ==.∵点M 在抛物线上, 1112222

,MF MF r MH MF r e MH MF r ∴=====故,

这就是说:12||

||MF MF 的实质是离心率e.

其次,121||

||

F F MF 与离心率e 有什么关系?注意到:

()1212111122111F F e r r c e a e e MF r r r e +???

====-=- ???

. 这样,最后的答案就自然浮出水面了:由于

()12112||||

11||||

F F MF e e MF MF -=-+=-.∴选 A..

(4)三角法——本身也是一种解析

三角学蕴藏着丰富的解题资源.利用三角手段,可以比较容易地将异名异角的三角函数转化为同名同角的三角函数,然后根据各种三角关系实施“九九归一”——达到解题目的.

因此,在解析几何解题中,恰当地引入三角资源,常可以摆脱困境,简化计算.

线x y 82=的【例8】(07.重庆文科.21题)如图,倾斜角为a 的直线经过抛物焦点F ,且与抛物线交于A 、B 两点。

(Ⅰ)求抛物线的焦点F 的坐标及准线l 的方程; (Ⅱ)若a 为锐角,作线段AB 的垂直平分线m 交 x 轴于点P ,证明|FP|-|FP|cos2a 为定值,并求此定值。

X

Y O F(1,0)

A

K

60°

Y

2

=2px L:x=-1M A

M

【解析】(Ⅰ)焦点F (2,0),准线;2l x =-. (Ⅱ)直线AB :()

()tan 21.y x α=-

28

y x =代入(1),整理得:()2tan 816tan 0

2y y αα--=

设方程(2)之二根为y 1,y 2,则12

128tan 16

y y y y α?

+=????=-?.

设AB 中点为()1200020044cot ,,2tan cot 24cot 2

y y y M x y x y αα

αα+?

=

==???=?+=+?则 AB 的垂直平分线方程是:()24cot cot 4cot 2y x ααα-=---.

令y=0,则()

224cot 64cot 6x P αα=++,有,0

故()

2224cot 624cot 14cos FP OP OF ααα=-=+-=+= 于是|FP|-|FP|cos2a=()2

224csc

1cos24csc 2sin 8αααα-=?=,故为定值.

(5)消去法——合理减负的常用方法.

避免解析几何中的繁杂运算,是革新、创新的永恒课题.其中最值得推荐的优秀方法之一便是设而不求,它类似兵法上所说的“不战而屈人之兵”.

【例9】 是否存在同时满足下列两条件的直线l :(1)l 与抛物线x y 82

=有两个不同的交点A 和B ;(2)线段AB 被直线1l :x+5y-5=0垂直平分.若不存在,说明理由,若存在,求出直线l 的方程. 【解析】假定在抛物线x y 82

=上存在这样的两点()()1122.A x y B x y ,,,则有:

()()()211121212222

888y x y y y y x x y x ?=?+-=-?=?()()()1212128AB

y y k x x y y -?==-+

∵线段AB 被直线1l :x+5y-5=0垂直平分,且11

55l AB k k =-∴=,,即

()

1285y y =+ 128

5

y y ?+=.

设线段AB 的中点为()120004

25

y y M x y y +==,,则.代入x+5y-5=0得x=1.于是:

AB 中点为415M ??

???,.故存在符合题设条件的直线,其方程为:

()4

512552105

y x x y -=---=,即:

(6)探索法——奔向数学方法的高深层次

有一些解析几何习题,初看起来好似“树高荫深,叫樵夫难以下手”.这时就得冷静分析,探索规律,不断地猜想——证明——再猜想——再证明.终于发现“无限风光在险峰”. 【例10】(07.安徽卷.14题)如图,抛物线y =-x 2+1与x 轴的正半轴交于点A ,将线段OA 的n 等分点从左至右依次记为P 1,P 2,…,P n -1,过这些分点分别作x 轴的垂线,与抛物线的交点依次为Q 1,Q 2,…,Q n -1,从而得到n -1个直角三角形△Q 1OP 1, △Q 2P 1P 2,…, △Q n -1P n -1P n -1,当n →∞时,这些三角形的面积之和的极限为 .

【解析】∵1

1OA n

=∴,图中每个直角三角形的底边长均为

设OA 上第k 个分点为22

20.11.k k k P y x y n n ??=-+=- ???

,代入:

第k 个三角形的面积为:2111.2k k a n n ??=

?- ???

()()()()

2

2212

2

12114111212n n n n S n n n n -?

?++

+--+∴=--=?????

?

L . 故这些三角形的面积之和的极限()()21411111

lim lim 1412123

n n n n S

n n n →∞→∞-+

????==-+= ??????? 抛物线定义的妙用

对于抛物线有关问题的求解,若能巧妙地应用定义思考,常能化繁为简,优化解题思路,提高思维能力。现举例说明如下。

一、求轨迹(或方程)

例1. 已知动点M 的坐标满足方程

,则动点M 的轨迹是( )

A. 椭圆

B. 双曲线

C. 抛物线

D. 以上都不对

解:由题意得:

即动点

到直线

的距离等于它到原点(0,0)的距离

由抛物线定义可知:动点M 的轨迹是以原点(0,0)为焦点,以直线为准线的抛物线。

故选C 。

二、求参数的值

例2. 已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点到焦点距离为5,求m 的值。

解:设抛物线方程为,准线方程:

∵点M 到焦点距离与到准线距离相等

解得:

∴抛物线方程为

代入得:

三、求角

例3. 过抛物线焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在抛物线准线上的射影分别为,则

__________。

A. 45°

B. 60°

C. 90°

D. 120°

图1

解:如图1,由抛物线的定义知:

由题意知:

故选C。

四、求三角形面积

例4. 设O为抛物线的顶点,F为抛物线的焦点且PQ为过焦点的弦,若,。求△OPQ的面积。解析:如图2,不妨设抛物线方程为,点、点

图2

则由抛物线定义知:

又,则

由得:

又PQ为过焦点的弦,所以

所以,

点评:将焦点弦分成两段,利用定义将焦点弦长用两端点横坐标表示,结合抛物线方程,利用韦达定理是常见的基本技能。

五、求最值

例5. 设P是抛物线上的一个动点。

(1)求点P到点A(-1,1)的距离与点P到直线的距离之和的最小值;

(2)若B(3,2),求的最小值。

解:(1)如图3,易知抛物线的焦点为F(1,0),准线是

由抛物线的定义知:点P到直线的距离等于点P到焦点F的距离。

于是,问题转化为:在曲线上求一点P,使点P到点A(-1,1)的距离与点P到F(1,0)的距离之和最小。显然,连结AF交曲线于P点,则所求最小值为,即为。

图3

(2)如图4,自点B作BQ垂直准线于Q交抛物线于点,则

,则有

即的最小值为4

图4

点评:本题利用抛物线的定义,将抛物线上的点到准线的距离转化为该点到焦点的距离,从而构造出“两点间线段距离最短”,使问题获解。

六、证明

例6. 求证:以抛物线过焦点的弦为直径的圆,必与此抛物线的准线相切。

证明:如图5,设抛物线的准线为,过A、B两点分别作AC、BD垂直于,垂足分别为C、D。取线段AB中点M,作MH垂直于H。

图5

由抛物线的定义有:

∵ABDC是直角梯形

即为圆的半径,而准线过半径MH的外端且与半径垂直,故本题得证。

抛物线与面积问题

抛物线与面积相结合的题目是近年来中考数学中常见的问题。解答此类问题时,要充分利用抛物线和面积的有关知识,重点把握相交坐标点的位置及坐标点之间的距离,得出相应的线段长或高,从而求解。

例1. 如图1,二次函数的图像与x轴交于A、B两点,其中A点坐标为(-1,0)。点C(0,5)、点D(1,8)在抛物线上,M为抛物线的顶点。

图1

(1)求抛物线的解析式;

(2)求△MCB的面积。

解:(1)设抛物线的解析式为

,根据题意得

,解得

∴所求的抛物线的解析式为

(2)∵C点坐标为(0,5),∴OC=5

令,则,

解得

∴B点坐标为(5,0),OB=5

∵,

∴顶点M的坐标为(2,9)

过点M作MN⊥AB于点N,

则ON=2,MN=9

例2. 如图2,面积为18的等腰直角三角形OAB的一条直角边OA在x轴上,二次函数的图像过原点、A点和斜边OB的中点M。

图2

(1)求出这个二次函数的解析式和对称轴。

(2)在坐标轴上是否存一点P,使△PMA中PA=PM,如果存在,写出P点的坐标,如果不存在,说明理由。解:(1)∵等腰直角△OAB的面积为18,

∴OA=OB=6

∵M是斜边OB的中点,

∴点A的坐标为(6,0)

点M的坐标为(3,3)

∵抛物线

∴,解得

∴解析式为,

对称轴为

(2)答:在x轴、y轴上都存在点P,使△PAM中PA=PM。

①P点在x轴上,且满足PA=PM时,点P坐标为(3,0)。

②P点在y轴上,且满足PA=PM时,点P坐标为(0,-3)。

例3. 二次函数的图像一部分如图3,已知它的顶点M在第二象限,且经过点A(1,0)和点B (0,1)。

图3

(1)请判断实数a的取值范围,并说明理由。

(2)设此二次函数的图像与x轴的另一个交点为c,当△AMC的面积为△ABC面积的倍时,求a的值。

解:(1)由图象可知:;图象过点(0,1),所以c=1;图象过点(1,0),则;

当时,应有,则

当代入

得,即

所以,实数a的取值范围为。

(2)此时函数,

要使

可求得。

例4. 如图4,在同一直角坐标系内,如果x轴与一次函数的图象以及分别过C(1,0)、D(4,0)两点且平行于y轴的两条直线所围成的图形ABDC的面积为7。

图4

(1)求K的值;

(2)求过F、C、D三点的抛物线的解析式;

(3)线段CD上的一个动点P从点D出发,以1单位/秒的速度沿DC的方向移动(点P不重合于点C),过P点作直线PQ⊥CD交EF于Q。当P从点D出发t秒后,求四边形PQFC的面积S与t之间的函数关系式,并确定t 的取值范围。

解:(1)∵点A、B在一次函数的图象上,

∵四边形ABDC的面积为7

∴。

(2)由F(0,4),C(1,0

),D(4,0)得(3)∵PD=1×t=t

OP=

4-t

即。

抛物线

1已知抛物线D:y2=4x的焦点与椭圆Q:)0

(1

2

2

2

2

>

>

=

+b

a

b

y

a

x

的右焦点F1重合,且点)

2

6

,2

(P在椭圆Q

上。(Ⅰ)求椭圆Q的方程及其离心率;(Ⅱ)若倾斜角为45°的直线l过椭圆Q的左焦点F2,且与椭圆相交于

A,B两点,求△ABF1的面积。

解:(Ⅰ)由题意知,抛物线x

y4

2=的焦点为(1,0)

∴椭圆Q的右焦点F1的坐标为(1,0)。∴1

2

2=

-b

a①

又点)

2

6

,2

(P在椭圆Q上,∴1

)

2

6

(

)2

(

2

2

2

2

=

+

b

a

即1

2

3

2

2

2

=

+

b

a

由①②,解得3

,42

2=

=b

a∴椭圆Q的方程为1

3

4

2

2

=

+

y

x

∴离心离

2

1

1

2

2

=

-

=

=

a

b

a

c

e

(Ⅱ)由(Ⅰ)知F2(-1,0)∴直线l的方程为1

)1

(

45

tan

0+

=

+

?

=

-x

y

x

y,即设

)

,

(

)

,

(

2

2

1

1

y

x

B

y

x

A,由方程组

??

?

?

?

=

+

+

=

1

3

4

1

2

2y

x

x

y

消y整理,得

7

8

,

7

8

,0

8

8

7

2

1

2

1

2-

=

-

=

+

=

-

+x x

x

x

x

x

7

2

12

4

)

(

2

|

|2

|

|

2

1

2

2

1

2

1

=

-

+

=

-

=x x

x

x

x

x

AB

又点F1到直线l的距离2

)1

(

1

|1

1|

2

=

-

+

+

=

d∴

7

12

2

7

2

12

2

1

|

|

2

1

1

=

?

?

=

=

?

d

AB

S

ABF

2如图所示,抛物线y2=4x的顶点为O,点A的坐标为(5,0),倾斜角为

4

π

的直线l与线段OA相交(不经过点O

或点A)且交抛物线于M、N两点,求△AMN面积最大时直线l的方程,并求△AMN的最大面积

解法一由题意,可设l的方程为y=x+m,其中-5<m<0由方程组

?

?

?

=

+

=

x

y

m

x

y

4

2

,消去y,得x2+(2m

-4)x+m2=0 ①∵直线l与抛物线有两个不同交点M、N,∴方程①的判别式Δ=(2m-4)2-

4m2=16(1-m)>0,解得m<1,又-5<m<0,∴m的范围为(-5,0)

B

N

M

A

o

y

x

设M (x 1,y 1),N (x 2,y 2)则x 1+x 2=4-2m ,x 1·x 2=m 2,∴|MN |=4)1(2m - 点A 到直线l 的距离为d =

2

5m

+

∴S △=2(5+m )m -1,从而S △2=4(1-m )(5+m )2=2(2-2m )·(5+m )(5+m )≤2(

3

5522m m m ++++-)3

=128

∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号 故直线l 的方程为y =x -1,△AMN 的最大面

积为82

解法二 由题意,可设l 与x 轴相交于B (m,0), l 的方程为x = y +m ,其中0<m <5

由方程组24x y m

y x

=+??=?,消去x ,得y 2-4 y -4m =0 ①∵直线l 与抛物线有两个不同交点M 、N ,

∴方程①的判别式Δ=(-4)2+16m =16(1+m )>0必成立,设M (x 1,y 1),N (x 2,y 2)则y 1+ y 2=4,y 1·y 2=-4m , ∴S △=212121211

(5)||(5)()422m y y m y y y y --=-+-= 45

1()2

2

m -

(1)m +=45151

()()(1)2222

m m m --+

3

5151()()(1)22224823m m m ??

-+-++ ?≤= ?

?

??

∴S △≤82,当且仅当51()(1)22m m -=+即m =1时取等号 故直线l 的方程为y =x -1,△AMN 的最大面积为82

3已知O 为坐标原点,P(0,a )(0>a )为x 轴上一动点,过P 作直线交抛物线)0(22

>=p px y 于A 、B 两点,设S △AOB =AOB t ∠?tan ,试问:a 为何值时,t 取得最小值,并求出最小值。 解:交AB 与x 轴不重叠时,设AB 的方程为)(e x k y -= 合??

?=-=px

y a x k y 2)

(2

消y 可得:0)(22

2222=++-a k x p a k x k

设A ),(11y x B ),(22y x 则221a x x =,Pa y y 221-= 交AB 与x 轴重叠

时,上述结论仍然成立

AOB lin AOB con OB OA AOB OB OA AOB S O ∠?∠?=∠?=2

1

sin 21∴

AOB con OB OA t ∠?=

2

1

又2121y y x x OB OA AOB con OB OA +=?=∠??∴

2

2221212

1)(21)2(21)(21p p a ap a y y x x t --=-=+=≥22p -当p a =时 取“=”, 综上 当

时p e = 2

2

min

p t -=

(完整版)函数图象变换及经典例题练习

函数图象变换 1、平移变换(左加右减上加下减): y=f(x)h 左移→y=f(x+h); y=f(x)h 右移→y=f(x -h); y=f(x)h 上移→y=f(x)+h; y=f(x)h 下移→y=f(x)-h. 2、对称变换: y=f(x) 轴x →y= -f(x); y=f(x) 轴y →y=f(-x); y=f(x) 原点 →y= -f(-x). y=f(x) a x =→直线y=f(2a -x); y=f(x) x y =→直线y=f -1(x); 3、翻折变换: (1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方, 去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; (2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左 边部分并保留()y f x =在y 轴右边部分即可得到. 4、伸缩变换: y=f(x)ω?→x y=f(ωx ); y=f(x)ω ?→y y=ωf(x). 经典题型:作已知函数的图像、知式选图或知图选式、图像应用 例1.函数1 11--=x y 的图象是( ) 答案B 例2.如图所示,)(),(),(),(4321x f x f x f x f 是定义在]1,0[上的四个函数,其中满足性质:“对]1,0[中任意的1x 和2x ,)]()([2 1)2(2121x f x f x x f +≤+恒成立”的只有( ) 答案A

例3、利用函数x x f 2)(=的图象,作出下列各函数的图象: (1))1(-x f ;(2)|)(|x f ;(3)1)(-x f ;(4))(x f -;(5).|1)(|-x f 例4已知0>a ,且≠a 1,函数x a y =与)(log x y a -=的图象只能是图中的( ) 答案B 例5函数)(x f y =与函数)(x g y =的图象如右上,则函数)(x f y =·)(x g 的图象是( ) 答案A 例6 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( ). A .10个 B .9个 C .8个 D .1个 解析:画出两个函数图象可看出交点有10个.答案 A

2016届高考数学经典例题集锦:数列(含答案)

数列题目精选精编 【典型例题】 (一)研究等差等比数列的有关性质 1. 研究通项的性质 例题1. 已知数列}{n a 满足1 111,3(2)n n n a a a n --==+≥. (1)求32,a a ; (2)证明: 312n n a -= . 解:(1)2 1231,314,3413a a a =∴=+==+= . (2)证明:由已知1 13 --=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=--- 1 2 1313 3 312n n n a ---+=++++= , 所以证得31 2n n a -= . 例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥ (Ⅰ)求{}n a 的通项公式; (Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T . 解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥, 两式相减得:112,3(2)n n n n n a a a a a n ++-==≥, 又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列 ∴1 3 n n a -= (Ⅱ)设{}n b 的公差为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===, 由题意可得2 (51)(59)(53)d d -+++=+,解得122,10d d == ∵等差数列{}n b 的各项为正,∴0d > ∴2d = ∴2(1) 3222n n n T n n n -=+ ?=+ 例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且2 12322...a a a +++ 128n n a n -+=对任意的*N n ∈都成立,数列{} n n b b -+1是等差数列. ⑴求数列{}n a 与{}n b 的通项公式; ⑵是否存在N k * ∈,使得(0,1)k k b a -∈,请说明理由. 点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=. (2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况. 解:(1)已知212322a a a +++ (1) 2n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2) 128(1)n n a n --+=-(n ∈*N )②

高考数学抛物线大题专练30题(含详解)经典收藏版

目录 目录-------------------------------------------------------------------------------------------------1抛物线大题专练(一)--------------------------------------------------------------------------------2抛物线大题专练(二)--------------------------------------------------------------------------------5抛物线大题专练(三)--------------------------------------------------------------------------------8抛物线大题专练---------------------------------------------------------------------------------------11参考答案与试题解析---------------------------------------------------------------------------------11

抛物线大题专练(一) 1.已知抛物线C的方程为x2=2py,设点M(x0,1)(x0>0)在抛物线C上,且它到抛物线C的准线距离为; (1)求抛物线C的方程; (2)过点M作倾斜角互补的两条直线分别交抛物线C于A(x1,y1),B(x2,y2)两点(M、A、B三点互不相同), 求当∠MAB为钝角时,点A的纵坐标y1的取值范围. 2.在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切 线MA,切点为A(异于点O).直线l过点M与抛物线交于两点B,C,与直线OA交于点N. (1)求抛物线的方程; (2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.

综合题:高一数学函数经典习题及答案

函 数 练 习 题 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x =+-++-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311 x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =

6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 )5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 14、函数1()(0)f x x x x =+≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数

高一数学平面向量知识点及典型例题解析

高一数学 第八章 平面向量 第一讲 向量的概念与线性运算 一.【要点精讲】 1.向量的概念 ①向量:既有大小又有方向的量。几何表示法AB u u u r ,a ;坐标表示法),(y x j y i x a 。 向量的模(长度),记作|AB u u u r |.即向量的大小,记作|a |。向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,规定0r 平行于任何向量。(与0的区别) ③单位向量| a |=1。④平行向量(共线向量)方向相同或相反的非零向量,记作a ∥b ⑤相等向量记为b a 。大小相等,方向相同 ),(),(2211y x y x 2121y y x x 2.向量的运算(1)向量加法:求两个向量和的运算叫做向量的加法.如图,已知向量a ,b ,在平面内任 取一点A ,作AB u u u r a ,BC u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC u u u r u u u r u u u r 特殊情况: a b a b a+b b a a+b (1) 平行四边形法则三角形法则C B D C B A A 向量加法的三角形法则可推广至多个向量相加: AB BC CD PQ QR AR u u u r u u u r u u u r u u u r u u u r u u u r L ,但这时必须“首尾相连”。②向量减法: 同一个图中画出 a b a b r r r r 、 要点:向量加法的“三角形法则”与“平行四边形法则”(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。(2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点.(3)实数与向量的积 3.两个向量共线定理:向量b 与非零向量a 共线 有且只有一个实数 ,使得b =a 。 二.【典例解 析】 题型一: 向量及与向量相关的基本概念概念 例1判断下列各命题是否正确 (1)零向量没有方向 (2)b a 则, (3)单位向量都相等 (4) 向量就是有向线段

(完整版)《抛物线》典型例题12例(含标准答案)

《抛物线》典型例题12例 典型例题一 例1 指出抛物线的焦点坐标、准线方程. (1)y x 42= (2))0(2≠=a ay x 分析:(1)先根据抛物线方程确定抛物线是四种中哪一种,求出p ,再写出焦点坐标和准线方程. (2)先把方程化为标准方程形式,再对a 进行讨论,确定是哪一种后,求p 及焦点坐标与准线方程. 解:(1)2=p Θ,∴焦点坐标是(0,1),准线方程是:1-=y (2)原抛物线方程为:x a y 12=,a p 1 2=∴ ①当0>a 时, a p 41 2=,抛物线开口向右, ∴焦点坐标是)0,41(a ,准线方程是:a x 41 -=. ②当0?,则1->k .

∵AB 中点横坐标为:28 422 21=+=+∴ k k x x , 解得:2=k 或1-=k (舍去). 故所求直线方程为:22-=x y . 解法二:设),(11y x A 、),(22y x B ,则有22 212 188x y x y ==. 两式作差解:)(8))((212121x x y y y y -=+-,即 2 121218 y y x x y y +=--. 421=+x x Θ444)(22212121-=-+=-+-=+∴k x x k kx kx y y , 4 48 -= ∴k k 故2=k 或1-=k (舍去). 则所求直线方程为:22-=x y . 典型例题三 例3 求证:以抛物线的焦点弦为直径的圆心与抛物线的准线相切. 分析:可设抛物线方程为)0(22>=p px y .如图所示,只须证明12 MM AB =, 则以AB 为直径的圆,必与抛物线准线相切. 证明:作l AA ⊥1于l BB A ⊥11,于1B .M 为AB 中点,作 l MM ⊥1于1M ,则由抛物线的定义可知: BF BB AF AA ==11, 在直角梯形A A BB 11中: AB BF AF BB AA MM 21 )(21)(21111=+=+= AB MM 21 1=∴,故以AB 为直径的圆,必与抛物线的准线相切. 说明:类似有:以椭圆焦点弦为直径的圆与相对应的准线相离,以双曲线焦点弦为直径的圆与相应的准线相交. 典型例题四 例4(1)设抛物线x y 42=被直线k x y +=2截得的弦长为53,求k 值. (2)以(1)中的弦为底边,以x 轴上的点P 为顶点作三角形,当三角形的面

高中数学函数经典复习题含答案

《函 数》复习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = ⑵y = ⑶01(21)111y x x = +-+ -2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸ y = ⑹ 225941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =6、已知函数222()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+ ,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 223y x x =++ ⑵y ⑶ 261y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2(1)f x -的单调递增区间是 8、函数236 x y x -=+的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 )5)(3(1+-+=x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x =; ⑸21)52()(-=x x f , 52)(2-=x x f 。 A 、⑴、⑵ B 、 ⑵、⑶ C 、 ⑷ D 、 ⑶、⑸ 10、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4 3) 11、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤ 12、对于11a -≤≤,不等式2(2)10x a x a +-+->恒成立的x 的取值范围是( ) (A) 02x << (B) 0x <或2x > (C) 1x <或3x > (D) 11x -<< 13、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞U D 、{2,2}- 14、函数1()(0)f x x x x =+≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学_经典函数试题及答案

经典函数测试题及答案 (满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <

高中数学 抛物线知识点归纳总结与经典习题

抛物线经典结论和例题

方程 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+,

2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 1212px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+-所以 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--,即0y p k AB =, 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点 ),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存在,且不等于零) 一、抛物线的定义及其应用

高中数学-经典函数试题及答案

(满分:150分 考试时间:120分钟) 一、选择题:本大题共12小题。每小题5分,共60分。在每小题给出的四个选项中,只有 一项是符合题目要求的。 1.函数)12(-=x f y 是偶函数,则函数)2(x f y =的对称轴是 ( ) A .0=x B .1-=x C .21= x D .2 1-=x 2.已知1,10-<<x 时,,log )(2x x f =则当0m D .12-<<-m 或13 2 <xy a

(word完整版)高中函数典型例题.doc

§ 1.2.1 函数的概念 ¤知识要点: 1. 设 A 、B 是非空的数集,如果按某个确定的对应关系 f ,使对于集合 A 中的任意一个数 x ,在集合 B 中都有唯一确定的数 y 和它对应,那么就称 f :A →B 为从集合 A 到集合 B 的一个函数,记作 y = f (x) , x A .其中, x 叫自变量, x 的取值范 围 A 叫作定义域,与 x 的值对应的 y 值叫函数值,函数值的集合 { f ( x) | x A} 叫值域 . 2. 设 a 、b 是两个实数,且 a

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案

高中数学函数与方程知识点总结、经典例题及解析、高考真题及答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数与方程 【知识梳理】 1、函数零点的定义 (1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫做函数)(x f y =的零点。 (2)方程0)(=x f 有实根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点。因此判断一个函数是否有零点,有几个零点,就是判断方程0)(=x f 是否有实数根,有几个实数根。函数零点的求法:解方程0)(=x f ,所得实数根就是()f x 的零点 (3)变号零点与不变号零点 ①若函数()f x 在零点0x 左右两侧的函数值异号,则称该零点为函数()f x 的变号零点。 ②若函数()f x 在零点0x 左右两侧的函数值同号,则称该零点为函数()f x 的不变号零点。 ③若函数()f x 在区间[],a b 上的图像是一条连续的曲线,则0)()(?)(x f y =有2个零点?0)(=x f 有两个不等实根; 0?=?)(x f y =有1个零点?0)(=x f 有两个相等实根; 0?

高中数学函数及其表示典型经典例题精讲精练

函数及其表示 考点一 求定义域的几种情况 ①若f(x)是整式,则函数的定义域是实数集R; ②若f(x)是分式,则函数的定义域是使分母不等于0的实数集; ③若f (x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合; ④若f(x)是对数函数,真数应大于零。 ⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。 ⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合; ⑦若f(x )是由实际问题抽象出来的函数,则函数的定义域应符合实际问题 考点二 映射个数公式 C ard(A)=m ,card(B)=n, m,n ∈N * ,则从A 到B 的映射个数为 n m 。简单说成“前指后底”。 方法技巧清单 方法一 函数定义域的求法 2.(2009江西卷理)函数 2 34 y x x = --+的定义域为? ?? ( ) A.(4,1)-- B .(4,1)- C.(1,1)- D.(1,1]- 解析 由2 10 1 1141 340x x x x x x +>>-????-<??.故选C 5.求下列函数的定义域。①y= 22+?-x x .②y= () x x x -+12 .③y= x x -+-11 6.已知函数f(x)的定义域为(),51,求函数F (x)=f(3x-1)-f(3x+1)的定义域。 1. 下列各组函数中表示同一函数的是( )A.y=5 5 x 和 x y 2 = B .y =ln e x 和 e x y ln = C. ()()() ()3131+=-+-= x y x x x y 和 D. x x y y 0 1 = = 和 2.函数y=f(x)的图像与直线x =2的公共点个数为 A. 0个B. 1个 C. 0个或1个 D. 不能确定 3.已知函数y= 22 -x 定义域为{}2,1.0,1-,则其值域为 方法三 分段函数的考察 ⅰ 求分段函数的定义域和值域 2x+2 x []0,1-∈ 1求函数f(x)= x 2 1- x()2,0∈ 的定义域和值域 3 x [)+∞∈ ,2

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

高中数学抛物线-高考经典例题

1抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线. 2抛物线的图形和性质: ①顶点是焦点向准线所作垂线段中点。 ②焦准距:FK p = ③通径:过焦点垂直于轴的弦长为2p 。 ④顶点平分焦点到准线的垂线段:2 p OF OK == 。 ⑤焦半径为半径的圆:以P 为圆心、FP 为半径的圆必与准线相切。所有这样的圆过定点F 、 准线是公切线。 ⑥焦半径为直径的圆:以焦半径 FP 为直径的圆必与过顶点垂直于轴的直线相切。所有这样的圆过定点F 、过顶点垂直于轴的直线是公切线。 ⑦焦点弦为直径的圆:以焦点弦PQ 为直径的圆必与准线相切。所有这样的圆的公切线是准线。 3抛物线标准方程的四种形式: ,,px y px y 2222-==。,py x py x 2222-== 4抛物线px y 22 =的图像和性质: ①焦点坐标是:?? ? ??02,p , ②准线方程是:2 p x - =。 ③焦半径公式:若点),(00y x P 是抛物线px y 22 =上一点,则该点到抛物线的焦点的距离(称为焦半径)是:02 p PF x =+ , ④焦点弦长公式:过焦点弦长121222 p p PQ x x x x p =+ ++=++ ⑤抛物线px y 22 =上的动点可设为P ),2(2 οοy p y 或2(2,2)P pt pt 或P οοοοpx y y x 2),(2=其中 5一般情况归纳:

y 2=kx k>0时开口向右 (k/4,0) x= ─k/4 到焦点(k/4,0)的距离等于到准线x= ─k/4的距 离 k<0时开口向左 x 2=ky k>0时开口向上 (0,k/4) y= ─k/4 到焦点(0,k/4)的距离等于到准线y= ─k/4的距 离 k<0时开口向下 抛物线的定义: 例1:点M 与点F (-4,0)的距离比它到直线l :x -6=0的距离4.2,求点M 的轨迹方 程. 分析:点M 到点F 的距离与到直线x =4的距离恰好相等,符合抛物线定义. 答案:y 2=-16x 例2:斜率为1的直线l 经过抛物线y 2=4x 的焦点,与抛物线相交于点A 、B ,求线段A 、B 的长. 分析:这是灵活运用抛物线定义的题目.基本思路是:把求弦长AB 转化为求A 、B 两点到准线距离的和. 解:如图8-3-1,y 2=4x 的焦点为F (1,0),则l 的方程为y =x -1. 由???+==1 42x y x y 消去y 得x 2-6x +1=0. 设A (x 1,y 1),B (x 2,y 2) 则x 1+x 2=6. 又A 、B 两点到准线的距离为A ',B ',则 ()()()8262112121=+=++=+++='+'x x x x B B A A 点评:抛物线的定义本身也是抛物线最本质的性质,在解题中起到至关重要的作用。 例3:(1) 已知抛物线的标准方程是y 2=10x ,求它的焦点坐标和准线方程; (2) 已知抛物线的焦点是F (0,3)求它的标准方程; (3) 已知抛物线方程为y =-mx 2 (m >0)求它的焦点坐标和准线方程;

文本预览
相关文档 最新文档