当前位置:文档之家› 2010年A题储油罐的变位识别与罐容表标定解析

2010年A题储油罐的变位识别与罐容表标定解析

2010年A题储油罐的变位识别与罐容表标定解析
2010年A题储油罐的变位识别与罐容表标定解析

论文2

小组成员

储油罐的变位识别与罐容表标定

摘要:

关键词:整体拟合重积分

1.问题的重述。

1.1问题的重述。

通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。

许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。

现利用数学建立相应的模型研究解决储油罐的变为识别与罐容表标定的问题。

1.2待解决的问题。

(1)为了掌握罐体变位后对罐容表的影响,利用小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,得到实验数据。接着建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。

(2)对于实际储油罐,建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用实际检测数据来分析检验你们模型的正确性与方法的可靠性。

1.3问题的分析。

针对问题1:对于储油罐有无纵向变位情况,运用微分知识,分别建立罐体无变位油量体积V与油位高度的关系式和罐体变位油量体积与油位高度的关系式,用MATLAB软件积分求解得出其表达式,结合附件一所给的数据,绘制含有油量体积的理论值、实际值、修正值(理论值与实际值的差值)的表格。最后,根据罐容表正常的对应值和变位后的修正值,在MATLAB中建立直角坐标系,绘制储油量与油位高度的关系曲线图,分析比较在纵向倾斜α时,对罐容表的影响。

针对问题2:问题2中的模型主要沿用了问题一中的模型的思想,我们同样考虑罐体有无变位的情况进行分析。在问题一中模型的基础上进行参变数的讨论,将横行参变系数与纵向参变数考虑进去,得出了含有参变系数的表达式。从附件2

随机抽取一组数据代入该式中,得出不同的α、β值。在对这些值进行处理取其平均值,得到α、β值。然后将其代入含有参变系数的表达式中即可得出此种情况下的模型。再将油的高度按10cm的间隔进行标定即可。

2.模型的假设。

(1)题目所给的数据具有真实性,合理性。

(2)储油罐罐体的变位不考虑自身变形等因素,仅由地基变形引起的。

(3)温度和压强等因素不对油量的变化产生影响。

(4)出油管等其它在罐体内的管的体积忽略不计。

(5)同一罐体在罐体变位前、后油量的体积不变。

3.符号说明。

a:小椭圆型油罐截面的长半轴。(单位:m)

b:小椭圆型油罐截面的长半轴。(单位:m)

m:小椭圆型油罐的长度。(单位:m)

h:油面高度。(单位:m)

V:罐内油的体积。

0V :罐内油量的初始值。

S : 罐内油的截面面积。

4.模型的建立与求解。 4.1模型一的建立:

4.1.1在问题一中,我们对罐体无变位情况进行了分析:

小椭圆油罐截面的方程为: 122

22=+b

y y x

得: 22

y b b

a x -=

分情况讨论,由于油面可能出现两种情况:

(1)当H b >时,只算第一象限的阴影部分面积,然后根据对称性可

得体积

则阴影部分面积为(其中h H b =-):

4b

h ab

S π=-?

令cos y b θ=,可得

4b

h ab

S π=-?

arccos(/)

sin (sin )4

h b ab

a b d πθθθ=

--?

arccos(/)

20

sin 4

h b ab

ab d πθθ=

-?

arccos(/)

01cos 242

11(arccos(/)sin(2arccos(/)))4241(arccos(/)42h b ab

ab d ab ab h b h b ab

ab h b πθ

θ

ππ-=

-=--=-?

此时液体体积为: (2)2

ab V S m π=+

(2)当H b ≤时,只算第一象限的阴影部分面积,然后根据对称性可得体积

图中两个阴影部分面积相等,因此需算上面那部分的面积即可得知下面那部分的面积。

此时令h b H =-, 此部分面积为:

dy b

y a S b

h ?-=22

1

1(arccos(/)2ab h b =

此时液体体积为:Sm V 2=

22

1)arccos(b

h b h m m h ab --=

根据附件一的罐体内的油位高度数据求解椭圆油罐所装的体积 见(附件一)

将所得的数据与题目中的实际数据对比,获得修正值(油差值)见(附件一) MATLA 运行的程序见(附件二)

4.1.2模型二的建立。建立坐标系以油标线为x 轴,以油桶的底边为y 轴, 对问题一中的纵向变位情况,我们分为五种情况进行讨论:即油面在(0,1h )(21,h h )(32,h h )(43,h h )(54,h h )五个阶段(如图2)。

其中当油位高度范围在10~h h 这种情况如图所示:

说明:

油位高度在(0,1h )时,此时的油位探针显示的示数为0,即液面还未到油罐的最底部,可罐体内却是含有油量。在此情况下h=0时可得1v 为油罐油量的最大值: 即实际储油量: ≤≤实v 01v

v 2

21)arccos(b h b h m m h ab --=4

.0-x

第二种情况如上图所示:油面的高度为21~h h ,当高度为1h 最小油量为2v ,当高度为2h 最小油量为3v :

由前文可知

22

1)(arccos(2b

h b h b h ab ab

s ---=π

sh v = =v [22

1)(arccos(2b

h b h b h ab ab

---π]

χ0

当高度为32~h h 如图所示

油面的高度为32~h h ,当高度为2h 最小油量为3v ,当高度为3h 最小油量为4v : 43v v v ≤≤实

sh v =实 =[

22

1)(arccos(2b

h b h b h ab ab

---π]

5.24

.0-

油面的高度为43~h h ,当高度为3h 最小油量为4v ,当高度为4h 最小油量为5v :

油面的高度为43~h h ,当高度为3h 最小油量为4v ,当高度为4h 最小油量为5v : 54v v v ≤≤实 sh v =实

=[

22

1)(arccos(2b

h b h b h ab ab

---π]2

1

x

x

由图可知05.21=x

根据相关三角形知识易得05.2tan tan 45

.22.12+-

=

α

αx

实v =sh

=[22

1)(arccos(2b

h b h b h ab ab

---π]

45.2tan tan 45

.2-

2.105

.2+α

α

油面的高度为54~h h 如图所示

:

说明:

在这种情况下。此时虽然总体积未满,但是由于油位探针已到达顶部,即显示满位,但任然可以加往里加油:

当高度为4h 最小油量为5v ,当高度为5h 最小油量为6v :当高度为4h 最小油量为5v ,当高度为5h 最小油量为6v ,由于该图像计算量比较麻烦,所以可以利用总的体积减去空白部分的面积,即空白总实v v v -= 根据圆锥曲线的相关知识可知

ab π=总v

空白总实v v v -=

=-

ab π[

22

1)(arccos(2b

h b h b h ab ab

---π]

45.2tan tan 45

.2-

2.105

.2+α

α

根据附件一的变位罐体内的油位高度数据求解椭圆油罐所装的体积 见(附件三)

将所得的数据与题目中的实际数据对比,获得变位后的修正值(油差值)见(附件三) 4.2储油罐罐体变位后油位高度与罐内表标定模型。

4.2.1该部分分为有变位和无变位时两种情况考虑,建立罐容表内的油的体积与显示油高之间的关系模型三。正面图如图所示:

L

由于无变位时计算比较较简单,先考虑无变位时: 分析该罐油量有两部分组成:

一部分是圆柱罐体,我们先计算一般,根据对称性可以计算出原著的体积,圆柱部分比较简单,利用公式L R v 2π=圆柱,利用积分知识即可求得 圆柱部分:LdH S V H ?=?

圆柱部分 ()dH H

R R L H

220

--=?

圆柱部分圆柱V V 2=

另一部分为油罐两端的冠球体,在这种情况下侧面图如图所示:

为底圆半径R

为缺球半径0R

为小圆半径圆r ()2

0R H R r --=

利用积分的相关知识及球的性质,可以推导出缺球的相关计算公式如下:

)(2S

H R H V -

=π缺球 缺球的体积随着液面的H 而改变,可以对H 进行积分求解 SdH V H O

?

=缺球

()()dH H R H R r r R r H ----???

? ??=?020202

0arccos 圆圆圆+()dH H R R L

H 220

2--?

油罐的油位高度与油标的的高及变位参数(纵向倾斜角度α和横向偏转角度β )存在一定的函数关系

建立数学模型确定变位参数之间的具体关系,分析可知分纵向倾斜和横行两方面考虑:当横向偏转角度β,原图形的侧面图如图所示

分析如图:有三角关系可知

油标H ()H R R --=βcos

由第一问可知该图的横截面积

=S 2

21arccos 2b h b h

b h ab ab

--???? ?

???? ??-π

S H V ?=

[()]?--=H R R βcos [

]221arccos 2b h b h b h ab ab

--???? ?

???? ??-π

还有许多数据正在处理中,只列出图形

储罐安全操作规程

储罐安全操作规程 一、储罐入液操作程序 1、准备工作 ①检查入液储罐的液位、压力和温度并填写巡回检查记录。 ②确定使用液化石油气泵或液化石油气压缩机运行入液。 2、用液化石油气泵入液操作程序 ①开通入液储罐气相出口至液化石油气汽车罐车气相管路的阀门。 ②开通液化石油气汽车罐车液相出口至液化石油气泵进口管路的阀门。开通液化石油气泵出口至入液储罐液相进口管路的阀门。 ③通知运行工启动液化石油气泵。 ④待罐车的液位指示接近零位时,入液结束,通知运行工停泵。 ⑤关闭本作业上述的气、液相阀门。 ⑥按规定填好操作记录表。 3、用液化石油气压缩机入液操作程序 ①开通入液储罐气相出口至液化石油气压缩机进口管路的阀门,开通液化石油气压缩机出口至液化石油气汽车罐车气相管路的阀门。 ②开通入液储罐液相进口至液化石油气汽车罐车液相管路的阀门。 ③通知运行工启动压缩机,使罐车内的液化石油气输入入液储罐。

④待罐车的液位指示接近零位时,入液结束,通知运行工停机。 ⑤关闭本作业上述的气、液相阀门。 ⑥按规定填好操作记录表。 4、注意事项 ①充液严禁超装,液位计无变化显示时,停止充液作业,排除故障。 ②充装压力应≤1.5MPa。液温应≤50℃,当液温达40℃时,应喷淋冷却水降温。 ③不许同时对两个贮罐进行充液。 二、储罐出液操作程序 1、准备工作 ①检查储罐的液位、压力和温度并填写巡回检查记录。 ②确定使用液化石油气泵或液化石油气压缩机运行供液。 2、用液化石油气泵出液操作程序 ⑴出液储罐供液至充装气瓶 ①开通出液储罐至另一储罐的气相管路阀门。 ②开通出液储罐液相出口至液化石油气泵进口管路阀门。开通液化石油气泵出口至灌瓶总管的阀门。 ③通知运行工按规程启动液化石油气泵。 ④充装气瓶结束,通知运行工停泵。

(整理)储油罐的变位识别与罐容表标定模型.

储油罐的变位识别与罐容表标定模型 摘要 本文研究的是储油罐变位识别与罐容表标定的数学关系模型。 对于问题一, 罐体没有纵向变位时, 在储油罐本身几何分析的基础上,建立无变位的油量体积V 与标定表读数h 的关系模型。计算出理论值,通过误差分析和线性拟合,求出系统误差和随机误差,修正了罐容表。 在罐体有纵向变位时,将储油罐的纵向变位划分为三种不同情况,利用积分思想求解不同变位情况下的油量的理论体积。根据纵向倾斜参数?=1.4α建立有纵向变位的油量体积V 与标定表读数h 的关系模型。利用MATLAB 软件和excel 工具的解出油量体积V 的理论值。然后,充分考虑模型中系统误差和偶然误差的影响,重新标定了罐容表,给出间隔为1cm 的罐容表标定表,解决了加油站罐容表无法准确反映储油量的问题。 对问题二罐体,我们建立了纵向α和横向β同时发生时,标定表读数h 与油量V 的数学模型。我们不仅考虑了纵向变位的三种情况、横向变位的两种情况,而且考虑了纵向和横向变位同时发生的情况。利用积分思想建立模型,运用MATLAB 软件对模型的不同情况进行了详细、精确的计算。然后充分结合误差分析,以平方误差最小原则对α、β采取搜索算法,得出实际变化值2.0524, 4.0 αβ==,并给出罐容表间隔为10cm 的标定表。最后结合题目所给数据对所求数据进行检验。通过模型分析,结合系统误差与读数h 的函数关系。在多次误差分析的基础上再对模型进行了检验,得到了理想结果。 本文通过以上各模型的深入分析和研究,解决了储油罐变位时储油量与罐容表刻度不一致的问题,具有广泛的运用价值。在运用方法上,我们采用了系统误差和观察误差双重误差分析,线性回归、拟合相结合的误差分析法以及搜索法等方法的运用,提高了罐容表标定的精确度,大大增添了本文的的科学性和结构的严谨性。 关键词:线性回归、拟合、MATLAB 、误差分析、搜索法 一、 问题的重述

油罐标定

给你看下我们公司的标定做为参考: 1 先决条件: 1.1 软水供应系统处于工作状态。 1.2 通讯联络系统畅通无阻。 1.3 要求标定的设备已由安装部门交付验收。 1.4 要求标定设备的仪表已由仪表部门交付验收并处于工作状态。 1.5 中央控制室US、CUS工作站已交付使用。 1.6 操作人员熟悉所使用的流量计、流量计的安装及使用方法。 2 容器标定的一般步骤: 容器标定是对容器的容积和液位显示进行实际测量,找到液位与容积的对应关系,从而可以知道某液位下的物料量或物料液面的实际高度。对于比较重要的反应器等要求绘制标定曲线,而对一般的贮罐则只标之至其高液位报警点和低液位报警点即可。标定的一般步骤如下: 2.1 标定前的准备: 根据需要预制好标定使用的短管接头、流量计(已调校好的)、软管等,并将它们连接好。准备好所需的工器具,如对讲机、记录表等。 2.2 确定零点 对于差压式液位变送器,其仪表零点为仪表安装口位置处,而对于浮筒式液位计,其仪表零点则为浮筒的最低点。 在容器系统隔离的情况下(容器的底部要密闭,防止漏水,影响标定数据的准确),可以通过流量计计量向容器内加软水,注意容器的顶部必须敞口或留有放空口,防止标定过程憋压或形成真空,加水时应分几次进行,操作人员要根据容器的体积及零点体积确定每次的加水量。加水量接近零点时,每次加水量应尽量少,才能准确地找到零点。 在加水之前,仪表人员应事先将液位计调零处理。加水后当液位计指示开始有变化时,说明实际液位已达液位计零点。 2.3 找出容器体积与液位计指示值的关系。 标定出液位计的零点后,可继续向容器内加水,记录私交加水的量和总的加水量同液位计指示值(包括控制室指示值,现场仪表指示值)。加水量可根据具体容器的体积来确定。一般来说,每次加入量应保持一致。注意在每次加水完毕后,静置3~5分钟后,才能读取记录液位计指示数据。 2.4 动标定和静标之定 对带有搅拌器的容器来说,动标定就是在搅拌器运转的情况下进行容器标定,目的是获得更加符合实际生产状况的标定曲线。静标定则是在搅拌器没有运转的情况下进行的容器标定。 一般情况下,动标定和静标定同时进行。每次加完水后,静置3~5分钟后,先读取静标定的数据,然后再启动搅拌器运行,读取动标定的数据,再停搅拌器进行下一次的加水标定。 对于带搅拌器的容器,若设有低液位报警联锁开关,动标定只能在低液位报警消失后,才能进行。注意记录低液位报警消失时的液位计指示值。低报值不符合设定要求时,应重新调整。 对于高液位报警的容器,还需标定高报警值是否符合工艺设定要求。 2.5 确定满点

储罐、计量槽安全操作规程标准范本

操作规程编号:LX-FS-A67671 储罐、计量槽安全操作规程标准范 本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

储罐、计量槽安全操作规程标准范 本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 一、操作人员必须熟悉所用储罐(计量槽)的结构及储存物料的化学性质及防护急救常识。 二、进料之前必须做如下检查: 1、阀门是否完好,开或闭是否正确; 2、液位计及防护套是否完好或液位显示是否正确、灵敏可靠;防止液位计不准造成的假液位指示; 3、打料泵的电器开关是否完好,灵敏可靠; 4、如果采用压缩气体进行压料则检查压力表是否灵敏可靠。 三、每次进料之前必须与有关部门和人员取得联

储罐控制系统

毕业论文 题目:基于组态王6.5 的串级PID 液位控制系统设计学院:东北石油大学秦皇岛分校 专业:生产过程自动化 姓名:李秋峰 指导教师:刘文龙 摘要 开发经济实用的教学实验装置、开拓理论联系实际的实验内容,对提高课程教学实验水平,具有重要的实际意义。就高校学生的实验课程来讲,由于双容水箱液位控制系统本身具有的复杂性和对实时性的高要求,使得在该系统上实现基于不同控制策略的实验内容,需要全面掌握自动控制理论及相关知识。 本文通过对当前国内外液位控制系统现状的研究,选取了PID 控制、串级PID 控制等策略对实验系统进行实时控制,通过对实验系统结构的研究,建立了单容水箱和双容水箱实验系统的数学模型,并对系统的参数进行了辨识,利用工业控制软件组态王6.5,并可通用于ADAM 模块及板卡等的实现方案,通过多种控制模块在该实验装置上实验实现,验证了实验系统具有良好的扩展性和开放性。 关键词:双容水箱液位控制系统串级PID控制算法组态王6.5 智能调节仪 目录 前言 (1) 第一章串级液位控制系统介绍 (2) 1.1 国内外研究现状. (2) 1.1.1 液位控制系统的发展现状 (2) 1.1.2 液位控制系统算法的研究现状 (2) 1.2 PID 控制算法的介绍 (3) 1.2.1 PID 控制算法的历史 (3) 1.2.2 PID 控制各环节作用 (4) 1.3 串级控制系统介绍 (4) 第二章水箱液位控制系统的建模 (5) 2.1 水箱液位控制系统的构成 (6) 2.2 液位控制的实现 (5) 2.3 单容水箱建模............................................................................. (5) 2.4 双容水箱建模 (6) 2.4.1 双容水箱数学模型 (6)

储油罐的标定

储油罐的变位识别与罐容表设定 摘要 储油罐在日常安置过程中,会存在两种变位,即纵向倾斜和横向偏转,这两种情况都会给原罐容表标定油高与罐内油体积的关系造成一定的误差。本文即是在这种情况给出了关于储油罐的变位分析的数学模型,及在该数学模型下的罐容表的标定值。 针对问题一,对小椭圆储油罐无变位和纵向倾斜,分别建立了罐内油高与其内油体积的关系模型,求解这两种模型,分析出模型所得数据与题目所给实际数据之间关系,计算出进油情况分析横向相对误差和出油情况分析纵向相对误差,在模型假设的条件下,得出该误差均在可接受范围内,说明了模型的合理性。由小椭圆型储油罐纵向倾斜时的模型,根据油量与油高的关系式,在油高区间[] 0.06,1.18内,给出了罐容表标定值。 针对问题二,首先可以得到罐内燃油实际高度与探针所测高度之间的关系,进而建立燃油体积与变位参数α、β以及实际高度h的模型。最后运用枚举法得出变位参数的多组数据,求其平均值分别为3.2, 0.8. 并给出了罐体变位后油位高度间隔为10cm的罐容表标定值。 关键词:卧式储油罐;倾斜安装;储油量;枚举法;变位参数

一、 问题重述 通常加油站都有若干个存储燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油高等数据,通过预先标定的罐容表进行实时计算,以得到罐内油位高度和储油量的变化量。许多储油罐在使用一定时间后,由于地基变形的原因,是罐体的位置发生变位,从而导致罐容表发生变化,需要对罐容表进行重新标定。 问题一、利用附件中图4的小椭圆型储油罐,分别对罐体无变位和倾斜角为 4.1α? =的纵向变位两种情况做了实验,实验数据见附件1所示。建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容标定值。 问题二、对于附件中图1所示的实际储油罐,建立罐体变位后标定罐容表的数学模型,及罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。利用罐体变位后在进/出油过程中的实际测量数据(见附件2),根据所建立的模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性 二、 问题假设 1.温度对储油罐容积的影响不予考虑; 2.不考虑储油罐的厚度对其容积的影响; 3. 忽略球冠体与圆柱体之间的焊接影响; 4. 储油罐是由同种材料构成的规则的多边体。 三、 符号表示 a 椭圆的长半轴长 b 椭圆的短半轴长 h 储油罐罐内油位高度 L 卧式储油罐的柱体长度 l 油位探针与罐体的相交点与球罐体与柱体的相交点之间的距离 V 储油罐体的储油量 R 球罐体与柱体相交的圆面的半径 α 储油罐体的纵向倾斜角度 β 储油罐体的横向偏转角度 四、 问题分析 问题一、要求研究罐体变位后对罐容表的影响,及给出罐体变位后油位高度间隔为1cm 的罐容表标定值。题中给出的储油量的单位是体积单位,所以求解储油量即转化为求解油的体积与油高的关系式, 题目中同一时间只有进油或者出油,方便了模型的建立。然后利用微积分计算体积,得到不同油位高度与变位前后的储油量之间的关系。最后结合题目所给的不同时间储油量、油位高度的数值,对模型进行误差分析。 问题二、储油罐存在纵向倾斜角度α和β和横向偏转角度β,用切割法把储油罐

储油罐安全操作规程标准范本

操作规程编号:LX-FS-A49174 储油罐安全操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

储油罐安全操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 1 严禁在储油罐及输油管线附近抽烟、电焊、切割或动用明火; 2 罐体、阀门、管道连接处不得有泄露现象,油罐地坑内如有积油、积水,应及时排净; 3 应保持接地线完好无损,消防器材完备; 4 油罐加油时做好跑、冒、滴、漏的处理工作,加完油后,立即盖好,严禁无故打开; 5 油泵在工作时,巡检人员注意加强巡检; 6 正常生产期间,定期检查区域内安全状况; 7 油泵房应上锁且钥匙必须由专人保管; 8 油泵开停严格按有关安全操作规程进行;

数模 全国一等奖 A题 储油罐的变位识别与罐容表标定

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是:A题储油罐的变位识别与罐容表标定 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:2010年9月12日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

储油罐的变位识别与罐容表的标定 摘要 本文研究储油罐的变位识别与罐容表的标定。分别以小椭圆型油罐和实际卧式储油罐为研究对象,运用高等数学的积分的知识,分别建立罐体变位前后罐内油体积与油高读数之间的积分模型,使用Matlab 软件得出结论。 对于问题一,以小椭圆型储油罐为研究对象,在无变位时,小椭圆型储油罐为规则的椭球柱体,可利用解析几何与高等数学的知识建立油罐内体积与油高读数之间的积分模型,得出罐体无变位时的理论值。当罐体发生纵向变位时,小椭圆型储油罐的截面不再是规则的几何形体,但根据倾角α及所给小椭圆型罐体的尺寸,可得其截面面积的表达式,利用高等数学中积分的方法,根据不同油高,建立了模型一,得到了储油量和油高的关系公式。最后,根据实验数据的处理,用拟合的方法,修正了某些系统误差的影响,计算出罐体变位后油位高度间隔1cm 的罐容表的标定值。 对于问题二,由于实际储油罐内没油的高度不同,我们将其分为五种情况分别讨论,并对每种情况建立积分公式,得出罐内油体积与油位高度及变位参数(纵向倾斜角α和横向偏转角β)之间的函数关系式,利用所给的实验数据,运用最小二乘法,建立非线性规划模型 2 1 2 arg ,(((,,)(,,)))min (,,)n i i i i V H V H OilData error OilData αβ αβαβαβ-==--∑用Matlab 非线性规划求解得出使得总体误差最小的α与β值:α=2.12°,β=4.06°。通过α与β的数值计算出出油量理论值与实测值的平均相对误差小于0.5% 。 对模型进行了较为充分的正确性验证和稳定性验证:在α与β的值为0时,其计算出来的罐容值与理论值完全吻合,说明模型在体积计算上是正确的;当对油高进行0.1%的扰动时,α的值变化也在0.1%左右,说明α的稳定性很好,但是β的值从4.06°变成了3.75°,变化了大约8%,所以我们详细分析了β的数学表达式,从理论上分析了影响其稳定性的因素。根据得到的变位参数计算出实际罐体变位后油位高度间隔为10cm 的罐容表的标定值。 最后,本文对模型的优缺点进行了评价,并讨论模型的推广。 关键字:储油罐;变位识别;罐容表标定;非线性规划

油罐放水操作安全规程

编号:SM-ZD-51754 油罐放水操作安全规程Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

油罐放水操作安全规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一、作业准备 1.计量员在日常计量、盘点计量中都要对储罐的水高进行实测,如发现水高超过安全高度时,要单独报告油库经理。 2.油库经理根据计量员提供的油罐水高数据,及时安排计量人员放水作业,填写作业通知单,进行放水作业。 3.油库经理安排机修工、安全人员携消防器材到排水现场执勤监护,配合完成放水作业; 4.油罐放水前停止对该罐进出油作业。 二、放水作业 1.计量员、操作工和安全员按要求对放水作业现场巡视检查、监督。对作业过程中发现的问题及时处理; 2.机修工应按作业通知单的要求,到现场清理检查拆除排污阀的盲板。盲板拆除时严禁使用非防爆工具,并应逐渐松去螺栓,观察情况,防止闸阀失灵而出现的跑油事故;

储罐油量计算方法

储罐油量计算方法 1 油品算量操作 1.1 术语和定义(国标GB/T 19779-2005) 1.1.1 游离水(FW ) 在油品中独立分层并主要存在于油品下面的水。FW V 表示游离水的扣除量,其中包括底部沉淀物。 1.1.2 沉淀物和水(SW ) 油品中的悬浮沉淀物、溶解水和悬浮水总称为沉淀物和水。其质量分数或体积分数、体积和质量分别用SW %、SW V 和SW m 表示。 1.1.3 沉淀物和水的修正系数(CSW ) 为扣除油品中的沉淀物和水(SW )将毛标准体积修正到净标准体积或将毛质量修正到净质量的修正系数。 1.1.4 体积修正系数(VCF ) 将油品从计量温度下的体积修正到标准体积的修正系数。用标准温度下的体积与其在非标准温度下的体积之比表示。等同于液体温度修正系数(CTL ) 1.1.5 罐壁温度修正系数(CTSh ) 将油罐从标准温度下的标定容积(即油罐容积表示值)修正到使用温度下实际容积的修正系数。 1.1.6 总计量体积(to V ) 在计量温度下,所有油品、沉淀物和水以及游离水的总测量体积。 1.1.7 毛计量体积(go V ) 在计量温度下,已扣除游离水的所有油品以及沉淀物和水的总测量体积。 1.1.8 毛标准体积(gs V ) 在标准温度下,已扣除游离水的所有油品及沉淀物和水的总体积。通过计量温度和标准密度所对应的体积修正系数修正毛计量体积可得到毛标准体积。 1.1.9 净标准体积(ns V ) 在标准温度下,已扣除游离水及沉淀物和水的所有油品的总体积。从毛标准体积中扣除沉淀物和水可得到净标准体积。 1.1.10 表观质量(m ) 有别于未进行空气浮力影响修正的真空中的质量,表观质量是油品在空气中称重所获得的数值,也习惯称为商业质量或重量。通过空气浮力影响的修正也可以由油品体积计算出油品在空气中的表观质量。 1.1.11 表观质量换算系数(WCF ) 将油品从标准体积换算为空气中的表观质量的系数。该系数等于标准密度减去空气浮力

储罐安全操作规程

储罐安全操作规程 储罐安全操作要求 操作人员必须熟悉所用储罐的结构及储存物料的化学性质及防护急救常识。 进料之前必须做如下检查: 1、阀门就是否完好,开或闭就是否正确; 2、液位计及防护套就是否完好或液位显示就是否正确、灵敏可靠;防止液位计不准造成的假液位指示; 3、打料泵的电器开关就是否完好,灵敏可靠; 4、如果采用压缩气体进行压料则检查压力表就是否灵敏可靠。 5、每次进料之前必须与有关部门与人员取得联系,并应配合操作。 6、当进行有腐蚀物料、有毒物料的打压操作时应佩戴必要的防护用品,尤其要保护眼睛,且防止物料进入口腔、触及皮肤,并应站在安全地方观察液位,***大装载负荷不得超过其容积的85%。 7、储罐中所储存的物料为易燃易爆时,开关阀门所用扳手应为铜或合金材质制品,不准用铁器敲打。 8、采用压料,压料时应严格控制其压力不得超过规定压力,压料完毕应谨慎地开启放空阀。 9、储罐及其安全附件必须定期进行检修,校验。压力表每半年至少校验一次,安全阀每年至少校验一次。 10、储罐检修前必须将其内物料清理干净,同时严格遵守《安全检修制度》中有关规定并办理“进入容器作业证”方可检修。 储罐安全操作规程 第一章总则 本公司原料油罐区及溶剂油罐区的所有油罐都就是设计温度小于90的常压地上立式圆筒形金属储罐,相关管理与操作必须按照本规程进行。 第二章具体操作 储罐的主要操作及一般使用规定包括:油罐首次投用、收发料、清洗罐、倒罐、扫线收料。 1、1新建或进行大修理的油罐,需经沉水试压,验收合格,完成工程验收移交手续; 1、2 油罐验收要求所有附件齐全好用,符合设计及规范要求,现场技术状态完好;

储罐自动计量系统

储罐自动计量系统 随着我国2000年加入WTO,石油销售、储云行业面临计算机管理信息化改造,对所有储油罐的自动化计量与管理信息化改造,对所有储油罐的自动化计量与管理工作已提上议事日程。目前对每个储油罐内油品的物理参数都采用人工检尺、人工取样进行计量、计算,这种落后的计量方式会被以计算机为中心的自动计量系统所替代,迎来了自动化的时代。 油罐自动计量系统简介:石化行业对储存各种油品的储罐内所储存油品数量的检测一直采用人工投尺、人工采样、人工计算的计量方法。自20世纪70年代,随着计算机技术的迅猛发展,国内外开始出现了一些自动计量的技术及方法,部分或全部替代了人工计量,减少了劳动力的支出。而且从计算机上便可得到罐内所储存油品的所有物理参数。这就是油罐自动计量系统。油罐内储存的油品的物理参数有:液位(油高)、密度(标准密度或观察密度)、油品平均温度、油罐内油水界面(即水高)、每个罐内储存的油品的体积和质量(商业质量—考虑空气浮力后的物理质量)。对于实行不同贸易交接方法的国家,真正需要知道的只应是一种结果。例如实行体积交接的国家最终应知道罐内储存油品在标准温度下的体积,而实行质量交接的国家则最终只需要知道罐内储存油品的商业质量。

油罐自动计量系统可归纳为3大类自动测量方法,即自动液位计法(ATG)、静压法(HTG)和混合法(HTMS)。这3种方法是依据出现先后及技术的成熟程度依次排列的。事实上,这3种油罐自动计量方法所采用的敏感元件不外乎为钢带浮子式液位计、伺服式液位计、磁致伸缩式液位计、雷达式液位计、超声波式液位计、光导式液位计等等,都是用来测量液位、油水界面或密度的。另外就是各种压力传感器,如表压式、差压式、电容式、硅半导体式,及单点测温元件、多点温度传感器或智能型多点平均温度变送器。以上各种敏感元件可以组成用于油罐自动计量的各种ATG、HTG、HTMS自动计量系统。这3类不同原理的计量系统又可分为模拟式系统、全数字化式系统。目前最先进的计量系统为现场总线式的自动计量系统。

加油站计量操作规程

加油站计量操作规程 一、储油罐液面高度测量(人工测量) 1、停止使用与油罐相连的加油机,抄写厅及时累计泵码数。 2、卸油后,待稳油15分钟后方可计量。 3、将量油尺尺带用棉纱擦净。 4、从固定测量点将量油尺徐徐放入油罐,尺铊接触油面时应缓慢,以免破坏静止的油面。 5、当量油尺铊接近管底时(约20cm)应放慢速度,不得冲击罐底。 6、手感尺铊触底,就迅速将尺垂直向上提起,避免倾斜摆动,施液面发生波动。 7、卷尺提起后,应迅速观察油面浸湿线高度,读出油面高度;先读小数,后读大数,读数时尺带不应平放或倒放,以防油面变化。 8、测量结果应精确到毫米,每次测量至少两次,两次相差不大于1mm,取小的读数,超过时应重测。 9、每次测量的最后结果应记入测量记录中。 二、油罐车液面高度测量(人工测量) 1、用于人工计量的停车场地,必须坚实平整,坡度不大于0.5度,(5/1000)。 2、油面平稳后再行计量。 3、具体计量程序,同第三十条三十九款。 三、罐底水高测量 1、水的高度不超过300mm时应使用检水尺3水的高度,超过300mm时应使用量油尺。 2、测量时,在量油尺或检水尺上涂抹一层薄的试水膏。 3、从固定测量点将量油尺垂直徐徐放入油罐,尺铊接触油面时应缓慢,以免破坏静止的油面。 4、尺铊或检水尺触底时,应静置3—5秒后提尺。 5、卷尺提起后,应迅速读取试水膏变色处的毫米读数3,读取食检水尺不应平放或侧置。 6、遇水、油界面不清晰、不平之,应重新按本条二至五款程序测量。 7、水高潮处50mm,应及时报告站长,分析原因并进行处理。 8、每次测量的最后结果应记入测量记录表中。 四、邮品温度测量 1、温度测量应在高度测量之后进行。 2、测量时间温度计装入保温盒。 3、将温度机制与棉二分之一出测量又问,浸没时间不少于5分钟。 4、提取温度计是要迅速,温度计离开油点到读数时的时间不应该超过10秒钟;读书时应是温度计垂直,不让盒内液体撒出,实现应该垂直于温度计,先读小数,后读大数。 5、使用分度值为0.5的温度计,应估读到0.1;使用分度值为1。C的温度计,应估读到0.2。 6、每次测量的最后结果应记入测量记录表中。 五、油品密度测量(密度计法)

油罐标定

储油罐的变位识别与罐容表标定模型 摘要 针对两种卧式储油罐变位后的标定问题,本文利用微分思想、数值逼近、拟合的原理,建立了卧式罐不变位和变位时的油量随油高模型。 针对小椭圆油罐,首先,根据几何特征写成体积的积分式。然后,将积分变量离散化,用MATLAB的编程计算实现了规定1cm的等间距油高时精确的罐内油量。给出了间隔1cm的变位后的标定表(见附录一)。 针对实际储油罐,首先在未发生变位时,同样利用积分知识通过组合形式写出积分表达式。然后将变量离散化求的很小的间隔内油量值,并用3次多项式逼近作为表达式,通过MATLAB画图发现拟合较好。当发生变位时,利用近似的体积等价法,将变位油高等价一个未变位高度。利用积分表达式计算,并通过相邻 的油位高度与实际体积之间的关系,求得α的平均值为0.033弧度,β平均值为0.035弧度,但考虑到具体情况不能简单的认为β就是0.035。并通过求出的α, β值,利用积分运算给出间隔为10cm的变位后标定表(见附录二)。 模型的建立数学原理可靠,求解方法精度较高,可以作为非严格要求精度下的实际应用模型。 关键词:卧式罐,灌容表标定,几何积分,matlab,离散拟合,多项式逼近

一、问题的引入、描述 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。将常见的主体为圆柱体,两端为球冠体的油罐为例,标定变位后的灌容表。 用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题:(1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 二、问题的分析 问题给出的两个油罐都是标准的几何体的组合,可以进行积分求解体积,并要充分利用椭圆,圆的性质。体积的表达式复杂,进行积分计算时既不能保证一定可积又耗时费力,所以应考虑数值计算的方法。 模型的建立以实际的利用为主要目的,所以忽略一定的范围是必须的,而且变位的情况有很多种,可以等价成水平的液高简化求解。 三、模型假设 1.假设地形的改变不引起油罐的形变。 2.油罐的形状规则。 3.油罐发生变位时,油位探针相对于油罐的位置不发生变化。 4.出于现实考虑,出油管进油管不能完全触及底部。出于安全考虑油罐也不能完全装满,标定值范围在可应用范围内即可。 5.国家有关标准规定:在装卸温差不超过30℃时,最大充装量为总容积的85%,所以下模型求解中液面变化在高位时,可省略一部分标定【1】。 四、模型建立与求解、结果

LNG储罐安全操作规程

一、LNG储罐安全操作规程 1.1.1储罐操作工艺指标 1)最高工作压力:0.78MPa 2)最低工作温度:-196℃ 1.1.2储罐进液操作程序 1.1. 2.1准备工作 1)操作人员的要求:操作人员应经过安全教育和操作技术培训合格后持证上岗,操作人员 在作业时应佩戴必要的劳保用品及工作服 2)试压要求 3)设备投用前都应按设计要求进行压力试验。 4)试压气体应为干燥氮气,其含氧量不大于3%,水分露点不大于-25℃,且不得有油污。 5)吹除置换要求:吹除置换是保证设备正式充装液体安全的保证措施,应先用含氧量不大 于3%的氮气吹除,同时保证无油污,水分露点不大于-25℃。然后再用LNG置换至液体纯度为至,方可允许充装液体。 6)预冷:试压合格后,需用液氮进行预冷,以确保设备的低温运行可靠性:储罐在首次使 用前必须用氮气进行吹扫及预冷。最大吹扫压力应相当于最大工作压力的50%,或者低于这个压力。 1.1. 2.2储罐首次进液操作 1)打开上、下进液阀同时充装,同时打开液体充满溢流口阀,排放储罐内的气体,直至有 LNG的气体排出时,立即关闭充满溢流口阀; 2)充装至储罐的50%以上容积时,应关闭下进液阀; 3)当充装到储罐容积的85%时,应关闭上进液阀,并停止充装5分钟,使筒内液面静, 然后打开上进液阀继续充装,直到有液体从充满溢流阀流出时,立即关闭充满溢流口阀,停止充装及关闭上进液阀; 4)在开始充液时,应拧松液位计两端的接头,完全打开液位显示液相阀和液位显示气相 阀,检查排放的气流中是否含有水份。如有水份,应继续排放,直到无水份时停止排放。 并将液位计两端的接头拧紧,并关闭平衡阀,使液位计处于正常工作状态。 1.1. 2.3储罐补充进液操作程序

计量作业安全操作指导书

计量作业安全操作指导书 1、目的 为规范加油站计量作业的安全管理,保障加油站员工健康与安全,保护环境,特制定本作业指导书。 2、范围 本作业指导书适用于公司所辖范围内加油站。 3、计量作业流程 加油站计量作业主要有:计量前准备工作、储油罐液面高度测量、储油罐底水面高度测量、油罐车液面高度测量、油罐车罐底水面高度测量、油品温度测量、油品视温度测量、油品视密度测量、清理作业现场、记录等十个步骤组成。 3.1计量前准备工作 3.1.1计量员按规定着装。 3.1.2计量员应持证上。 3.1.3上岗时不准携带易燃易爆品,不准携带通讯工具,不准使用化纤棉纱,不准使用非防爆灯具。 3.1.4计量员须准备好合格的计量器具。 3.1.5强风、雷雨天气禁止作业。 3.2储油罐液面高度测量(人工测量) 3.2.1计量时须确保油尺与量油口有合格的导线连接。 3.2.2储油罐应有有效的容积表。 3.2.3计量作业时,停止使用与油罐相连的加油机,抄写停机时泵码累计数。 3.2.4卸油后需稳油15分钟,方可计量; 3.2.5将量油尺对应的刻度范围用棉纱擦净; 3.2.6计量员站在储油罐的上风口,估算油罐液面高度,从导尺槽将量油尺垂直徐徐放入油罐。尺砣接触油面时的速度要缓慢,不准冲击罐底; 3.2.7手感尺铊触底,迅速将尺铊向上提起,避免倾斜摆动,使液面发生波动; 3.2.8卷尺提起后,迅速观察油面浸湿线高度,读油面高度时要先读小数,后读大数,读数时尺带不应平放或倒放,以防油面变化,连续检尺两次,当两次测量值相差不超过1mm时,以第一次检尺为准,否则要重新测量;读数要准确、迅速,

3.2.9根据对应储油罐容积表,查出相应的体积。 3.3储油罐底水面高度测量 3.3.1使用量油尺或检水尺测量。 3.3.2测量时,在量油尺或检水尺上涂抹一层薄的试水膏,并保持量油尺尺带拉紧垂直; 3.3.3站在油罐的上风口,从导尺槽将量油尺或检水尺垂直徐徐放入油罐,接触油面时要缓慢,以免破坏静止的油面; 3.3.4尺铊或检水尺触底时,静止3-5秒后提尺; 3.3.5量油尺或检水尺提起后,迅速读取试水膏变色处的毫米读数;读取时尺子不应平放或侧置; 3.3.6若量油尺或检水尺上水、油界面不清晰、不平直时,应重新测量; 3.3.7水高超出50mm,要及时报告站长,分析原因并进行处理; 3.3.8每次测量的最后结果记入测量记录表中。 3.4油罐车液面高度测量(人工测量) 3.4.1用于人工计量的停车场地,必须坚实平整,坡度≤0.5°(5‰); 3.4.2罐车油面静止15分钟后再进行计量; 3.4.3将量油尺对应的刻度范围用棉纱擦净; 3.4.4站在油罐车上风口,打开人孔盖,估算油罐液面高度,从人孔中间部位将量油尺垂直徐徐放入油罐。尺砣接触油面时的速度要缓慢,不准冲击罐底; 3.4.5当量油尺接触罐车油罐底部时,迅速向上提起,避免倾斜摆动,使液面发生波动; 3.4.6量油尺提起后,迅速观察油面浸湿线高度,读油面高度时要先读小数,后读大数,读数时尺子不应平放或倒放,以防油面变化,连续检尺两次,当两次测量值相差不超过1mm时,以第一次检尺为准,否则要重新测量; 3.4.7根据对应罐车容积表,查出相应的体积。 3.5油罐车罐底水高测量 3.5.1使用量油尺或检水尺测量; 3.5.2测量时,在量油尺或检水尺上涂抹一层薄的试水膏,并保持量油尺尺带拉紧垂直; 3.5.3站在油罐车的上风口,从人孔中间部位将量油尺或检水尺垂直徐徐放入油罐,接触油面时要缓慢,以免破坏静止的油面; 3.5.4尺铊或检水尺触底时,静止3-5秒后提尺;

储油罐标定

储油罐的变位识别与灌容表标定 摘要 本文先同过对平头椭圆柱体油罐进行建模研究分析,用积分的方法导出了卧式倾斜安装椭圆柱体油罐不同液面高度时贮油量的计算公式,从而得到一般性通用模型。利用通用模型解出了两端球冠圆柱体油罐在横向和纵向倾斜共同影响下不同液面高度时贮油量的计算公式,由易到难层层深入。在解决问题二过程中,如何将横向影响因素转化到纵向上是解决问题二的关键所在。我们通过建立几何模型,分析得出了横纵转化的关系式。在求解α,β过程时,定义了一个偏差函数f(h)以及单位偏差函数G(h),利用问题二中提供的数据,通过使用MATLAB 进行数据拟合,得出一个单位偏差函数g(h),在给定的h下,两个单位偏差函数作差,差值越接近零,说明这种情况下的α,β越接近真实值,利用MATLAB通过使用步长法,即可求解出α,β值。 关键词:变位罐容表卧式储油罐

一、问题的重述 地下储油罐一般都有一套与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 但是,事情往往没有那么简单,许多储油罐在使用一段时间后,由于地基变形等原因,罐体就会发生纵向倾斜和横向偏转等变化(以下称变位),灌容表因此也会发生该变。这就需要定期的对灌容表进行重新标定,才能真正有益的指导实践。有图:图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体;图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 要求用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了了解罐体变位对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.1度的纵向变位两种情况做了实验,实验数据如附件1所示。建立数学模型研究罐体变位对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验模型的正确性与方法的可靠性。 二、问题背景与模型准备 储油罐不仅是液态货物(如石油)的储存设备,又是液态货物贸易的重要收

储罐安全操作规程讲解

储罐安全操作规程 第一章总则 1 规范罐区管理与操作,降低物料损耗,保证库区安全运做; 2 本公司原料油罐区及溶剂油罐区的所有油罐都是设计温度小于90℃的常压地上立式圆筒形金属储罐,相关管理与操作必须按照本规程进行, 第二章具体操作 储罐的主要操作及一般使用规定包括:油罐首次投用、收发料、清洗罐、倒罐、扫线收料。 1 投用前验收及检查; 1.1 新建或进行大修理的油罐,需经沉水试压,验收合格,完成工程验收移交手续; 1.2 油罐验收要求所有附件齐全好用,符合设计及规范要求,现场技术状态完好; 1.3 安全附件经过检定,包括呼吸阀、阻火器、泡沫发生器等,检定记录或合格证完备,设计图纸完整、设备档案建立健全;

1.4 油罐容积经过法定计量部门标定,具有容积表及检定证书; 1.5 库区辅助配套设施完善,安全消防环境保护系统、竣工投产,验收合格; 2 收发物料操作; 2.1 储运工程师编制作业计划书,经生产准备部经理复核、经过经理审核批准后传递到操作室;班长将作业指导书及相关信息传递给相关操作岗位,确保各岗位充分正确理解,发现问题及时反馈; 2.2 班长下达工作指令,库区计量工作人员根据作业指令,完成相应罐的前尺的计量检测工作,并做详细的记录,填写相关作业单据。及时开通流程,发现问题及时反馈; 2.3 巡检人员检查收发料罐、阀门、管线等设备有无异常,确认无误; 2.4 流程正确开通后,通知班长或(其他相关单位), 2.5 班长通知装置中控,下达收发料指令; 2.5.1 收料作业,液面淹没进料管口前,流速低于1m/s; 2.5.2 内浮顶罐收料,浮盘起浮前,进油流速小于1m/s秒; 2.5.3 收料高度不能超过安全高度;

数模全国一等奖储油罐的变位识别与罐容表标定

储油罐的变位识别与罐容表的标定 摘要 本文研究储油罐的变位识别与罐容表的标定。分别以小椭圆型油罐和实际卧式储油罐为研究对象,运用高等数学的积分的知识,分别建立罐体变位前后罐油体积与油高读数之间的积分模型,使用Matlab 软件得出结论。 对于问题一,以小椭圆型储油罐为研究对象,在无变位时,小椭圆型储油罐为规则的椭球柱体,可利用解析几何与高等数学的知识建立油罐体积与油高读数之间的积分模型,得出罐体无变位时的理论值。当罐体发生纵向变位时,小椭圆型储油罐的截面不再是规则的几何形体,但根据倾角α及所给小椭圆型罐体的尺寸,可得其截面面积的表达式,利用高等数学中积分的方法,根据不同油高,建立了模型一,得到了储油量和油高的关系公式。最后,根据实验数据的处理,用拟合的方法,修正了某些系统误差的影响,计算出罐体变位后油位高度间隔1cm 的罐容表的标定值。 对于问题二,由于实际储油罐没油的高度不同,我们将其分为五种情况分别讨论,并对每种情况建立积分公式,得出罐油体积与油位高度及变位参数(纵向倾斜角α和横向偏转角β)之间的函数关系式,利用所给的实验数据,运用最小二乘法,建立非线性规划模型 2 12arg ,(((,,)(,,)))min (,,)n i i i i V H V H OilData error OilData αβαβαβαβ-==--∑用Matlab 非线性规划求解得出使得总体误差最小的α与β值:α=2.12°,β=4.06°。通过α与β的数值计算出出油量理论值与实测值的平均相对误差小于0.5% 。 对模型进行了较为充分的正确性验证和稳定性验证:在α与β的值为0时,其

计算出来的罐容值与理论值完全吻合,说明模型在体积计算上是正确的;当对油高进行0.1%的扰动时,α的值变化也在0.1%左右,说明α的稳定性很好,但是β的值从4.06°变成了3.75°,变化了大约8%,所以我们详细分析了β的数学表达式,从理论上分析了影响其稳定性的因素。根据得到的变位参数计算出实际罐体变位后油位高度间隔为10cm的罐容表的标定值。 最后,本文对模型的优缺点进行了评价,并讨论模型的推广。 关键字:储油罐;变位识别;罐容表标定;非线性规划 一.问题重述 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐油位高度等数据,通过预先标定的罐容表(即罐油位高度与储油量的对应关系)进行实时计算,以得到罐油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。

相关主题
文本预览
相关文档 最新文档