当前位置:文档之家› 盾构法隧道同步注浆材料开发与应用技术研究(每日一练)

盾构法隧道同步注浆材料开发与应用技术研究(每日一练)

盾构法隧道同步注浆材料开发与应用技术研究(每日一练)
盾构法隧道同步注浆材料开发与应用技术研究(每日一练)

盾构法隧道同步注浆材料开发与应用技术研究(每日一练)

单项选择题(共10 题)

1、根据盾构掘进沉降影响,将盾构掘进过程划分为()个阶段。(D)

?A,一

?B,二

?C,三

?D,四

答题结果:

正确答案:D

2、一般地铁工程的沉降控制偏差范围是()。(D)

?A,±5cm

?B,±3cm

?C,±2cm

?D,±1cm

答题结果:

正确答案:D

3、盾构同步注浆材料施工是在盾构掘进施工过程的哪个时期()。(A)

?A,盾构机脱出盾尾

?B,刀盘经过

?C,盾构机经过时

?D,盾构掘进结束,隧道贯通后

答题结果:

正确答案:A

4、关于水泥基单液可硬性浆液,表述错误的是()。(C)

?A,主要由水泥、粉煤灰、膨润土、砂等材料组成

?B,适用于土体相对稳定的区域或软弱地层等土体环境恶劣的工况,也可用于盐渍土环境。

?C,凝结时间较短,强度高,增长快,与双液浆性能相同

?D,容易分层、抗水分散较差、注浆材料配合比与施工过程控制要求较高答题结果:

正确答案:C

5、注浆材料所用石灰一般选用选用钙质消石灰,其检测参数不包括()。(B)

?A,钙镁(CaO+MgO)含量

?B,吸蓝量

?C,细度

?D,安定性

答题结果:

正确答案:B

6、盾构同步注浆浆液性能试验方法,参照规范不包括()。(B) ?A,《建筑砂浆基本性能试验方法》JGJ/T

?70

?B,《砌筑砂浆配合比设计规程》JGJT98-2011?C,《水泥基灌浆材料应用技术规范》GB/T

?50448

?D,《预应力孔道灌浆剂》GB/T

?25182

答题结果:

正确答案:B

7、水泥基同步注浆材料配合比推荐参数中,水泥用量要求为()。(D) ?A,≥15

?B,≥10

?C,≤15

?D,≤10

答题结果:

正确答案:D

8、消石灰基同步注浆材料配合比推荐参数,膨润土掺量掺量()。(D) ?A,5~10

?B,0~10

?C,10~15

?D,5~15

答题结果:

正确答案:D

9、水泥基注浆材料浆液的力学性能水陆强度比推荐指标为()。(C) ?A,≥60

?B,≥75

?C,≥65

?D,≥85

答题结果:

正确答案:C

10、消石灰基注浆材料浆液的力学性能表征指标为()。(B)

?A,抗压强度

?B,24h抗剪屈服强度

?C,C.?水陆强度比

?D,抗折强度

答题结果:

正确答案:B

多项选择题(共5 题)

1、盾构注浆材料可分为单液型和双液型。根据浆液的性质,单液型可分为()。(AC) ?A,单液惰性浆液

?B,水泥基注浆材料

?C,单液可硬性浆液

?D,消石灰基注浆材料

答题结果:

正确答案:AC

2、关于双液浆液工艺,说法正确的是()。(BCD)

?A,控制难度较大,管路清洗频率和质量要求高。

?B,浆液结实体强度不均,对衬砌管片受力产生影响,沉浮量较大,影响隧道的辅助抗渗效果。

?C,化学试剂造成了一定的污染。

?D,注浆成本增加。

答题结果:

正确答案:ABCD

3、造成现代混凝土材料早期强度高的主要原因有()。(ABCD)

?A,有效的控制地面沉降,保持隧道的稳定、满足环境保护的更高要求。?B,确保管片衬砌的早期稳定性和空隙的密实性。

?C,作为衬砌防水的第一道防线,提供长期、均质、稳定的防水防护及耐久功能。

?D,作为盾构工法中必不可少的关键性辅助工法,是控制地面沉降和隧道稳定性的关键。

答题结果:

正确答案:ABCD

4、关于盾构注浆施工工艺的特点说法正确的是()。(ABCD)

?A,对注浆材料的流动度要求高,流动性好

?B,浆液过程转驳次数较多

?C,浆液在管道中输送距离较长

?D,注浆设备及管道要求高,设置应合理

答题结果:

正确答案:ABCD

5、同步注浆材料中膨润土的作用主要包括()。(BCD)

?A,稳定性,滑动性能,增大可泵性

?B,固结强度,调节凝结时间

?C,减缓浆液的材料分离,降低泌水率

?D,具有一定的防渗作用

正确答案:ACD

判断题(共5 题)

1、惰性浆是由粉煤灰、砂、膨润土、水和外加剂等拌合而成,浆液中没有掺加水泥等胶凝

材料,是一种早期的典型注浆材料,也是目前盾构施工普遍使用的一类注浆材料。(B)

?A、正确

B、错误

答题结果:

正确答案:B

2、在注浆材料配合比设计时,外加剂掺量需要根据注浆浆液性能要求试验确定,当有其他

材料可替代膨润土时,可以通过试验确定。(A)

?A、正确

B、错误

答题结果:

正确答案:A

3、同步注浆也是控制盾构上浮、地面隆沉、螺旋机喷涌、盾尾密封等问题的关键因素之一。

同步注浆分为注浆材料、注浆设备和同步注浆系统三部分。(B)

?A、正确

B、错误

正确答案:B

4、同步注浆材料组成组分中的消石灰主要成分为Ca(OH)2,对固结强度不起作用。(B)

?A、正确

B、错误

答题结果:

正确答案:B

5、由于各城市地质条件的差异,在盾构施工使用的注浆材料也大不相同,根据不同地质土

层的变化,选择合适的浆液进行隧道的施工。(A)

?A、正确

B、错误

答题结果:

正确答案:A

盾构同步注浆

盾构同步注浆 当盾片脱离盾尾后,在土体与管片之间会形成一道宽度为3.5mm左右的环行空隙。同步注浆的目的是为了尽快填充环形间隙使管片尽早支撑地层,防止地面变形过大而危及周围环境安全,同时作为管片外防水和结构加强层。 1.1.1.1注浆材料 采用水泥砂浆作为同步注浆材料,该浆材具有结石率高、结石体强度高、耐久性好和能防止地下水浸析的特点。水泥采用42.5R普通硅酸盐水泥,以提高注浆结石体的耐腐蚀性,使管片处在耐腐蚀注浆结石体的包裹内,减弱地下水对管片混凝土的腐蚀。 (1)浆液配比及主要物理力学指标 根据盾构施工经验,同步注浆拟采用表8-5所示的配比。在施工中,根据地层条件、地下水情况及周边条件等,通过现场试验优化确定。同步注浆浆液的主要物理力学性能应满足下列指标: ①胶凝时间:一般为3~10h,根据地层条件和掘进速度,通过现场试验加入促凝剂及变更配比来调整胶凝时间。对于强透水地层和需要注浆提供较高的早期强度的地段,可通过现场试验进一步调整配比和加入早强剂,进一步缩短胶凝时间。 ②固结体强度:一天不小于0.2MPa,28天不小于2.5MPa。 ③浆液结石率:>95%,即固结收缩率<5%。 ④浆液稠度:8~12cm。 ⑤浆液稳定性:倾析率(静置沉淀后上浮水体积与总体积之比)小于5%。 同步注浆主要技术参数 1.1.1.2注浆压力 注浆压力略大于该地层位置的静止水土压力,同时避免浆液进入盾构机的土仓中。 最初的注浆压力是根据理论的静止水土压力确定的,在实际掘进中将不断优

化。如果注浆压力过大,会导致地面隆起和管片变形,还易漏浆。如果注浆压力过小,则浆液填充速度赶不上空隙形成速度,又会引起地面沉陷。一般而言,注浆压力取1.1~1.2倍的静止水土压力,最大不超过3.0bar。 由于从盾尾圆周上的四个点同时注浆,考虑到水土压力的差别和防止管片大幅度下沉和浮起的需要,各点的注浆压力将不同,并保持合适的压差,以达到最佳效果。在最初的压力设定时,下部每孔的压力比上部每孔的压力略大0.5~1.0bar。 1.1.1.3注浆量 根据刀盘开挖直径和管片外径,可以按下式计算出一环管片的注浆量。 V=π/4×K×L×(D12-D22)式中: V ——一环注浆量(m3) L ——环宽(m) D1——开挖直径(m) D2——管片外径(m) K——扩大系数取1.5~2 代入相关数据,可得: V=π/4×(1.5)×1.2×(40.2-38.4)=2.5~3.4 m3/环 上面经验公式计算中,注浆量取环形间隙理论体积的1.5~2倍,每环(1.2m)注浆量Q=2.5~3.4m3。 1.1.1.4注浆时间和速度 在不同的地层中根据需不同凝结时间的浆液及掘进速度来具体控制注浆时间的长短。做到“掘进、注浆同步,不注浆、不掘进”,通过控制同步注浆压力和注浆量双重标准来确定注浆时间。 注浆量和注浆压力均达到设定值后才停止注浆,否则仍需补浆。 同步注浆速度与掘进速度匹配,按盾构完成一环掘进的时间内完成当环注浆量来确定其平均注浆速度。 1.1.1.5注浆结束标准及效果检查 采用注浆压力和注浆量双指标控制标准,即当注浆压力达到设定值,注浆量达到设计值的85%以上时,即可认为达到了质量要求。 注浆效果检查主要采用分析法,即根据压力-注浆量-时间曲线,结合管片、地表及周围建筑物量测结果进行综合评价。对拱顶部分采用超声波探测法通过频谱分

盾构同步注浆

1.1. 盾构同步注浆 当盾片脱离盾尾后,在土体与管片之间会形成一道宽度为140mm 左右的环行空隙。同步注浆的目的是为了尽快填充环形间隙使管片尽早支撑地层,防止地面变形过大而危及周围环境安全,同时作为管片外防水和结构加强层。 1.1.1. 注浆材料 采用水泥砂浆作为同步注浆材料,该浆材具有结石率高、结石体强度高、耐久性好和能防止地下水浸析的特点。水泥采用普通硅酸盐水泥,以提高注浆结石体的耐腐蚀性,使管片处在耐腐蚀注浆结石体的包裹内,减弱地下水对管片混凝土的腐蚀。 根据盾构施工经验,同步注浆拟采用下表所示的配比。在施工中,根据地层条件、地下水情况及周边条件等,通过现场试验优化确定。 同步注浆浆液的主要物理力学性能应满足下列指标,见表7-6 : 表7-6同步注浆材料配比和性能指标表 ⑴胶凝时间:一般为3?10h,根据地层条件和掘进速度,通过现场试验加入促凝剂及变更配比来调整胶凝时间。对于强透水地层和需要注浆提供较高的早期强度的地段,可通过现场试验进一步调整配比和加入早强剂,进一步缩短胶凝时间; ⑵固结体强度:一天不小于0.2MPa, 28天不小于2.5MPa ⑶浆液结石率:>95%,即固结收缩率<5% ⑷浆液稠度:8?12cm ⑸浆液稳定性:倾析率(静置沉淀后上浮水体积与总体积之比)小于5% 1.1. 2. 同步注浆主要技术参数 1.1. 2.1.注浆压力 注浆压力略大于该地层位置的静止水土压力,同时避免浆液进入盾构机的土仓中。 最初的注浆压力是根据理论的静止水土压力确定的,在实际掘进

中将不断优化。如果注浆压力过大,会导致地面隆起和管片变形,还易漏浆。如果注浆压力过小,则浆液填充速度赶不上空隙形成速度,又会引起地面沉陷。一般而言,注浆压力取 1.1?1.2倍的静止水土 压力,最大不超过3.0?4.0bar。 由于从盾尾圆周上的四个点同时注浆,考虑到水土压力的差别和防止管片大幅度下沉和浮起的需要,各点的注浆压力将不同,并保持合适的压差,以达到最佳效果。在最初的压力设定时,下部每孔的压力比上部每孔的压力略大0.5?I.Obar。 1.12 2.注浆量 盾构掘进注浆采用盾尾同步注浆,随着盾构推进,脱出盾尾的管片与土体间出现“建筑空隙”,该空隙用浆液通过设在盾尾的压浆管予以充填。由于压入衬砌背面的浆液会发生失水收缩固结、部分浆液会劈裂到周围地层中,还有曲线推进、纠偏或盾构机抬头等原因,使得实际注浆量要超过理论建筑空隙体积。 每推进一环的建筑空隙为:n (6.482 — 6.22 ) X 1/4 X 1.2=3.35m3 开挖直径:①6.48m;管片外径:①6.2m 考虑到地层扩散系数,每环的压浆量一般为建筑空隙的150%-200%即每推进一环同步注浆量为 5.019 m3?6.692 m3,按地层的 不同注浆量也要因地制宜,应以注浆压力与数量进行双控来评价注浆最终量。 1.1. 2. 3. 注浆时间和速度 在不同的地层中根据需不同凝结时间的浆液及掘进速度来具体控制注浆时间的长短。做到“掘进、注浆同步,不注浆、不掘进”,通过控制同步注浆压力和注浆量双重标准来确定注浆时间。 注浆量和注浆压力均达到设定值后才停止注浆,否则仍需补浆。 同步注浆速度与掘进速度匹配,按盾构完成一环掘进的时间内即完成当环注浆量来确定其平均注浆速度。 1.1. 2.4. 注浆结束标准及浆效果检查 采用注浆压力和注浆量双指标控制标准,即当注浆压力达到设定值,注浆量达到设计值的85%以上时,即可认为达到了质量要求。 注浆效果检查主要采用分析法,即根据压力-注浆量-时间曲线,结合

盾构法隧道基本原理及特点

盾构法隧道基本原理及特点 1.盾构法隧道基本原理 盾构法隧道的基本原理是用一件有形的钢质组件沿隧道设计轴线开挖土体而向前推进。这个钢质组件在初步或最终隧道衬砌建成前,主要起防护开挖出的土体、保证作业人员和机械设备安全的作用,这个钢质组件被简称为盾构。盾构另一个作用是能够承受来自地层的压力,防治地下水或流沙的入侵。 隧道拱内圈的空洞由盾构本体防护,同时还需要其他辅助措施对工作面进行支护。盾构法隧道主要有以下几种支护土体方法和与之相匹配的盾构类型,见图1,各种类型盾构掘进机的支护面板见图2。 几种支护土体方法和与之相匹配的盾构类型 各种类型盾构掘进机的支护面板 2.盾构法隧道优缺点 盾构法隧道优点: (1)在盾构支护下进行地下工程暗挖施工,不受地面交通、河道、航运、潮汐、季节、气候等条件的影响,能较经济合理地保证隧道安全施工;

盾构法隧道施工不受地面自然条件的影响 (2)盾构的推进、出土、衬砌拼装等可实行自动化、智能化和施工远程控制信息化,掘进速度较快,施工劳动强度较低; 盾构法隧道机械化、自动化高 (3)地面人文自然景观受到良好的保护,周围环境不受盾构施工干扰;在松软地层中,开挖埋置深度较大的长距离、大直径速度,具有经济、技术、安全、军事等方面的优越性。 盾构法隧道能保护地面人文自然,经济效益明显 盾构法隧道缺点: (1)盾构机械造价较昂贵,隧道的衬砌、运输、拼装、机械安装等工艺较复杂;在饱和含水的松软地层中施工,地表沉陷风险极大; (2)需要设备制造、气压设备供应、衬砌管片预制、衬砌结构防水及堵漏、施工测量、场地布置、盾构转移等施工技术的配合,系统工程协调难; (3)建造短于750m的隧道没有经济性;对隧道曲线半径过小或隧道埋深较浅时,施工难度大。

成都地铁盾构同步注浆及其材料的研究

成都地铁盾构同步注浆及其材料的研究【内容提要】成都地铁1号线一期工程盾构施工2标为成都地铁试验段,该工程采用加泥式土压平衡盾构机施工,成都地区地层为砂卵石地层,粒经大、水位高,为了有效解决同步注浆的效果,我项目部和同济大学、西南交通大学进行了相关的试验研究,拟采用惰性浆液(以黄泥粉、粉煤灰为主剂)为同步注浆材料,期望其达到不易被水稀释、较好的流动性、较好的早期强度和较低的成本。 【关键词】高富水土压盾构同步注浆惰性浆液 1. 概况 成都地铁1号线一期工程盾构施工2标人天盾构区间,主要穿越砂卵石地层,地层高富水,含水量大,地下水位高。采用了加泥式土压平衡式盾构机进行施工。盾构机配备了盾尾同步注浆系统,可在盾构掘进的同时进行背后注浆。在盾构掘进施工中,当管片刚脱离盾尾时即可对管片外侧的空隙进行填充,从而起到控制地表沉降、提高隧道的抗渗能力、预防盾尾水源流入密封土舱而造成的喷涌和稳定成型隧道的作用。 2. 盾构法施工背后注浆技术 2.1.同步注浆原理 在盾构机推进过程中,保持一定压力(综合考虑注入量)不间断地从盾尾直接向背后注浆,当盾构机推进结束时,停止注浆。这种方法是在环形空隙形成的同时用浆液将其填充的注浆方式。如图2-1所示。 图2-1 同步注浆系统示意图 2.2. 注浆材料和配比的选择 2.2.1. 注浆材料应具备的基本性能 根据成都地区的地质条件、工程特点以及现有盾构机的型式,浆液应具备以下性能:

1)具有良好的长期稳定性及流动性,并能保证适当的初凝时间,以适应盾构施工以及远距离输送的要求。 2)具有良好的充填性能,不流窜到尾隙以处的其他地域。。 3)在满足注浆施工的前提下,尽可能早地获得高于地层的早期强度。 4)浆液在地下水环境中,不易产生稀释现象。 5)浆液固结后体积收缩小,泌水率小。 6)原料来源丰富、经济,施工管理方便,并能满足施工自动化技术要求。 7)浆液无公害,价格便宜。 2.2.2. 注浆材料 为了保证背后注浆的填充效果,施工中结合现场条件和盾构机自身注浆系统的配置,选取了两种液浆组成以便进行对比优选: 1)以水泥、粉煤灰为主剂的常规单液浆A 成分:水泥、粉煤灰、细砂、膨润土和水; 2)以黄泥粉、粉煤灰为主剂的惰性浆液B 成分:黄泥粉、粉煤灰、细砂、膨润土和水。 浆液组成A以水泥作为提供浆液固结强度和调节浆液凝结时间的材料,浆液组成B以粉煤灰作为提供浆液固结强度和调节浆液凝结时间的材料。其中浆液组成B中使用的粉煤灰可以改善浆液的和易性(流动性),黄泥粉能增加浆液的粘度,并有一定的固结作用,膨润土用以减缓浆液的材料分离,降低泌水率,还具有一定的防渗作用。砂在两种浆液中都作为填充料。 2.2. 3. 浆液配比及性能测试 在确定浆液配比时,先根据相关资料,确定了两种浆液的各种材料的基本用量,然后结合浆液站调试,每种配比生产一定方量,并对浆液性能进行相关的性能测试,从而对配比单进行筛选,保留能够生产出合格浆液的配比,以便今后用于施工。 根据测试结果还可得知,与水泥浆液相比,以黄泥粉、粉煤灰为主剂的浆液的凝结时间较长,在10~12小时左右。考虑到盾构掘进过程中一些不可避免的停机(如管片拼装、连接电缆、风管安装、机器维护保养、盾构机临时停机、电路故障等),若浆液的初凝时间较短,则增加了停机期间发生堵管的可能性,增加额外的清洗工作,并影响盾构的继续掘进。因此,浆液合理的初凝时间应与盾构掘进施工一个工班的时间接近,这样可以在每班结束时再安排浆液输送管路的清理工作,既不影响盾构连续施工,又保证能及时清理管路,避免堵管现象的发生,选用惰性浆液更为可靠。 惰性浆液在主要成分加量不变的情况下,只需调节添加剂的加量就能有效地控制、调节浆液的

盾构法隧道施工同步注浆技术

盾构法隧道施工同步注浆技术 1 盾构法隧道施工 1.1盾构法隧道施工历史回顾 盾构法是在软土地基中修建隧道的一种先进的施工方法,用此法修建隧道在欧洲、美国己有160年的历史。盾构机最早是由法国工程师M.I.Brunel 于1825年从观察蛀虫在木头中钻洞,并从体内排出粘液加固洞穴的现象,从仿生学角度研制发明的。并于1843年由改进的盾构在英国伦敦泰晤士河下修建了世界上第一条矩形盾构(宽11.4m,高6.8m )隧道,全长458m。其后,P. W.Bahow于1865年用直径2.2m圆形盾构又在泰晤士河下修建一条圆形截面隧道。1874年,J.H.Greathead第一次采用气压盾构,并第一次开始在衬砌背后进行压浆,修建了伦敦城南线地铁。1880~1890年间,用盾构法在美国和加拿大的圣克莱( St.Clair)河下建成一条直径6.4m,长1870m的Sarnia 水底隧道。仅在纽约,从1900年后,使用气压盾构法先后成功地修建了25条重要的水底隧道。 盾构隧道在用于修建地下铁道,污水管道时,得到了广泛的应用。前苏联自1932年开始用直径6.0m及直径9.5m的盾构前后在莫斯科、列宁格勒等地修建地下铁道的区间隧道及车站。在德国慕尼黑和法国的巴黎的地下铁道修建中,均使用了盾构掘进法。日本于1922年开始用盾构法修建国铁羽线折渡隧道。从六十年代起,盾构法在日本得到了飞速发展,土压平衡盾构就是七十年代发明的。 我国第一个五年计划期间,在东北阜新煤矿,用直径2.6m的盾构进行了疏水巷道的施工。1957年起在北京市区的下水道工程中采用过直径2.0m 及直径2.6m的盾构。上海从1960年起开始了用盾构法修建黄浦江水底隧道及地下铁道的实验研究,从1963年开始在第四纪软弱饱和地层中先后用直径4.2m、5.6m、10.0m、3.6m、3.0m、4.0m、6.2m等十一台盾构机进行了实验隧道,地铁区间隧道扩大实验工程、地下人防通道、引水及排水隧道工程等的施工。近年来又用国际上先进的土压平衡盾构(EPB)修建了地铁一、二

地铁隧道盾构法施工

地铁隧道盾构法施工 导语:盾构法施工是一种机械化和自动化程度较高的隧道掘进施工方法,从20世纪60年代开始,西方发达国家大量将这种技术应用于城市地铁和大型城市排水隧道施工。我国近年来也开始在城市地铁隧道、越江越海隧道、取排水隧道施工中采用此项技术,以替代原来落后的开槽明挖或浅埋暗挖等劳动密集型施工方法。 关键词:地铁盾构施工盾构施工技术盾构施工测量点击进入VIP充值通道 地铁盾构机分类及组成 地铁盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥浆式,土压平衡式等不同类型。盾构机主要由开挖系统、推进系统排土系统管片拼装系统、油压、电气、控制系统、资态控制装置、导向系统、壁后注浆装置、后方台车、集中润滑装置、超前钻机及预注浆、铰接装置、通风装置、土碴改良装置及其他一些重要装置如盾壳、稳定翼、人闸等组成。海瑞克公司在广州地铁使用的典型土压平衡式盾构机为主机结构(盾体及刀盘结构)断面形状:圆形、用钢板成型制成,材料为:S335J2G3。主要由已下部分构成:刀盘、主轴承、前体、中体、推进油缸、

铰接油缸、盾尾、管片安装机。主机外形尺寸:7565mm(L)X6250(前体)X6240(中体)X6230(盾尾)。 ①压缩空气式盾构 1886 年Greatbhad 首次在盾构掘进隧道中引了这种工法,该工法利用压缩空气使整个盾构都防止地下水的侵入, 它可在游离水体下或地下水位下运作。其工作原理是利用用压缩空气来平衡水压和土压。传统的压缩空气式盾构要求在隧道工作面和止水隧道之间封闭一个相对较大的工作腔,大部分工人经常处于压缩空气下, 这会对掘进隧道和衬砌造成干扰,为了解决这些问题,又出现了用无压工作腔及全断面开挖的压缩空气式盾构和带有无压工作腔及部分断面开挖的压缩空气式盾构等。 ②土压平衡式盾构 20 世纪70 年代日本就开发土压平衡式盾构,不用辅助的支撑介质,切割轮开挖出的材料可作为支撑介质。该法用旋转的刀盘开挖地层,挖下的渣料通过切割轮的开口被压入开挖腔,然后在开挖腔内与塑性土浆混合。推力由压力舱壁传递到土浆上。当开挖腔内的土浆不再被当地的土和水压固化时就达到平衡。如果土浆的支撑压增大超过了平衡,开挖腔的土浆和在工作面的地层将进一步固化。与泥浆式盾构相比优点在于:无分离设备在淤泥或粘土地层中使用,覆盖层浅时无贯穿浆化的支撑泥浆泄露的危险。 ③泥浆式盾构 1912 年,Grauel 首次建造了泥浆式盾构。该法可以适用于各种松

盾构机同步注浆及二次注浆施工技术总结

盾构机同步注浆及二次注浆施工技术总结 一、同步注浆的作用 二、二次注浆的作用 三、同步注浆操作工艺 四、二次注浆操作工艺 五、注浆效果总体评价

一、同步注浆的作用 由于盾构机刀盘直径为6420㎜,而管片外径6200㎜,所以当管片拼装完成并脱出盾尾后,管片与土体之间形成一个环形间隙,此间隙若不及时填充,可能造成地层变形,致使地表下沉或建筑物下沉。因此,同步注浆填补了这一空白,及时有效的浆液注入施工间隙,抑制了地层变形;也使管片得到部分稳定,防止管片偏移;浆液凝结后具备一定的强度,提高了隧道的抗渗能力;当地下水丰富时,还能预防盾尾水源流入掌子面而造成的喷涌。可以说同步注浆起到了多方面的作用。 二、二次注浆的作用 二次注浆作为盾构施工的一种辅助工法,主要是起到补充的作用。由于同步注浆液凝固后有所收缩,或者是同步注浆没有填充密实,需要二次注浆时补足浆液,同时二次注浆采用双液浆,将衬背的流水通道阻住,防止地下水系统涌入掌子面。但是注浆压力一定不能超过 0.4Mpa,防止击伤管片。 三、同步注浆操作工艺 盾尾同步注浆是利用盾构设备中的同步注浆系统,对随着盾构向前推进、管片衬砌逐渐脱出盾尾所产生的建筑间隙进行及时充填的过程。 1、注浆材料的要求: 同步注浆是保证管片拼装质量的关键所在,其目的在于控制隧道变形,防止管片上浮,提高结构的抗渗能力。良好的浆液性能体现在

一下几个方面:①浆液充填性好;②浆液和易性好;③浆液初凝时间适当,早期强度高,浆液硬化后体积收缩率小;④浆液稠度合适,以不被地下水过度稀释为宜。根据以上几点结合我合同段的地层土质状况,同步注浆采用水泥砂浆。 用于8小时凝固的砂浆配合比如下: 2、注浆压力: 为了使浆液很好的充填于管片的外侧间隙,必须以一定的压力压送浆液。注入压力大小通常选择为地层阻力强度(压力)加上0.1~0.2MPa的和。地层阻力强度是由土层条件及掘削条件决定的,通常在0.1~0.2MPa以下。根据本合同段的地层土质条件,注浆压力初步设定为0.19MPa,现场使用2.5Ba r~3Bar的压力注浆比较合适。 3、注浆量: 同步注浆量的计算:从理论上计算,同步注浆即填充施工间隙。 Q=V a Q-----注浆量 V-----理论填充空隙 a------注入率 地铁规范规定,同步注浆的注入率宜为130%~180%,从施工经验来看,软土地层控制在135%~154%即3.5m3~4m3为宜;硬岩地层

北京地铁盾构新型同步注浆及其材料的研究

北京地铁盾构新型同步注浆及其材料的研究 [摘要]北京地铁五号线盾构试验段工程采用了城建集团自行研制的惰性浆液(已申请专利),其注浆效果非常理想,在施工中有效的控制了地表沉降。 [关键词]盾构北京地铁五号线同步注浆惰性浆液 一、概况 北京地铁五号线试验段工程,采用了土压平衡式盾构机进行施工。盾构机配备了盾尾同步单液注浆系统,可在盾构掘进的同时进行壁后注浆。在盾构掘进施工中,当管片刚脱离盾尾时即可对管片外侧的建筑空隙进行填充,从而起到控制地表沉降和稳定成型隧道的作用。在施工中我们使用的浆液是自行研制的惰性浆液,此浆液通过施工中达到了很好的效果,有效地控制了地表沉降。 二、盾构法施工壁后注浆技术 2.1同步注浆原理 北京地铁五号线盾构试验段工程的施工采取了同步注浆方式。其工作原理是:在盾构机推进过程中,保持一定压力(综合考虑注入量)不间断地从盾尾直接向壁后注浆,当盾构机推进结束时,停止注浆。这种方法是在环形空隙形成的同时用浆液将其填充的注浆方式。 2.2注浆材料和配比的选择 2.2.1注浆材料应具备的基本性能 根据北京地区的地质条件、工程特点以及现有盾构机的型式,浆液应具备以下性能: 1)具有良好的长期稳定性及流动性,并能保证适当的初凝时间,以适应盾构施工以及远距离输送的要求。 2)具有良好的充填性能。

3)在满足注浆施工的前提下,尽可能早地获得高于地层的早期强度。 4)浆液在地下水环境中,不易产生稀释现象。 5)浆液固结后体积收缩小,泌水率小。 6)原料来源丰富、经济,施工管理方便,并能满足施工自动化技术要求。 7)浆液无公害,价格便宜。 2.2.2. 注浆材料 为了保证壁后注浆的填充效果,施工中结合现场条件和盾构机自身注浆系统的配置,选取了两种单液浆组成以便进行对比优选: 1)以水泥、粉煤灰为主剂的常规单液浆a 成分:水泥、粉煤灰、细砂、膨润土(钠土)和水; 2)以生石灰、粉煤灰为主剂的惰性浆液b 成分:生石灰、粉煤灰、细砂、膨润土(钠土)和水。 浆液组成a以水泥作为提供浆液固结强度和调节浆液凝结时间的材料,浆液组成b以粉煤灰作为提供浆液固结强度和调节浆液凝结时间的材料。其中浆液组成b 中使用的粉煤灰可以改善浆液的和易性(流动性),生石灰能增加浆液的粘度,并有一定的固结作用,膨润土用以减缓浆液的材料分离,降低泌水率,还具有一定的防渗作用。砂在两种浆液中都作为填充料。 2.2. 3. 浆液配比及性能测试 在确定浆液配比时,先根据相关资料,确定了两种浆液的各种材料的基本用量,然后结合浆液站调试,每种配比生产一定方量,并对浆液性能进行相关的性能测试,从而对配比单进行筛选,保留能够生产出合格浆液的配比,以便今后用于施工。按测试配比拌制出的浆液送到试验室进行了主要性能指标的测试。根据配比单和浆液配合比试验报告中的测试数据,绘制出浆液流动度、稠度和分层度随时间变化的对比曲线。

31盾构注浆施工技术

3-2-31盾构注浆施工技术 1.前言 1.1 盾构注浆施工原理 盾构注浆分同步注浆和二次注浆两种。盾构推进中的同步注浆和衬砌壁后二次注浆是充填土体与管片圆环间的建筑间隙和减少后期沉降的主要手段,也是盾构推进施工中的一道重要工序。 盾构推进过程中,盾尾脱离管片后管片外出现超挖空隙,若不即时回填,扰动地层产生变形、沉降。进而影响其稳定性和地面建筑物,甚至灾难性的破坏。所以盾尾同步注浆显得格外重要。 盾尾注浆(同步注浆)就是在盾构机掘土推进的同时,向盾尾超挖间隙以一定压力注入适量的浆液以填充空隙,最大限度的避免对围岩土的扰动,控制沉降和变形。同步注浆使管片和周围土体形成一个整体,有效的控制了隧道在地层中的稳定性,特别是在小半径曲线时还可以防止隧道外移和变形。二次注浆主要是对同步注浆进行辅助和补充。 1.2盾构注浆施工特点 盾构注浆施工因土质条件、推进速度等确定其浆液材料、注入时期和注入量、注入压力等,需要严格控制各参数以达到预期效果。同步注浆强调的是同步和足量性,二次注浆则根据需要进行施工,是对同步注浆效果不好或者没有填充到位的部分进行注浆,主要使用水泥灰浆进行注入。 由于采用泵压注浆,对浆液的流动性要求较高,所以在浆液的配合比选择上须在考虑土质条件、浆液填充效果的同时考虑浆液粘稠度,以达到浆液能迅速、完好的充填盾尾空隙中去的目的。 1.3适用范围 适用于盾构同步注浆、二次注浆施工。 2.同步注浆施工工艺 2.1工艺流程图 同步注浆施工工艺流程见图2-1 图2-1 同步注浆工艺流程图

2.2浆液选择 2.2.1浆液分类及主要特点 盾构推进施工中的注浆应选择具有和易性好、泌水性小,且具有一定强度的浆液进行及时、均匀、足量压注,确保其建筑空隙得以及时和足量的充填。 浆液根据实际情况的需要有惰性浆液、可硬性浆液及其他形式的浆液。惰性浆液多为非活性材料配合而成,注入后一定时间内不会凝结产生较大强度,其性质一般与隧道周围土体相似为好;可硬性浆液区别与惰性浆液在与添加了一些活性材料,在注入后产生物理、化学反应凝结后有一定强度。另外,根据特殊用途有瞬凝砂浆、加气砂浆等。 1、惰性浆液 主要由粉煤灰、膨润土、砂、水组成,主要用于粉质黏土、细粉质砂土等含水量较高的软土层注浆。由于惰性浆对沉降控制等效果不佳,故现采用较少。 2、可硬性浆液 主要由粉煤灰、少量水泥、砂、水(根据实际情况加入减水剂、缓凝剂等添加剂)组成,主要用于粉质黏土、细粉质砂土等含水量较高的软土层注浆。可硬性浆液对沉降控制良好,在软土地层中得到大量应用。 3、其他浆液 根据特殊用途有瞬凝砂浆、加气砂浆等。 2.2.2浆液类型选择 浆液的选择受土质条件、盾构工法、施工条件、造价等因素等影响,选择浆液的原则是在掌握浆液特性的基础上按实际情况选择最适合条件的浆液。 2.2.3常见的浆液配合比 常见的浆液配合比见表2-1 2.2.4浆液配合比优选试验 浆液实验主要有重度、标准块(70 mm×70mm)强度实验、稠度实验等。通过实验调整浆液配合比。

公路隧道施工盾构法

公路隧道施工盾构法、沉管法介绍 第1题 沉管隧道施工工序中,沉管与连接之后的工序是()。 A.预制管段 B.修建临时干坞 C.基础处理 D.回填覆盖 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第2题 ?关于盾构法,下列()的说法是错误的。 A.盾构法是暗挖隧道的一种施工方法 B.盾构法穿越地面建筑群的区域时,周围可不受施工影响 C.盾构机推进系统包括推进千斤顶和液压系统 D.盾构壳体由切口环和支承环两部分组成 答案:D 您的答案:D 题目分数:3 此题得分:3.0 批注: 第3题 盾构机的外壳沿纵向从前到后可分为前盾、中盾、后盾三段。通 常所指的支承环是() A.前盾 B.中盾 C.后盾 D.盾尾 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第4题 泥水平衡盾构开挖的渣土以()形式输送到地面。 A.岩石

B.泥浆 C.土体 D.砂浆 答案:B 您的答案:B 题目分数:3 此题得分:3.0 批注: 第5题 以下不属于盾构始发端头加固方法的是()。 A.旋喷桩法 B.注浆法 C.内嵌钢环 D.冻结法 答案:C 您的答案:C 题目分数:3 此题得分:3.0 批注: 第6题 ()盾构机配备有泥水分离处理系统。 A.土压平衡 B.硬岩TBM C.双护盾TBM D.泥水平衡 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第7题 以下()设备不属于盾构机后配套设备。 A.注浆系统 B.管片运输设备 C.出土设备 D.刀盘 答案:D 您的答案:D

题目分数:4 此题得分:4.0 批注: 第8题 以下()工序不属于盾构始发阶段。 A.安装反力架 B.凿除洞门 C.拼装负环管片 D.到达端口加固 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第9题 沉管隧道按照管段的制作方式分为()和干坞型。 A.圆形 B.矩形 C.钢筋混凝土 D.船台型 答案:D 您的答案:D 题目分数:4 此题得分:4.0 批注: 第10题 以下()不属于沉管隧道优势。 A.可浅埋,与两岸道路衔接容易 B.结构为现浇混凝土,造价低 C.防水性能好 D.对地质水文条件适应能力强 答案:B 您的答案:B 题目分数:4 此题得分:4.0 批注: 第11题

同步注浆

同步注浆技术 一、注浆目的及方式 1.盾构机的刀盘直径为6180mm,因此,当盾构机盾尾脱出管片后,在全体与管片之间将形成一道宽度为9mm的空隙。为及时的充填管片与地层间的环形间隙,控制地层变形,稳定管片结构,控制盾构掘进方向,并有利于加强管片隧道结构的防水能力,管片背后环向间隙采用同步注浆。 2.采用盾尾同步注浆方式。在盾尾内侧沿周围布置了4条内置式注浆管。每条管上设有压力表和手动阀门。盾尾通过软管与四台砂浆泵分别相连。砂浆泵可以手动控制,砂浆泵上方设置了一个带搅拌器的砂浆罐(容积为83)。二、注浆材料及配比设计 (1)注浆材料 采用水泥砂浆作为同步注浆材料,该浆材具有结石率高、结石体强度高、耐久性好和能防止地下水浸析的特点。 (2)浆液配比及主要物理力学指标 根据地铁施工经验,同步注浆拟采用表2-1所示的配合比。在施工中,根据地层条件、地下水情况及周边条件等,通过现场试验优化确定最合理的配合比。同步注浆浆液的主要物理力学性能应满足下列指标: ①胶凝时间:一般为3~10h,根据地层条件和掘进速度,通过现场试验加入促凝剂及变更配比来调整胶凝时间。对于强透水地层和需要注浆提供较高的早期强度的地段,可通过现场试验进一步调整配比和加入早强剂,进一步缩短胶凝时间。 ②固结体强度:一天不小于0.2MPa,28天不小于2.0MPa。

③浆液结石率:>95%,即固结收缩率<5%。 ④浆液稠度:8~12cm ⑤浆液稳定性:倾析率(静置沉淀后上浮水体积与总体积之比)小于5%。 2-1 同步注浆材料初步配比表 三、同步注浆主要技术参数 (1)注浆压力 为保证达到对环向空隙的有效充填,同时又能确保管片结构不因注浆产生变形和损坏,根据计算和经验,注浆压力取值为:0.2~0.5MPa。 (2)注浆量 根据经验公式计算和类似施工的经验,注浆量取环形间隙理论体积的1.3~1.8倍,则每环(1.5m)注浆量Q=3.1~4.3m3。 (3)注浆速度 同步注浆速度应与掘进速度相匹配,按盾构完成一环1.5m掘进的时间内完成当环注浆量来确定其平均注浆速度。 (4)注浆结束标准 采用注浆压力和注浆量双指标控制标准,即当注浆压力达到设定值,注浆量达到设计值的90%以上时,即可认为达到了质量要求。 四、同步注浆方法、工艺与设备 (1)同步注浆方法与工艺 同步注浆与盾构掘进同时进行,通过同步注浆系统及盾尾的内置注浆管,在盾构向前推进盾尾空隙形成的同时进行,采用双泵四管路(四注入点)对称同时

盾构机同步注浆管路的结构优化

Open Journal of Transportation Technologies 交通技术, 2017, 6(5), 212-217 Published Online September 2017 in Hans. https://www.doczj.com/doc/c78976974.html,/journal/ojtt https://https://www.doczj.com/doc/c78976974.html,/10.12677/ojtt.2017.65028 Optimizing Structure for Simultaneous Back Filling Pipelines of Shield Machine Yang Yang, Yunjie Chen, Fazhan Liu, Li Chen, Chen Liu Wuhan Marine Machinery Plant Co., Ltd., Wuhan Hubei Received: Aug. 21st, 2017; accepted: Sep. 4th, 2017; published: Sep. 11th, 2017 Abstract During the tunneling construction, the simultaneous back filling pipelines often being jammed, the shield manufacturers and construction units are trying to finding out a more appropriate struc-ture of simultaneous back filling pipelines to avoid jam. In this article, the author firstly introduc-es some different structures of simultaneous back filling pipelines, compares and analyzes their advantages and disadvantages according to the tunneling construction’s practical conditions, op-timizing a new type structure of simultaneous back filling pipelines. Keywords Tunneling Construction, Simultaneous Back Filling Pipeline, Optimizing Design 盾构机同步注浆管路的结构优化 杨阳,陈云节,刘发展,陈离,刘郴 武汉船用机械有限责任公司,技术中心,湖北武汉 收稿日期:2017年8月21日;录用日期:2017年9月4日;发布日期:2017年9月11日 摘要 由于在盾构施工过程中经常出现同步注浆管路堵塞现象,盾构机制造厂家及盾构施工单位均在通过不断的研究和实践,试图设计出一种更加合理和实用的同步注浆管路结构形式。本文介绍了几种不同结构形式的注浆管,并通过分析比较各自的优缺点,结合盾构施工过程中的实际情况,优化设计出一种新型的注浆管结构形式。

2020年盾构法隧道同步注浆材料开发与应用技术研究

第1题 盾构同步注浆浆液性能试验方法,参照规范不包括()。 A.《建筑砂浆基本性能试验方法》JGJ/T 70 B.《砌筑砂浆配合比设计规程》JGJT98-2011 C.《水泥基灌浆材料应用技术规范》GB/T 50448 D.《预应力孔道灌浆剂》GB/T 25182 答案:B 您的答案:B 题目分数:4 此题得分:4.0 批注: 第2题 水泥基同步注浆材料配合比推荐参数中,水泥用量要求为()。 A.≥15 B.≥10 C.≤15 D.≤10 答案:D 您的答案:D 题目分数:5 此题得分:5.0 批注: 第3题 消石灰基同步注浆材料配合比推荐参数,膨润土掺量掺量()。 A.5~10 B.0~10 C.10~15 D.5~15 答案:D 您的答案:D 题目分数:5 此题得分:5.0 批注: 第4题 水泥基注浆材料浆液的力学性能水陆强度比推荐指标为()。 A.≥60 B.≥75 C.≥65

D.≥85 答案:C 您的答案:C 题目分数:5 此题得分:5.0 批注: 第5题 消石灰基注浆材料浆液的力学性能表征指标为()。 A.抗压强度 B.24h抗剪屈服强度 C.C.?水陆强度比 D.抗折强度 答案:B 您的答案:B 题目分数:5 此题得分:5.0 批注: 第6题 一般地铁工程的沉降控制偏差范围是()。 A.±5cm B.±3cm C.±2cm D.±1cm 答案:D 您的答案:D 题目分数:5 此题得分:5.0 批注: 第7题 关于水泥基单液可硬性浆液,表述错误的是()。 A.主要由水泥、粉煤灰、膨润土、砂等材料组成 B.适用于土体相对稳定的区域或软弱地层等土体环境恶劣的工况,也可用于盐渍土环境。 C.凝结时间较短,强度高,增长快,与双液浆性能相同 D.容易分层、抗水分散较差、注浆材料配合比与施工过程控制要求较高 答案:C 您的答案:C

隧道工程《盾构法施工》超详细讲解

3 盾构法施工 概述 盾构法是以盾构为核心在地面以下暗挖隧洞的一种施工方法。盾构法始于英国,自1925年布鲁诺尔(Brunel)在伦敦泰晤士河下首次用一台矩形盾构开挖水底隧洞以来,已有170余年历史。在一百多年中,世界各国制造了数以千计的各种类型、各种直径的盾构,盾构掘进机从低级发展到高级,从手工操作到计算机监控机械化施工,使盾构掘进机及其施工技术得到了不断发展和完善。现代盾构已经发展成为集机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土碴、拼装隧洞衬砌、测量导向纠偏等功能的大型的施工机械设备。 ●盾构法作为一种先进的隧洞施工工法具有: (1)对环境干扰少,对交通及居民生活影响小; (2)盾构推进、出土、衬砌等工序循环进行,易于管理,施工人员少; (3)施工不受地形地貌,江河水域等地表环境条件限制; (4)施工不受天气条件(雨雪等)限制; (5)出土量少,对周围环境及地表沉降影响小; (6)在土质差,地下水位高的地方建大埋深隧洞具有优越性。 由于这些优点,盾构法特别适宜于城市隧洞和穿江越海的施工,目前盾构工法已在城市隧洞的构筑中确定了稳固的统治地位。 ●盾构法是一项综合性的施工技术。构成盾构法的主要内容有: (1)先在隧洞某段的一端建造竖井或基坑,以供盾构安装就位。 (2)盾构机主机和配件吊装下井,在预定位置组装成整机并调试使其性能达到设计要求。 (3)盾构从竖井或基坑的墙壁开口处出发,在地层中沿着设计轴线推进。盾构推进中所受到的地层阻力,通过盾构千斤顶传至盾构尾部已拼装的预制衬砌,再传到竖井或基坑的后靠壁上。盾构每推进一环距离,就在盾尾支护下拼装一环衬砌,并及时向盾尾后面的衬砌环外周的空隙中压注浆体,以防止隧洞及地面下沉,在盾构推进过程中不断从开挖面排出适量的土方。 (4)盾构到达预定终点的竖井或基坑时掘进结束,然后检修盾构或解体盾构运出。 ●盾构是进行土方开挖正面支护和隧洞衬砌结构安装的施工机具,它还需要其它施工技术密切配合才能顺利施工。主要有: (1)地下水的降低; (2)稳定地层、防止隧洞及地面沉陷的土壤加固措施; (3)隧洞衬砌结构的制造; (4)隧洞内的运输; (5)衬砌与地层间的充填; (6)衬砌的防水与堵漏; (7)开挖土方的运输及处理方法; (8)配合施工的测量、监测技术; (9)采用气压法施工时,还涉及到医学上的一些问题和防护措施等。 目前在我国主要使用的有土压平衡盾构和泥水平衡盾构。 (1)土压平衡盾构 土压平衡盾构是在机械式盾构的前部设置隔板,在刀盘的旋转作用下,刀具切削开挖面的泥土,破碎的泥土通过刀盘开口进入土仓,使土仓和排土用的螺旋输送机内充满切削下来的泥土,依靠盾构推进油缸的推力通过隔板给土仓内的土碴加压,使土压作用于开挖面以平衡开挖面的水土压力。破碎的泥土通过刀盘开口进入土仓,泥土落到土仓底部后,通过螺旋输送机运到皮带输

盾构同步注浆

1.1.盾构同步注浆 当盾片脱离盾尾后,在土体与管片之间会形成一道宽度为140mm 左右的环行空隙。同步注浆的目的是为了尽快填充环形间隙使管片尽早支撑地层,防止地面变形过大而危及周围环境安全,同时作为管片外防水和结构加强层。 1.1.1.注浆材料 采用水泥砂浆作为同步注浆材料,该浆材具有结石率高、结石体强度高、耐久性好和能防止地下水浸析的特点。水泥采用普通硅酸盐水泥,以提高注浆结石体的耐腐蚀性,使管片处在耐腐蚀注浆结石体的包裹内,减弱地下水对管片混凝土的腐蚀。 根据盾构施工经验,同步注浆拟采用下表所示的配比。在施工中,根据地层条件、地下水情况及周边条件等,通过现场试验优化确定。 同步注浆浆液的主要物理力学性能应满足下列指标,见表7-6:表7-6 同步注浆材料配比和性能指标表 ⑴胶凝时间:一般为3~10h,根据地层条件和掘进速度,通过现场试验加入促凝剂及变更配比来调整胶凝时间。对于强透水地层和需要注浆提供较高的早期强度的地段,可通过现场试验进一步调整配比和加入早强剂,进一步缩短胶凝时间; ⑵固结体强度:一天不小于0.2MPa,28天不小于2.5MPa; ⑶浆液结石率:>95%,即固结收缩率<5%; ⑷浆液稠度:8~12cm; ⑸浆液稳定性:倾析率(静置沉淀后上浮水体积与总体积之比)小于5%。 1.1. 2.同步注浆主要技术参数 1.1. 2.1.注浆压力 注浆压力略大于该地层位置的静止水土压力,同时避免浆液进入盾构机的土仓中。 最初的注浆压力是根据理论的静止水土压力确定的,在实际掘进

中将不断优化。如果注浆压力过大,会导致地面隆起和管片变形,还易漏浆。如果注浆压力过小,则浆液填充速度赶不上空隙形成速度,又会引起地面沉陷。一般而言,注浆压力取1.1~1.2倍的静止水土压力,最大不超过3.0~4.0bar。 由于从盾尾圆周上的四个点同时注浆,考虑到水土压力的差别和防止管片大幅度下沉和浮起的需要,各点的注浆压力将不同,并保持合适的压差,以达到最佳效果。在最初的压力设定时,下部每孔的压力比上部每孔的压力略大0.5~1.0bar。 1.1. 2.2.注浆量 盾构掘进注浆采用盾尾同步注浆,随着盾构推进,脱出盾尾的管片与土体间出现“建筑空隙”,该空隙用浆液通过设在盾尾的压浆管予以充填。由于压入衬砌背面的浆液会发生失水收缩固结、部分浆液会劈裂到周围地层中,还有曲线推进、纠偏或盾构机抬头等原因,使得实际注浆量要超过理论建筑空隙体积。 每推进一环的建筑空隙为:π(6.482—6.22)×1/4×1.2=3.35m3 开挖直径:Φ6.48m;管片外径:Φ6.2m 考虑到地层扩散系数,每环的压浆量一般为建筑空隙的150%~200%,即每推进一环同步注浆量为 5.019 m3~6.692 m3,按地层的不同注浆量也要因地制宜,应以注浆压力与数量进行双控来评价注浆最终量。 1.1. 2. 3.注浆时间和速度 在不同的地层中根据需不同凝结时间的浆液及掘进速度来具体控制注浆时间的长短。做到“掘进、注浆同步,不注浆、不掘进”,通过控制同步注浆压力和注浆量双重标准来确定注浆时间。 注浆量和注浆压力均达到设定值后才停止注浆,否则仍需补浆。 同步注浆速度与掘进速度匹配,按盾构完成一环掘进的时间内即完成当环注浆量来确定其平均注浆速度。 1.1. 2.4.注浆结束标准及浆效果检查 采用注浆压力和注浆量双指标控制标准,即当注浆压力达到设定值,注浆量达到设计值的85%以上时,即可认为达到了质量要求。

盾构机同步注浆系统改造研究

盾构机同步注浆系统改造研究 张勇 (中铁十七局集团上海轨道交通工程有限公司)摘要:以苏州轨道交通2号线盾构施工同步注浆采用“准厚浆”为依托,为安全穿越标段大量房屋建筑群,着力对同步注浆系统进行了升级改造,采用德国施维英注浆泵替换原有的注浆泵,取消原有的清洗管路,增加一路注浆备用管路。通过对注浆系统的改造升级,确保了“厚浆”注入的时效性。 关键词:苏州地铁;盾构隧道;清洗管路;施维英注浆泵准厚浆; 1 引言 苏州地区为太湖冲积平原区,属典型的软土地质,其最大的特点是砂质富水。特殊的水文地质条件对盾构施工时的地面沉降控制和后期运营期间隧道沉降控制都带来了极大的挑战。如具有类似地质条件的上海一号线自1995年4月正式建成投入运营以来最大累计沉降量超过20cm,年度最大差异沉降量可达3cm。采用新型改良性浆液(准厚浆)作为同步注浆浆液的优点比较显著,该浆液的各项性能指标比较均衡,尤其是在富水砂质地层中应用时的优势更加明显,有取代传统双液浆、惰性浆或其他薄浆的趋势。 新研制的“准厚浆”具有良好的长期稳定性、良好的填充性能、固结体积收缩小等优点,同时该浆液粘稠度较高、流动性相对较差、注浆设备条件要求高等特点,为了满足新型改良型浆液的拌制要求,确保盾构掘进过程提供充足优质的同步注浆浆液,施工单位采用了德国进口的施维英注浆泵进行注浆,规避了注浆时存在的易堵管、排查难度大、清洗时间长等众多难题。 2 同步注浆系统的优化改造 (1)、注浆泵 原日本小松TM634PMX盾构机同步注浆泵为PA30C泵,根据苏州2号线盾构的施工要求,原来的PA30C无法满足施工要求。施工单位在新购置盾构机上将同步注浆泵更改为德国施维英泵。该泵同PA30C泵的性能对比表及优缺点对比见表1、2。 表1 日本PA-30C与德国施维英注浆泵的技术性能对照表

相关主题
文本预览
相关文档 最新文档