当前位置:文档之家› 弹性力学变分原理及直接解法

弹性力学变分原理及直接解法

弹性力学变分原理及直接解法
弹性力学变分原理及直接解法

弹性力学教学大纲

课程编号:05z8514 弹性力学Theory of Elasticity 学分学时:3/48 先修课程: 高等数学;线性代数;理论力学;材料力学 一、课程教学目标 《弹性力学》是航空、航天结构强度和力学专业的重要专业基础课程,是固体力学的一个分支。主要研究弹性体受外力作用或温度改变等原因而产生的应力、位移和变形。弹性力学的任务是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度、刚度和稳定性,并寻求或改进它们的计算方法。本课程的主要研究对象为非杆状结构,如板、壳以及其它实体结构。通过本课程的学习可为进一步学习力学类和相关工程类的后续课程打下坚实的力学基础。 二、教学内容及基本要求 1. 绪论(2学时) 弹性力学的发展史;研究内容;基本假设;矢量、张量基本知识。 2. 应力理论(4学时) 内力和应力;斜面应力公式;应力分量转换公式;主应力、应力不变量;最大剪应力;应力偏量;平衡微分方程。 3. 应变理论(4学时) 位移和变形;几何方程;转动张量;主应变和应变不变量;变形协调方程;位移场的单值条件;由应变求位移。 4. 本构关系(2学时) 热力学定律与应变能;本构关系;具有弹性对称面的弹性材料的本构关系;各向同性弹性材料的弹性常数;各向同性弹性材料的应变能密度 5. 弹性理论的建立与一般原理(4学时) 弹性力学基本方程和边界条件;位移解法和拉梅方程;应力解法与变形协调方程;叠加原理;解的唯一性原理;圣维南原理。 6.柱形杆问题(4学时) 圣维南问题;柱形扭转问题的基本解法;反逆法与半逆法,扭转问题解例;薄膜比拟;*柱形杆的一般弯曲。 7.平面问题(12学时) 平面问题及其分类;平面问题的基本解法;应力函数的性质;直角坐标解例(矩形梁的纯弯曲、简支梁受均布载荷和任意分布载荷);极坐标中的平面问题基本方程;轴对称问题(均匀圆筒或圆环、纯弯的曲梁、压力隧洞);非轴对称问题(小圆孔应力集中、楔体问题);关于解和解法的讨论。 8. 空间问题(2学时) 基本方程及求解方法;空间轴对称和球对称问题的基本方程;半空间体受重力及均布压力;半空间体在边界上受法向集中力;空心球受内压作用问题。 9.能量原理与变分法(6学时) 弹性体的变形比能与形变势能;变分法;位移变分方程;位移变分法;位移变分法应用于平面问题;应力变分方程与极小余能原理;应力变分法;应力变分法应用于平面问题;应力变分法应用于扭转问题。 10.复变函数解法或薄板弯曲(4学时)

变分原理与变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间数域 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A ② 函数的积分: 函数空间数域

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?=∏0 221 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使 系统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

弹性力学习题(新)

1-3 五个基本假定在建立弹性力学基本方程时有什么用途? 答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应 力成正比的含义,亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是 相同的。因此,反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是 相同的。进一步地说,就是物体的弹性常数也不随方向而变化。 5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的 改变而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。

2-1 已知薄板有下列形变关系:式中A,B,C,D皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。 解: 1、相容条件: 将形变分量带入形变协调方程(相容方程)

其中 所以满足相容方程,符合连续性条件。 2、在平面应力问题中,用形变分量表示的应力分量为 3、平衡微分方程

其中 若满足平衡微分方程,必须有

分析:用形变分量表示的应力分量,满足了相容方程和平衡微分方程条件,若要求出常数A,B,C,D还需应力边界条件。 例2-2 如图所示为一矩形截面水坝, 其右侧面受静水压力(水的密度为ρ), 顶部受集中力P作用。试写出水坝的应 力边界条件。 解: 根据在边界上应力与面力的关系 左侧面:

弹性力学--纳维解法(板壳理论)

板壳理论课程设计 对工科各专业说来,弹性力学的任务和材料力学、结构力学的任务一样,是分析各种结构或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。然而,它们之间还存在着一些不同。材力中,基本上只研究杆状结构,即长度远大于高度和宽度的构件。而材料力学中主要研究的是这种构件在拉压、剪切、弯曲、扭转作用下的应力和位移。结构力学中,主要是在材料力学的基础上研究杆状构件所组成的结构,即杆件系统。至于非杆状结构,则是弹性力学的主要研究内容。在弹性力学中,研究杆状结构一般都不用诸如一些关于构建的形变状态或应力分布的假定,因而得到的结果就比较精确。 从8个方程8个未知量,到圣维南原理、相容方程;从逆解法、半逆解法到差分法、变分法,邱老师的课讲的十分生动,同学们也听得十分认真。到弹性力学下册,也就是板壳理论,主要是研究薄板的小挠度变形及其应力、应变。求解四边简支矩形薄板在载荷下的挠度,以及矩形薄板的莱维法解及一般解法。另外,变厚度矩形和圆形薄板的挠度求解问题。差分法中引进了较为精确的边界条件以及在均布载荷和集中载荷下的不同解法。 在课程设计的过程中,在自学Matlab 的过程中完成了纳维解法中挠度表达式的表示和循环收敛过程,并且完成了差分法中不同网格划分下的差分方程化为矩阵形式后的求解过程。除此之外,还学会了使用ABAQUS 创建板并定义厚度以减少同等情况下创建实体添加边界条件不准确对计算结果产生的影响。尽管和差分法与精确解的误差分析相比,误差还是比较大,但相比于创建三维实体并在底边添加约束条件相比,误差还是减少了很多。 在计算过程中,先是采用厚度0.2m 薄板,有限元方法的误差过大,而当把薄板的厚度改为0.1m 时,误差变小。两种厚度的薄板都进行了同样的计算。 四边简支的薄板在均布载荷作用下位移的最大值,薄板的尺寸为长宽高: 110.1??,均布载荷为21000/q N m =,弹性模量E=205GPa ,泊松比=0.3μ, 分别用:纳维法、差分法以及有限元方法进行求解并比较求得的结果。 得到结果如下:

变分原理在物理学中的应用

变分原理在物理学中的应用 [摘要]从变分法出发,简述了变分原理的建立和发展;并就变分原理在各个学科的应用予以列举,为变分原理的初学者作以引导。 [关键字] 变分法;变分原理;发展历程;应用。 引言 变分原理愈来愈引起重视。固体力学变分原理的发展最为成熟,流体力学变分原理近年来也获得突破, 电磁学、传热学等领域变分原理在不断应用和发展。这是因为变分原理与有限元结合起来使古典的变分原理焕发青春[1]。本文就变分原理的发展历程和变分原理在物理学中的应用予以概括, 以形成一个了解变分原理的脉络,为更好的应用变分原理打下基础。 1.变分原理发展简史 年份历史事件 1696年约翰·伯努利提出最速曲线问题开始出现 1733年欧拉首先详尽的阐述了这个问题. 他的《变分原理》(Elementa Calculi Variationum)寄予了这门科学这个名字。 1786年拉格朗日确定了变分法, 但在对极大和极小的区别不完全令人满意。 1810~1831年Vincenzo Brunacci, Carl Friedrich Gauss, Simeon Poisson,Mikhail Ostrogradsky和Carl Jacobi对于这两者的区别都曾做出过贡献。 1842年柯西Cauchy浓缩和修改了变分法,建立了一套严格的理论。 1849~1885年Strauch, Jellett, Otto Hesse, Alfred Clebsch和Carll写了一些其他有价值的论文和研究报告。 1872年Weierstrass系统建立了实分析和复分析的基础,基本上完成了分析的算术化。他关于这个理论的著名教材是划时代的, 并且他可能是第一个将变分法置于一个稳固而不容置疑的基础上的。 1900年希尔伯特(Hilbert)发表的第20和23个数学问题促进了变分思想更深远的发展。 20世纪初David Hilbert, Emmy Noether, Leonida Tonelli, Henri Lebesgue和Jacques Hadamard 等人做出重要贡献。 20世纪30年代Marston Morse 将变分法应用在Morse理论中。

变分原理及变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵数:线性算子(矩阵)空间 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1 max ;21 )(11 2 2 ∑∑===n j n i ij a A

② 函数的积分: 函数空间 数域 D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?= ∏02 2 1 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({221222 021 ===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使系 统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B,A 高于B ,要求在两点间连接一条曲线,使得 有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

弹性力学学习心得

弹性力学学习心得 孙敬龙S4 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编着的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17

世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从 1822~1828年间,在?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表

变分原理

§9 变分原理 9.1 弹性变形体的功能原理 学习要点: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使 得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状 .................... 态,二者彼此独立而且无任何关系。 ................ 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 9.1.1 静力可能的应力: 假设弹性变形体的体积为V,包围此体积的表面积为S。 表面积为S 可以分为两部分所组成:一部分是表面积的位移给定,称为Su;另外一部分是表面积的面力给定,称为Sσ。 +Sσ 显然S=S u 假设有一组应力分量σij在弹性体内部满足平衡微分方程

在面力已知的边界Sσ,满足面力边界条件 这一组应力分量称为静力可能的应力。静力可能的应力未必是真实的应力, ................ 因为真实的应力还 ....................必须满足应力表达的变形协调方程 ...............,但是真实的应力分量必然 是静力可能的应力。 ......... 为了区别于真实的应力分量,我们用表示静力可能的应力分量。 9.1.2 几何可能的位移: 假设有一组位移分量u i和与其对应的应变分量εij,它们在弹性体内部满足几何方程 在位移已知的边界S u上,满足位移边界条件 这一组位移称为几何可能的位移。几何可能的位移未必是真实的位移,因 为真实的位移还必须在弹性体内部满足位移表示的平衡微分方程 .... ......;在面力已知 的边界 ..................。但是,真实的位移必然是...S.σ.上,必须满足以位移表示的面力边界条件 几何可能的。 为了区别于真实的位移,用表示几何可能的位移。 几何可能的位移产生的应变分量记作。

弹性力学题

一、单项选择题 1.弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。 A.相容方程 B.近似方法 C.边界条件 D.附加假定 2.根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。 A.几何上等效 B.静力上等效 C.平衡 D.任意 3.弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。 A.平衡方程、几何方程、物理方程完全相同 B.平衡方程、几何方程相同,物理方程不同 C.平衡方程、物理方程相同,几何方程不同 D.平衡方程相同,物理方程、几何方程不同 4.不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( A ) ①区域内的相容方程;②边界上的应力边界条件;③满足变分方程; ④如果为多连体,考虑多连体中的位移单值条件。 A.①②④ B. ②③④ C. ①②③ D. ①②③④ 5.如下图1所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm对应的整体编码,以下叙述正确的是( D )。

① I 单元的整体编码为162 ② II 单元的整体编码为426 ③ II 单元的整体编码为246 ④ III 单元的整体编码为243 ⑤ IV 单元的整体编码为564 图1 A. ①③ B. ②④ C. ①④ D. ③⑤ 6.平面应变问题的微元体处于( C ) A.单向应力状态 B.双向应力状态 C.三向应力状态,且z σ是一主应力 D.纯剪切应力状态 7.圆弧曲梁纯弯时,( C ) A.应力分量和位移分量都是轴对称的 B.应力分量和位移分量都不是轴对称的 C.应力分量是轴对称的,位移分量不是轴对称的 D.位移分量是轴对称的,应力分量不是轴对称的 8.下左图2中所示密度为ρ的矩形截面柱,应力分量为:0,,0=+==xy y x B Ay τσσ对图(a )和图(b)两种情况由边界条件确定的常数A 及B 的关系是( C ) 相同,B 也相同 不相同,B 也不相同 相同,B 不相同 不相同,B 相同

(完整版)弹性力学第十一章弹性力学的变分原理

第十一章弹性力学的变分原理知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力 应变余能函数 应力变分方程 最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析 一、内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹

性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二、重点 1、几何可能的位移和静力可能的应力; 2、弹性体的虚功原理; 3、 最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理 的基本概念。 §11.1 弹性变形体的功能原理 学习思路: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 学习要点: 1、静力可能的应力; 2、几何可能的位移; 3、弹性体的功能关系; 4、真实应力和位移分量表达的功能关系。 1、静力可能的应力 假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。如图所示

弹性力学的求解方法和一般性原理

第五章弹性力学的求解方法和一般性原理 一.内容介绍 通过弹性力学课程学习,我们已经推导和确定了弹性力学的基本方程和常用公式。本章的任务是对弹性力学所涉及的基本方程作一总结,并且讨论具体地求解弹性力学问题的方法。 弹性力学问题的未知量有位移、应力和应变分量,共计15个,基本方程有平衡微分方程、几何方程和本构方程,也是15个。面对这样一个庞大的方程组,直接求解显然是困难的,必须讨论问题的求解方法。根据这一要求,本章的主要任务有三个: 一是综合弹性力学的基本方程,并按边界条件的性质将问题分类; 二是根据问题性质,确定基本未知量,建立通过基本未知量描述的基本方程,得到基本解法。弹性力学问题的基本解法主要是位移解法、应力解法和混合解法等。应该注意的是对于应力解法,基本方程包括变形协调方程。 三是介绍涉及弹性力学求解方法的一些基本原理。主要包括解的唯一性原理、叠加原理和圣维南原理等,这些原理将为今后的弹性力学问题解建立基础。 如果你在学习本章内容时有困难,请及时查阅和复习前三章相关内容,以保证今后课程的学习。 二. 重点 1.弹性力学基本方程与边界条件分类; 2.位移解法与位移表示的平衡微分方程; 3. 应力解法与应力表示的变形协调方程; 4. 混合解法; 5. 逆解法和半逆解法; 6. 解的唯一性原理、叠加原理和圣维南原理 知识点 弹性力学基本方程边界条件位移表示的平衡微分方程应力解法 体力为常量时的变形协调方程物理量的性质逆解法和半逆解法 解的迭加原理弹性力学基本求解方法位移解法位移边界条件 变形协调方程混合解法应变能定理解的唯一性原理圣维南原理

§5.1 弹性力学的基本方程及其边值问题 学习思路: 通过应力状态、应变状态和本构关系的讨论,已经建立了一系列的弹性力学基本方程和边界条件。本节的主要任务是将基本方程和边界条件作综合总结,并且对求解方法作初步介绍。 弹性力学问题具有15个基本未知量,基本方程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分方程。 由于基本方程与15个未知量的内在联系,例如已知位移分量,通过几何方程可以得到应变分量,然后通过物理方程可以得到应力分量;反之,如果已知应力分量,也可通过物理方程得到应变分量,再由几何方程的积分求出位移分量,不过这时的应变分量必须满足一组补充方程,即变形协调方程。基于上述的理由,为简化求解的难度,可以选取部分未知量作为基本未知量求解。 根据基本未知量,弹性力学问题可以分为应力解法、位移解法和混合解法。 上述三种求解方法对应于偏微分方程的三种边值问题。 学习要点: 1. 弹性力学基本方程; 2. 本构方程; 3. 边界条件; 4. 弹性力学边值问题; 首先将弹性力学基本方程综合如下: 1. 平衡微分方程 用张量形式描述 2. 几何方程

弹性力学的变分原理

第十一章弹性力学的变分原理 一.内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二.重点 1. 几何可能的位移和静力可能的应力; 2. 弹性体的虚功原理; 3. 最小势能原理及其应用; 4. 最小余能原理及其应用; 5. 有限元原理的基本概念。 知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力

应变余能函数 应力变分方程 最小余能原理的近似解法 扭转问题最小余能近似解 有限元原理与变分原理 有限元原理的基本概念 有限元整体分析 几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法 基于最小余能原理的近似计算方法 有限元单元分析 附录3 变分原理 泛函是指某一个量,它的值依赖于其它一个或者几个函数。因此泛函也称为函数的函数。 变分法的基本问题是求解泛函的极值。

弹性力学边值问题

第五章弹性力学边值问题 本章任务 总结对弹性力学基本方程 讨论求解弹性力学问题的方法

目录 §5.1弹性力学基本方程 §5.2问题的提法 §5.3弹性力学问题的基本解法 解的唯一性 §5.4圣维南局部影响原理 §5.5叠加原理

§5.1弹性力学基本方程 ?总结弹性力学基本理论; ?讨论已知物理量、基本未知量;以及物理量之间的关系——基本方程和边界条件。

弹性力学基本方程 1.平衡微分方程 000=+??+??+??=+??+??+??=+??+??+??bz z yz z by zy y xy bx zx yx x F z y x F z y x F z y x στττστττσ0 ,=+bj i ij F σ2.几何方程 x w z u z v y w y u x v z w y v x u zx yz xy z y x ??+??=??+??=??+??=??=??=??=γγγεεε,,,,,),,(2 1i j j i ij u u +=ε

3.变形协调方程 y x z y x z z x z y x y z y z y x x z x x z z y z y y x y x z xy xz yz y xy xz yz x xy xz yz xz z x yz y z xy x y ???=??-??+???????=??+??-???????=??+??+??-?????=??+?????=??+?????=??+??εγγγεγγγεγγγγεεγεεγεε2222222222222222222)(2)(2)(位移作为基本未知量时,变形协调方程自然满足。

弹性力学学习心得

弹性力学学习心得 孙敬龙S201201024 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编著的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822~1828年间,在A.L?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利——里兹法,为直接求

变分原理

变分原理 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,或称最小作用原理。 例如:实际上光的传播遵循最小能量原理: 在静力学中的稳定平衡本质上是势能最小的原理。 一、举一个例子(泛函) 变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方法),是计算泛函驻值的数学理论。 在理论上和实践上均需要放宽解的条件。因此,引入弱解以及边值问题的弱的形式即变分形式。在讨论二阶椭圆边值问题时的Lax-Milgram 定理。 Poisson 方程的Neumann 问题 设Ω是单连通域,考察Poisson 方程的Neumann 问题 (N) ??? ? ??? =??=?-Γ,g n u f u u ,在Ω内,,使得求函数 这里)(),(2/12Γ∈Ω∈-H g L f ,且满足 01 ,=+Γ Ω ? g f d x 其中的对偶积表示)()(,2/12/1Γ?Γ??-ΓH H . 问题(N )的解,虽然是不唯一的,但是,若把问题(N )局限于商空间)(V 1Ω=H 内求解,且赋予商范数 ΩΩ∈Ω=,1) (/)(1 1i n f ?v v H v R H ,V v ∈? 可以得到唯一解。实际上,由定理5.8推出R H v /)(1?Ω等价于半范Ω→,1?v v . 定义双线性泛函R V V →?: V v u v v u u v u v u B ∈∈∈???=?,?,?,?),,()?,?( 和线性泛函 V v v v u g fdx v l ∈∈?+→Γ Ω??,?,,?:. 其右端与v v ?∈无关。因此v ?中的元素仅仅相差一个任意常数,同时,可以判定'V l ∈,实际上 ,,2/1,2/1,0,0)?(ΓΓ -Ω Ω +≤v g v f v l

弹性力学

弹性力学 人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。 弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。 弹性力学的发展简史 同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。 在17世纪末第二个时期开始时,人们主要研究粱的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。 第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。 1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力

学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。 在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利──里兹法,为直接求解泛函极值问题开辟了道路,推动了力学、物理、工程中近似计算的蓬勃发展。 从20世纪20年代起,弹性力学在发展经典理论的同时,广泛地探讨了许多复杂的问题,出现了许多边缘分支:各向异性和非均匀体的理论,非线性板壳理论和非线性弹性力学,考虑温度影响的热弹性力学,研究固体同气体和液体相互作用的气动弹性力学和水弹性理论以及粘弹性理论等。磁弹性和微结构弹性理论也开始建立起来。此外,还建立了弹性力学广义变分原理。这些新领域的发展,丰富了弹性力学的内容,促进了有关工程技术的发展。 弹性力学的基本内容 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。

弹性力学考试简答题

弹性力学考试简答题 1、弹性力学的概念,任务。 答:弹性体力学通常简称为弹性力学,是研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。弹性力学的任务和材料力学、结构力学的任务一样,是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。 2、弹性力学中的基本假定。 答:①连续性—假定物体是连续的,也就是假定整个物体的体积都被组成这个物体的介质所填满,不留下任何空隙。②完全弹性—假定物体能完全恢复原形而没有任何剩余形变。③均匀性—假定整个物体是由同一材料组成的。④各向同性—假定物体的弹性在所有各个方向都相同。⑤小变形假定—假定位移和形变是微小的。 3、什么是理想弹性体。 答:凡是符合连续性、完全弹性、均匀性和各向同性这四个假定的物体就称为理想弹性体。 4、弹性力学依据的三大规律。 答:变形连续规律、应力-应变关系和运动(或平衡)规律。 5、边界条件。 答:边界条件表示在边界上位移与约束,或应力与面力之间的关系式。它可以分为位移边界条件、应力边界条件和混合边界条件。 6、简述圣维南原理。 答:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主距也相同),那么,近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 7、简述平面应力问题。 答:设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行于板面并且不沿厚度变化。 8、弹性力学的问题解法有几种,并简述。 答:弹性力学问题解法有两种。一是以位移分量为基本未知函数,从方程和边界条件中消去应力分量和形变分量,导出只含位移分量的方程和相应的边界条件,并由此解出位移分量,然后再求出形变分量和应力分量,这种解法称为位移法;二是以应力分量为基本未知函数,从方程和边界条件中消去位移分量和形变分量,导出只含应力分量的方程和相应的边界条件,并由此解出应力分量,然后再求出形变分量和位移分量,这种解法称为应力法。 9、解释小孔应力集中。 答:在许多工程结构中,常常根据需要设置一些孔口。由于开孔,孔口附近的应力将远大于无孔时的应力,也远大于距孔口较远处的应力。这种现象称为孔口应力集中。10、单连通体而言,按力法求解的应力满足什么条件才是正确的解答,并写出方程。 答:按应力求解平面问题时,应力分量必须满足⑴在区域内的平衡微分方程(2-2);⑵在区域内的相容方程(2-21)或(2-22);⑶在边界上的应力边界条件(2-15),其中假 设只求解全部为应力边界条件的问题。(具体公式请参见书P12,P19,P28)

第五章 弹性力学的求解方法和一般性原理

第五章弹性力学的求解方法和一般性原理 内容介绍 知识点 弹性力学基本方程 边界条件 位移表示的平衡微分方程 应力解法 体力为常量时的变形协调方程物理量的性质 逆解法和半逆解法 解的迭加原理弹性力学基本求解方法位移解法 位移边界条件 变形协调方程 混合解法 应变能定理 解的唯一性原理 圣维南原理 学习思路: 通过应力状态、应变状态和本构关系的讨论,已经建立了一系列的弹性力学基本方程和边界条件。本节的主要任务是将基本方程和边界条件作综合总结,并且对求解方法作初步介绍。 弹性力学问题具有15个基本未知量,基本方程也是15个,因此问题求解归结为在给定的边界条件下求解偏微分方程。 由于基本方程与15个未知量的内在联系,例如已知位移分量,通过几何方程可以得到应变分量,然后通过物理方程可以得到应力分量;反之,如果已知应力分量,也可通过物理方程得到应变分量,再由几何方程的积分求出位移分量,不过这时的应变分量必须满足一组补充方程,即变形协调方程。基于上述的理由,为简化求解的难度,可以选取部分未知量作为基本未知量求解。 根据基本未知量,弹性力学问题可以分为应力解法、位移解法和混合解法。 上述三种求解方法对应于偏微分方程的三种边值问题。

学习要点: 1. 弹性力学基本方程; 2. 本构方程; 3. 边界条件; 4. 弹性力学边值问题; 首先将弹性力学基本方程综合如下: 1. 平衡微分方程 用张量形式描述 2. 几何方程 用张量形式描述 变形协调方程

当然,具体求解弹性力学问题时,并不需要同时求解十五个基本未知量,可以而且必须做出必要的简化。根据几何方程和本构方程可见,位移、应力和应变分量之间不是相互独立的。 假如已知位移分量,通过几何方程可以得到应变分量,然后通过物理方程可以得到应力分量。反之,如果已知应力分量,也可通过物理方程得到应变分量,再由几何方程的积分求出位移分量,不过这时的应变分量必须满足一组补充方程,即变形协调方程。 基于上述的理由,为简化求解的难度,选取部分未知量作为基本未知量。 若以位移函数作为基本未知量求解,称为位移解法; 若以应力函数作为基本未知量,称为应力解法; 若以部分位移分量和部分应力分量作为基本未知量,称为混合解法。 在给定的边界条件下,求解偏微分方程组的问题,数学上称为偏微分方程的边值问题。 按照不同的边界条件,弹性力学有三类边值问题。 第一类边值问题:已知弹性体内的体力F b x,F b y,F b z和其表面的面力F s x,F s y,F s z,求平衡状态的弹性体内各点的应力分量和位移分量,这时的边界条件 为面力边界条件。

相关主题
文本预览
相关文档 最新文档