当前位置:文档之家› 苯乙烯-异戊二烯嵌段共聚物的合成

苯乙烯-异戊二烯嵌段共聚物的合成

苯乙烯-异戊二烯嵌段共聚物的合成
苯乙烯-异戊二烯嵌段共聚物的合成

C8苯乙烯抽提蒸馏工艺简介

C8苯乙烯抽提工艺(1)工艺流程总框图 (2)C8切割单元 1.原料组成 C8切割 单元 苯乙炔加氢 单元 抽提蒸馏 单元 苯乙烯精制 单元混合C8C9原料 C8馏分 C9馏分去C9树脂厂 粗苯乙烯 广东新华粤石化股份有限公司苯乙烯装置工艺流程框图 加氢C8馏分苯乙烯产品去罐区来自乙烯厂 C8抽余油返乙烯厂

2.工艺流程 3.质量要求 4.操作指标 5.操作难点

(3)苯乙炔加氢单元 1. 原料要求 2.工艺流程 3.质量要求 C8加氢油中苯乙炔含量<30PPm 4.操作指标 (4)苯乙烯抽提蒸馏单元1.抽提蒸馏单元工艺流程总框图

2.原料组成 抽提蒸馏塔(T-301) C8原料贫溶剂 溶剂回收塔(T-302) 富溶剂 (溶剂+苯乙烯) 粗苯乙烯去脱色单元 溶剂再生塔(T-303) 溶剂+水蒸汽 抽余油水洗塔(T-304) 抽余油 水汽提塔(T-305) 洗涤水(含微量油) 塔顶罐集水槽水(含微溶剂、C8芳烃) 去除焦系统 塔顶罐集水槽水(含微量苯乙烯) 洗涤后的水(含微量溶剂、油) 含溶剂水(浓缩) 自产蒸汽 抽余油去罐区

●由C8馏分组成表,可知其的主要组分有: ?乙苯(136℃) ?对二甲苯(138.4℃) ?间二甲苯(139.1℃) ?邻二甲苯(144.4℃) ?苯乙烯(145.15℃) ●苯乙烯和邻二甲苯的沸点差只有0.75℃ ●因此一般蒸馏不能把苯乙烯从C8 组分中分离出来。 3.抽提蒸馏(萃取精馏)原理 利用环丁砜复合溶剂对不饱和的烯烃族有极强的亲和力,从而使苯乙烯与二甲苯和乙苯相比较,具有低的挥发性。基于这种特性,苯乙烯在抽提蒸馏(萃取精馏)塔中被分离出来。 4.C8苯乙烯抽提蒸馏单元主要设备 ●抽提蒸馏塔(T-301) ●溶剂回收塔(T-302) ●溶剂再生塔(T-303) ●抽余油反萃塔(T-304) ●水汽提塔(T-305) 5.抽提蒸馏塔(T-301) ●该塔是利用溶剂分离苯乙烯和C8芳烃的主要设备。 ●抽提蒸馏塔(T-301)可划分为三部分: A、溶剂回收段:塔的顶段(溶剂进料口以上) B、抽提精馏段:塔的中段(C8馏分进料口与溶剂进料口之间) C、苯乙烯提浓段:塔的下段(C8馏分进料口以下) ●抽提蒸馏塔(T-301)可划分为三部分: 贫溶剂C8溶剂回收段抽提精馏段苯乙烯提浓段

苯乙烯悬浮聚合制备聚苯乙烯的合成工艺

目录 第一章概述 1.1聚苯乙烯、可发性聚苯乙烯介绍 (1) 1.2 EPS储存条件 (1) 1.3 EPS生产技术的进展 (2) 1.4 EPS 存在的问题及解决方法 (2) 第二章可发性苯乙烯工艺的设计原理和流程 2.1可发性聚苯乙烯合成的原料 (3) 2.2可发性苯乙烯珠粒制造 (4) 2.3可发性聚苯乙烯塑料成型 (6) 2.4熟化 (7) 2.5成型 (7) 第三章聚苯乙烯珠粒制备的影响因素 1 悬浮分散体系的选择及影响 (7) 2 悬浮分散剂的用量对粒径大小的影响 (8) 3助分散剂的选择与作用 (8) 4.搅拌桨的形式对悬浮聚合的影响 (8) 5 聚合操作因素对产品质量的影响 (8) 6 浸渍条件的影响 (9) 7 后处理的影响 (9) 第四章EPS的性能及用途 4.1 力学性能 (9) 4.2 绝热性能.................... .. (9) 4.3化学性能 (10) 4.4 EPS的用途 (10) 五.总结 (11) 六.参考文献

第一章概述 1.1聚苯乙烯、可发性聚苯乙烯介绍 聚苯乙烯(PS)包括普通聚苯乙烯(GPPS).可发性聚苯乙烯(EPS).高抗冲聚苯乙烯(HIPS)及间规聚苯乙烯(SPS)。 聚苯乙烯(Polystyrene,简称PS)是一种无色透明的热塑性塑料,质地硬而脆,无色透明,可以和多种染料混合产生不同的颜色。聚苯乙烯大分子链的侧基为苯环,大体积侧基为苯环的无规排列决定了聚苯乙烯的物理化学性质,如透明度高,刚度大,玻璃化温度高,性脆等。其玻璃化温度80~90℃,非晶态密度1.04~1.06克/厘米3,晶体密度1.11~1.12克/厘米3,熔融温度240℃,电阻率为1020~1022欧·厘米。导热系数30℃时0.116瓦/(米·开)。 普通聚苯乙烯的不足之处在于性脆,冲击强度低,易出现应力开裂,耐热性差及不耐沸水等。此外还有全同和间同立构聚苯乙烯。全同聚合物有高度结晶性具有高于100摄氏度的玻璃转化温度,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。 发泡聚苯乙烯又称可发性聚苯乙烯,是由苯乙烯悬浮聚合,再加入发泡剂而制得。白色珠状颗粒,相对密度1.05。热导率低,吸水性小。耐冲击振动、隔热、隔音、防潮、减振。介电性能优良。溶于丙酮、醋酸乙酯、苯、甲苯、二氯乙烷、氯仿、不溶于乙醇、正己烷、环己烷、溶剂汽油等。可发性聚苯乙烯为在普通聚苯乙烯中浸渍低沸点的物理发泡剂制成,加工过程中受热发泡,专用于制作泡沫塑料产品。高抗冲聚苯乙烯为苯乙烯和丁二烯的共聚物,丁二烯为分散相,提高了材料的冲击强度,但产品不透明。间规聚苯乙烯为间同结构,采用茂金属催化剂生产,是近年来发展的聚苯乙烯新品种,性能好,属于工程塑料。 1.2 EPS储存条件 贮存可发性聚苯乙烯树脂的设备要采取良好的接地预防措施,贮存可发性聚苯乙烯树脂的地方要有良好的通风,远离火源、热源,避免阳光直接照射,容器应密封良好,同时贮罐内应通以惰性气体;为保证最终产品质量,可发性聚苯乙烯树脂的贮存温度应保持在20℃;湿度不能太大,并

年产20万吨乙苯脱氢制苯乙烯装置工艺设计毕业论文设计

(此文档为word格式,下载后您可任意编辑修改!) 毕业设计 20万吨年乙苯脱氢制苯乙烯装置工艺设计 摘要 苯乙烯是最重要的基本有机化工原料之一。本文介绍了国内外苯乙烯的现状及发展概况,苯乙烯反应的工艺条件,乙苯脱氢制苯乙烯催化剂,苯乙烯的生产方法和生产工艺。 本设计以年处理量20万吨乙苯为生产目标,采用乙苯三段催化脱氢制苯乙烯的工艺方法,对整个工段进行工艺设计和设备选型。根据设计任务书的要求对整个工艺流程进行了物料衡算,并利用流程设计模拟软件Aspen Plus对整个工艺流程进行了全流程模拟计算,选用适宜的操作单元模块和热力学方法,建立过程模型进行稳态模拟计算并绘制了带控制点的工艺流程图。在设计过程中对整个工艺流程进行了简化计算,将整个流程分为了反应和精馏分离两个部分,利用计算机模拟计算结果对整个工艺流程进行了模拟优化,并确定了整套装置的主要工艺尺寸。 由于本设计方案使用计算机过程模拟软件Aspen Plus进行仿真设计,减少了实际设计中的大量费用,对现有工艺进行改进及最优综合具有重要的实际意义。 关键词:乙苯,苯乙烯,脱氢,Aspen Plus,模拟优化

Abstract Styrene Monomer(SM)is one of the most important organic chemicals. This article describes the present situation and development of styrene at conditions, catalyst for ethylbenzene dehydrogenation to styrene, styrene production methods and production processes. This design is based on the annual targets, ethylbenzene three-stage dehydrogenation using styrene in the process, the entire section in the process design and equipment selection. According to the requirements of the design of the mission statement of the entire process the material balance, process design simulation software Aspen Plus simulation of the whole process of the entire process, choose the appropriate operating unit module and thermodynamic methods, process model for steady-state simulation and draw the P&ID diagram. The entire process in the design process, simplify the calculation, the whole process is divided into reaction and distillation to separate the two parts, the use of computer simulation results on the entire process flow simulation and optimization, and determine the size of the main process of the entire device . This design using computer simulation software Aspen Plus simulation designed to reduce the substantial costs of the actual design, to improve the existing process and optimal synthesis ,Aspen Plus,Simulation and optimization

苯乙烯试验报告

苯乙烯试验报告 1.过程合成与分析 苯乙烯(Phenylthylene/SM),是非常重要的化工原料。我国苯乙烯主要用于生产聚苯乙烯、ABS树脂、SAN树脂、不饱和聚酯树脂、丁苯橡胶、丁苯胶乳以及苯乙烯系热塑性弹性体等。近几年国内苯乙烯产能不断扩大,目前已经超过400万吨/年。 苯乙烯系列树脂的产量在世界五大合成材料的产量中仅次于聚乙烯和聚氯乙烯而名列第三位。苯乙烯主要用于生产苯乙烯系列树脂及丁苯橡胶,也是生产离子交换树脂及医药品的原料之一,此外,苯乙烯还可用于制药、染料、农药以及选矿等行业。苯乙烯系列树脂的产量在世界合成树脂中居第三位,仅次于PE、PVC。苯乙烯的均聚物――聚苯乙烯(PS)是五大通用热塑性合成树脂之一,广泛用于注塑制品、挤出制品及泡沫制品3大领域。近年来需求发展增长旺盛。苯乙烯、丁二烯和丙烯腈共聚而成的ABS树脂是用量最大的大宗热塑性工程塑料,是苯乙烯系列树脂中发展与变化最大的品种,在电子电器、仪器仪表、汽车制造、家电、玩具、建材工业等领域得到了广泛应用。中国已经成为世界ABS最大的产地和消费市场之一。 已知工业化的苯乙烯的生产主要采用两种方法: (一)乙苯脱氢法 乙苯脱氢法是目前国内外生产苯乙烯的主要方法,其生产能力约占世界苯乙烯总生产能力的90%。它又包括乙苯催化脱氢和乙苯氧化脱氢两种生产工艺。 1、乙苯催化脱氢工艺 乙苯催化脱氢是工业上生产苯乙烯的传统工艺,由美国Dow化学公司首次开发成功。目前典型的生产工艺主要有Fina/Badger工艺、ABB鲁姆斯/UOP工艺以及BASF 工艺等。 (1)ABB鲁姆斯/UOP工艺。用超加热器将蒸汽过热至800℃,与原料乙苯一起进入绝热反应器。反应温度550-650℃,常压或负压,蒸汽/乙苯质量比为1.0-1.5。通过脱氢反应器所生成的脱氢产物经冷凝器冷凝后进入乙苯/苯乙烯分离塔,塔底分出苯乙烯,塔顶馏出未反应的乙苯。将乙苯中的苯和甲苯分出后返回脱氢反应器重复利用。 (2)Fina/Badger工艺。Fina/Badger工艺通常与美孚/ Badger乙苯工艺联合签发许可。该工艺采用绝热脱氢,高温蒸汽提供脱氢需要的热量并降低进料中乙苯的分压和抑制结焦。蒸汽过热至800-950℃,与预热器内的乙苯混合后再通过催化剂,反应温度为560-650℃,压力为负压,蒸汽/乙苯质量比为1.5-2.2。反应器材质为铬镍,反应产物在冷凝器中冷凝。Fina/ Badger与 ABB Lummus公司一起几乎垄断了世界苯乙烯生产专利市场。 (3)BASF工艺。BASF工艺的特点是用烟道气直接加热的方式提供反应热,这是与绝热反应的最大不同点。脱氢过程中反应产物与原料气系统进行热交换,列管间加折流挡板,使加热气体径向流动,烟道气进口温度为750℃,出口温度为630℃,可用来预热进料的气体,使乙苯的进料温度达到585℃,直接与管内脱氢催化剂接触反应。出口气体经急冷、换热,再经空气冷却,分离脱氢尾气(H2、CH4、CO2等)、水和油,上层脱氢料液送精馏工序制得苯乙烯。 乙苯催化脱氢法的技术关键是寻找高活性和高选择性的催化剂。一开始采用的是锌系、镁系催化剂,以后逐渐被综合性能更好的铁系催化剂所替代。目前,国外苯乙烯催化剂主要有南方化学集团公司开发的Styromax-1、Styromax-2、Styromax-4以及Styromax-5型催化剂;美国标准催化剂公司推出的C-025HA、C-035、C-045型催化剂;德国BASF公司开发的S6-20、S6-20S、S6-28、S6-30催化剂;Dow化学公司开发出的D-0239E型绝热型催化剂等。我国开发成功的催化剂主要有兰州石油化工公司研究院的315、335、345、355系列催化剂;厦门

嵌段共聚物退火

非对称二嵌段共聚物胶束薄膜在溶剂退火 过程中的形态变化 摘要 对在氯仿溶剂蒸汽退火过程中不对称的聚苯乙烯——嵌段——聚(2——乙烯基吡啶)二嵌段共聚物胶束薄膜的形态变化进行了研究,最初,在膜表面形成纳米级范围的小岛,进一步的退火导致共聚物PS-b-PVP缸底部刷层以上构成的岛的生长,为了进行比较,对从THF溶液(不含胶束结构)中制备的嵌段共聚物进行了研究,从THF 中制备的膜的表面形态在溶剂退火过程中经过去湿调幅机制在不断地演变。在很长一段时间的溶剂蒸汽退火中,两种薄膜显示出相同的表面形态,这是由表面场和自动去湿机制之间的相互作用决定的。 1 介绍 嵌段共聚物(BCP)可以自动组装成一系列的定义良好的,有序的纳米结构,包括球体、圆柱体、薄片、与双螺旋形、这个是取决于相对组分聚合物【1E4】的体积分数,嵌段共聚物薄膜被确认为应用于纳米结构工程中应用范围从磁存储到光电材料、蚀刻抗蚀剂和传感器的模板和支架的理想材料,最近,溶剂退火可以被用作生产长程有序嵌段共聚物【5E15】的薄膜的其中一个重要的方法已经得到了证实,例如,Niu 和Saraf 描述了一个通过溶剂退火制备的高度有序嵌段共聚物薄膜的动力学特征的有关机制,Fukunaga 等人研究了

脱溶剂速度对通过溶剂退火所得到的ABC三嵌段共聚物的形貌的影响 并报道了大规模比对得到的微域, 轩等人通过控制的溶剂的选择性,膜厚度和水蒸气的曝光时间获得了排列有序的对称的六边形包装纳米缸二嵌段共聚物的聚(苯乙烯- 嵌段- 甲基丙烯酸甲酯)(共聚物PS-b -PMMA )薄膜,。Peng 等人系统地研究了溶剂选择性对用溶剂退火得到的嵌段共聚物的薄膜的影响。在对称共聚物PS-b -聚甲基丙烯酸甲酯薄膜在溶剂退火后形成的不同膜结构是取决于溶剂的性质。聪等人表明水(对于PS 和P4VP 它不是一种溶剂)可诱导聚苯乙烯- 嵌段- 聚(4 - 乙烯基吡啶)(PS- β- P4VP )胶束薄膜的形态变化。Zhao等人对在甲醇蒸气(少数的选择性溶剂P4VP块)溶剂退火后薄不对称的PS -B- P4VP薄膜的表面形态进行了研究。Kim等人表明溶剂挥发以可控制的速率可以提供一个非常简单但强大的路线来大面积产生几乎无缺陷的微观结构在聚(苯乙烯- 嵌段- 环氧乙烷)(PS- β- PEO)嵌段共聚物薄膜[ 10 ] 。上文提到的大多数办法都集中在一个微相分离的相对取向形态学相对于基板表面时的实验变量,如表面字段,膜厚,溶剂的挥发速度,溶剂的选择性,退火条件,等的改变[ 5E15 ] 。然而,涉及这些处理的详细的机理仍不清楚。此外,嵌段共聚物的初始形态与从不同的溶剂所得制备的薄膜形态的发展之间的相关性是很少考虑的。

非线形嵌段共聚物的合成

非线形嵌段共聚物的合成 洪春雁 潘才元3 (中国科学技术大学高分子科学与工程系 合肥 230026) 摘 要 主要介绍了非线形嵌段共聚物,如星型嵌段共聚物、杂臂星型共聚物、梳型聚合物等的合成方法,包括多官能团引发剂法、大分子引发剂法等。各种活性聚合方法,如阳离子开环聚合、原子转移 自由基聚合(A TR P)和氮氧稳定自由基聚合等都可以用于合成非线形嵌段共聚物。 关键词 非线形嵌段共聚物 星型嵌段共聚物 杂臂星型共聚物 Syn thesis of Non l i near Block Copoly m ers Hong Chunyan,Pan Caiyuan3 (D epartm en t of Po lym er Science and Engineering,U n iversity of Science and T echno logy of Ch ina,H efei230026,Ch ina) Abstract In th is article,the syn thetic m ethods fo r non linear b lock copo lym ers,such as star b lock copo lym ers,m ik toarm star copo lym ers,and com b2like copo lym ers w ere in troduced.T he m ethods include m u ltifuncti onal in itiato r and m acro in itiato r m ethod etc.L iving po lym erizati on,such as cati on ic ring2open ing po lym erizati on,atom tran sfer radical po lym erizati on(A TR P)and n itrox ide2m ediate living free radical po lym erizati on can be u sed to syn thesize non linear b lock copo lym ers. Key words N on linear b lock copo lym er,Star b lock copo lym er,M ik toarm star copo lym er 与线形嵌段共聚物如AB型两嵌段和ABA型三嵌段共聚物不同,非线形嵌段共聚物如星型嵌段共聚物、杂臂星型共聚物和伞型聚合物是通过将线形聚合物链段连到一个中心上形成的。非线形嵌段共聚物可用作热塑性弹性体、硬塑料、共混增容剂、聚合物胶束等,引起了工业界的广泛关注。这类聚合物可作为模型共聚物以研究两种或更多种组分的热力学不相容性对其在溶液中或本体条件下性质的影响,而且不相容的链段在分子水平上的相分离(5~100nm)能够形成复杂的纳米结构,因此也引起了学术界的兴趣。与线形嵌段共聚物相比,非线形嵌段共聚物在组成或结构上的微小变化都会使形态发生很大的改变,这也是制备新型非线形嵌段共聚物的推动力之一。这里主要讨论用可控自由基聚合法合成非线形嵌段共聚物。 1 星型嵌段共聚物 星型嵌段共聚物的每个臂都是两嵌段或三嵌段共聚物。由于存在聚合物链连接中心,星型嵌段共聚物具有与线形两嵌段共聚物或三嵌段共聚物不同的性质。但在合成方法上,合成线形嵌段共聚物的方法也可用于星型嵌段共聚物的合成。例如,连续加料法和机理转换法等方法都可用于合成星 洪春雁 女,29岁,博士,讲师,现从事超支化聚合物和活性聚合研究。 3联系人,E2m ail:pcy@https://www.doczj.com/doc/d49558603.html, 国家自然科学基金资助项目(50173025) 2003205226收稿,2003206221接受

苯乙烯工艺流程

苯乙烯装置工艺流程叙述 一、乙苯工艺流程简述 本工艺包设计的乙苯装置界区内包括烃化反应系统(亦称烃化反应系统)、苯回收系统、乙苯回收系统、多乙苯回收系统、烷基转移反应系统(亦称反烃化反应系统)。为解决反应器在再生时停产影响,也是为了规避放大风险,烃化反应系统设计成反应器R-2101A/B、加热炉F-2101A/B、换热器E-2101A/B;E-2102A/B;E-2103A/B两套并联操作。 来自罐区的新鲜苯、油水分离器的回收苯、精馏工段回收的循环苯在T-2201苯回收塔汇合,用苯循环泵P-2201A/B泵入苯进料气化器E-2101A/B的壳程,管程的高压蒸汽将其加热而气化,气相苯分别进入两套苯换热器E-2103A/B的壳程,与管程的高温反应器出料换热而被过热。过热后的苯被分成两股:主苯流和急冷苯流。主苯流进入反应器进料加热炉F-2101A/B被加热到反应温度,进入烃化反应R-2101A/B。 界区外的原料乙醇用乙醇进料泵P-2101A/B加压,进入工艺水换热器E-2204,与苯塔回流罐底部排出的油水混合物换热回收热量,温度升至接近泡点,导入E-2102A/B乙醇蒸发器,用高压蒸汽将其气化,分段进入两台并联的烃化反应器。 在R-2101A/B中,乙醇发生脱水反应生成乙烯与水蒸汽,继而苯和乙烯发生烃化反应,生成乙苯及少量二乙苯、多乙苯等。为稳定反应器的温度,每段催化剂床层之间都有与进料乙醇蒸气相混合的急冷苯进入,使反应温度在适当范围内。反应器出料依次通过苯换热器E-2103A/B管程和苯回收塔再沸器E-2201管程被冷却后,便进入苯回收塔T-2201进行精馏分离。T-2201塔顶馏出苯、水和轻组分尾气,塔底则采出粗乙苯。罐区来的新鲜苯用新鲜苯泵P—2302A/B加压后通过乙苯/苯换热器冷E-2208与来自乙苯塔回流泵的产品热乙苯换热,进入苯塔回流罐V—2201,补充回流罐的液位。苯塔回流泵将回流罐的一部分苯打入T-2201塔顶。T-2201塔底采出的粗乙苯则送至乙苯回收塔T-2202进一步加工。 在T-2201塔顶共沸馏出的水冷凝进入回流罐V-2201,由于高温下苯与工艺水有乳化现象,将大部分是水的乳化液从回流罐底部导出,与乙醇进入反应器的量按1:1的比例排入工艺水换热器E-2204B管程,将热量交换给进料乙醇,然后进一步进入工艺水冷却器E-2205壳程,用循环水冷却到40℃-15℃消除乳化现象,进入油水分离系统,分出的工艺水经汽提脱苯后作为废热回收系统的补充水,苯则回用。 苯塔回流罐V-2201导出的气相进入苯塔尾冷器,将水蒸汽与苯进一步冷凝下来,凝液自流到V-2201底部乳化液导出管,不凝气则通过苯塔的压力控制排放到反烃化加热炉F-2102进口,进一步利用回收其中的乙烯与苯。 在乙苯塔T-2202中,塔顶气在乙苯塔冷凝器E—2207管程被软水冷凝,进入乙苯塔回流罐V—2202。一部分作为回流液打回T—2202,另一部分热乙苯通过乙苯/苯换热器E—2208将热量传给来自罐区的新鲜苯,作为本单元的精制乙苯产品而输往苯乙烯单元或罐区,E—2202中的软水则被蒸发成低压蒸汽送苯乙烯工段综合利用。 T-2202塔底采出物送入多乙苯(PEB)回收塔T-2203实现精馏分离。可循环组分二乙苯由T-2203塔顶馏出,通入PEB回收塔冷凝器E-2211管程,同壳程的水换热而被冷却冷凝。冷凝液在PEB 回流罐V-2203中实现汽/液分离。二乙苯被泵送到F—2102导入反烃化反应系统进行烷基转移反应以增产乙苯。由V-2203析出的不凝气则被PEB塔真空泵P—2206A/B抽吸,从而使二乙苯回收塔T-2203实现真空操作。T-2203塔底产物多乙苯残油送至界外。 由二乙苯回流泵P-2205A/B排出的二乙苯与来自E—2208的新鲜苯汇合,一同进入反烃化加热炉F—2102对流段预热,先后进入反烃化加热器E—2104A与反烃化换热器E—2104B,被中压蒸汽完全气化,并回收反烃化出料热量,返回F-2102对流段,被进一步加热到反烃化反应温度,再被导入反烃化反应器R-2102。在R-2102中,PEB同苯发生烷基转移反应,生成乙苯。R-2102的出料先后通过反烃化换热器E—2104B的管程和反烃化反应器出料蒸汽发生器E-2105的管程而被冷却冷凝,进

乙苯催化脱氢合成苯乙烯的工艺流程

二、乙苯催化脱氢合成苯乙烯的工艺流程 脱氢反应: 强吸热反应; 反应需要在高温下进行; 反应需要在高温条件下向反应系统供给大量的热量。 由于供热方式不同,采用的反应器型式也不同。 工业上采用的反应器型式有两种: 一种是多管等温型反应器,是以烟道气为热载体,反应器放在加热炉内,由高温烟道气,将反应所需要的热量通过管壁传递给催化剂床层。 另一种是绝热型反应器,所需要的热源是由过热水蒸气直接带入反应系统。 采用这两种不同型式反应器的工艺流程,主要差别: 脱氢部分的水蒸气用量不同; 热量的供给和回收利用方式不同。 (一)多管等温反应器脱氢部分的工艺流程 反应器构成: 是由许多耐高温的镍铬不锈钢钢管组成; 或者内衬以铜锰合金的耐热钢管组成; 管径为100~185mm; 管长为3m; 管内装填催化剂; 管外用烟道气加热(见图4-9,P182)。

多管等温反应器脱氢部分的工艺流程图见图4-10(P182)所示。 反应条件及流程: 1.原料乙苯蒸气和一定量的水蒸气混合; 2.预热温度(反应进口):540℃; 3.反应温度(反应出口):580~620℃; 4.反应产物冷却冷凝: 液体分去水后送到粗苯乙烯贮槽; 不凝气体含有90%左右的H 2,其余为CO 2和少量C 1及C 2 可作为燃料气,也可以用作氢源。 5.水蒸气与乙苯的用量比(摩尔比)为6~9:1; (等温反应器脱氢,水蒸气仅作为稀释剂用)。 6.讨论: (1)等温反应器:要使反应器达到等温,沿反应器的反应管传热速率的改变,必须与反应所需要吸收热量的递减速率的改变同步。 (2)一般情况下,出口温度可能比进口温度高出几十度(传递给催化剂床层的热量,大于反应时需要吸收的热量。) (3)催化剂床层的最佳温度分布以保持等温为好。 尾气放空烟道气排 冷却水 阻聚剂循环烟道气配比蒸汽 水燃料雾化 蒸 汽粗笨乙烯至精馏工段 12345 671图4-10 多管等温反应器乙苯脱氢工艺流程 1-脱氢反应器;2-第二预热器;3-第一预热器;4-热交换器;5-冷凝器; 6-粗乙苯贮槽;7-烟囱;8-加热炉

年产20万吨苯乙烯的初步设计

年产20万吨苯乙烯的初步设计

摘要 苯乙烯是合成聚苯乙烯的主要材料,而聚苯乙烯的用途很广;认真分析苯乙烯的性质,市场需求,原料来源及社会影响;了解苯乙烯制备过程,设计合理工艺流程;对流程过程进行物料、热量进行恒算。因此面对当今能源紧缺,高科技的新时代,新的能源是当代人们面对的最大挑战,同时面对我国的现状,合成苯乙烯是一个形势所迫的任务,同时对我国的经济发展会起到很大的促进作用。 关键词:苯乙烯,原料,用途,工艺流程

一、概述 (一)苯乙烯的性质和用途 苯乙烯是一种重要的基本有机化工原料,主要用于生产聚苯乙烯树脂(PS)、丙烯腈-丁二烯-苯乙烯(ABS)树脂、苯乙烯-丙烯腈共聚物(SAN)树脂、丁苯橡胶和丁苯胶乳(SBR\SBR胶乳)、离子交换树脂、不饱和聚酯以及苯乙烯系热塑性弹性体(如SBS)等。此外,还可用于制药、染料、农药以及选矿等行业,用途十分广泛。 1.物理性质[1] 外观与性状:无色透明油状液体。 熔点(℃): -30.6 沸点(℃): 146 相对密度(水=1): 0.91 相对蒸气密度(空气=1): 3.6 饱和蒸气压(kPa): 1.33(30.8℃) 燃烧热(kJ/mol): 4376.9 临界温度(℃): 369 临界压力(MPa): 3.81 辛醇/水分配系数的对数值: 3.2 闪点(℃): 34.4 引燃温度(℃): 490 爆炸上限%(V/V): 6.1 爆炸下限%(V/V): 1.1 2.化学性质 遇明火极易燃烧。光或存在过氧化物催化剂时,极易聚合放热导致爆炸。与氯磺酸、发烟硫酸、浓硫酸反应剧烈,有爆炸危险。有毒,对人体皮肤、眼和呼吸系统有刺激性。空气中最高容许浓度为100ppm。苯乙烯在高温下容易裂解和燃烧,生成苯、甲苯、甲烷、乙烷、碳、一氧化碳、二氧化碳和氢气等。苯乙烯蒸气与空气

苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)

苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS) 1 产品概述 苯乙烯系热塑性弹性体(又称为苯乙烯系嵌段共聚物Styreneic Block Copolymers,简称SBCs),目前是世界产量最大、与橡胶性能最为相似的一种热塑性弹性体。目前,SBCs系列品种中主要有4种类型,即:苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS);苯乙烯-异戊二烯-苯乙烯嵌段共聚物(SIS);苯乙烯-乙烯-丁烯-苯乙烯嵌段共聚物(SEBS);苯乙烯-乙烯-丙烯-苯乙烯型嵌段共聚物(SEPS)。SEBS和SEPS分别是SBS和SIS的加氢共聚物。 SBS苯乙烯类热塑性弹性体是是SBCs中产量最大(占70%以上)、成本最低、应用较广的一个品种,是以苯乙烯、丁二烯为单体的三嵌段共聚物,兼有塑料和橡胶的特性,被称为“第三代合成橡胶”。与丁苯橡胶相似,SBS可以和水、弱酸、碱等接触,具有优良的拉伸强度,表面摩擦系数大,低温性能好,电性能优良,加工性能好等特性,成为目前消费量最大的热塑性弹性体。 SBS在加工应用拥有热固性橡胶无法比拟的优势: (1)可用热塑性塑料加工设备进行加工成型,如挤压、注射、吹塑等,成型速度比传统硫化橡胶工艺快; (2)不需硫化,可省去一般热固性橡胶加工过程中的硫化工序,

因而设备投资少,生产能耗低、工艺简单,加工周期短,生产效率高,加工费用低; (3)加角余料可多次回收利用,节省资源,有利于环境保护。目前SBS主要用于橡胶制品、树脂改性剂、粘合剂和沥青改性剂四大应域。在橡胶制品方面,SBS模压制品主要用于制鞋(鞋底)工业,挤出制品主要用于胶管和胶带;作为树脂改性剂,少量SBS分别与聚丙烯(PP)、聚乙烯(PE)、聚苯乙烯(PS)共混可明显改善制品的低温性能和冲击强度;SBS作为粘合剂具有高固体物质含量、快干、耐低温的特点;SBS作为建筑沥青和道路沥青的改性剂可明显改进沥青的耐候性和耐负载性能。 目前我国SBS的生产能力21万吨/年,而国内市场的需求则已却超过了35万吨,国内市场缺口较大,产品具有良好的市场发展前景。 2 国内外市场需求现状及预测 2.1 国外市场分析 世界SBS产品工业化生产始于20世纪60年代。1963年美国Philips石油公司首次用偶联法生产出线型SBS共聚物,商品名Solprene。1965年美国Shell公司采用负离子聚合技术以三步顺序加料法开发出同类产品并实现工业化生产,商品名Kraton D。1967年花兰Philips公司开发出星型(或放射型)SBS产品,1972年美国Shell公司又开发出SBS的加氢产品(SEBS)。1973

苯乙烯流程图

课题:乙苯脱氢生产苯乙烯 授课内容: ●乙苯脱氢生产苯乙烯反应原理 ●乙苯脱氢生产苯乙烯工艺流程 知识目标: ●了解苯乙烯物理及化学性质、生产方法及用途 ●掌握乙苯脱氢生产苯乙烯反应原理 ●掌握乙苯脱氢生产苯乙烯工艺流程 能力目标: ●分析和判断影响反应过程的主要因素 ●分析和判断主副反应程度对反应产物分布的影响 思考与练习: ●乙苯脱氢生产苯乙烯反应中有哪些副反应? ●影响乙苯脱氢生产苯乙烯反应过程的主要因素有哪些? ●绘出乙苯脱氢生产苯乙烯工艺流程图 授课班级:

授课时间: 年 月 日 第二节 乙苯脱氢生产苯乙烯 一、概述 1.苯乙烯的性质和用途 苯乙烯的化学结构式如下: 苯乙烯又名乙烯基苯,系无色至黄色的油状液体。具有高折射性和特殊芳香气味。沸点为145 ℃,凝固点 -30.4℃,难溶于水,能溶于甲醇、乙酸及乙醚等溶剂。 苯乙烯在高温下容易裂解和燃烧,生成苯、甲苯、甲烷、乙烷、碳、一氧化碳、二氧化碳和氢气等。苯乙烯蒸气与空气能形成爆炸混合物,其爆炸范围为1.1%~6.01%。 苯乙烯具有乙烯基烯烃的性质,反应性能极强,如氧化、还原、氯化等反应均可进行,并能与卤化氢发生加成反应。苯乙烯暴露于空气中,易被氧化成醛、酮类。苯乙烯易自聚生成聚苯乙烯(PS )树脂。也易与其他含双键的不饱和化合物共聚。 苯乙烯最大用途是生产聚苯乙烯,另外苯乙烯与丁二烯、丙烯腈共聚,其共聚物可用以生产 ABS 工程塑料;与丙烯腈共聚可得AS 树脂;与丁二烯共聚可生成丁苯乳胶或合成丁苯橡胶。此外,苯乙烯还广泛被用于制药、涂料、纺织等工业。 2.生产方法 工业生产苯乙烯的方法除传统乙苯脱氢的方法外,出现了乙苯和丙烯共氧化联产苯乙烯和环氧丙烷工艺、乙苯气相脱氢工艺等新的工业生产路线,同时积极探索以甲苯和裂解汽油等新的原料路线。迄今工业上乙苯直接脱氢法生产的苯乙烯占世界总生产能力的 90%,仍然是目前生产苯乙烯的主要方法,其次为乙苯和丙烯的共氧化法。本节主要介绍乙苯脱氢法生产苯乙烯。 二、反应原理 1.主、副反应 CH=CH 2 CH=CH 2

苯乙烯

年产78万吨苯乙烯工艺设计 摘要 以年产78万吨苯乙烯为生产目标,采用乙烯与苯烃化反应得到乙苯,再由乙苯脱氢制得苯乙烯的工艺方法,对整个工段进行工艺设计和设备选型。针对设计要求对整个工艺流程进行物料衡算,热量衡算,然后根据物料平衡分别对烃化反应塔,乙苯分离塔,乙苯精馏塔,乙苯/苯乙烯塔,苯乙烯精馏塔,乙苯回收塔的进料量,塔顶、塔底出料量进行物料衡算。根据热力学定律,对各设备进行热量衡算,并根据设计要求,对设备理论上进行了尺寸计算及选择。使设备满足设计要求,达到所需要的工艺条件。本着理论联系实际的精神。本文对整个工艺流程及车间生产进行了经济技术分析,其中包括各部件的材质、用料量的选择的经济评价、设备投机及投资回收期的计算。 一、原料及产品概述 1. 原料概述 生产苯乙烯的原料是乙烯和苯。 (1).性质 乙烯是无色,稍有气味的气体。分子式C2H4,相对分子量28。不溶于水,微溶于乙醇、酮、苯,溶于醚,溶于四氯化碳等有机溶剂。易燃易爆,具有较强的麻醉作用,吸入高浓度乙烯可立即引起意识丧失。能发生氧化、加成、聚合反应等化学反应。 苯在常温下为无色、有甜味的透明液体,并具有强烈的芳香气味。分子式C6H6,相对分子量78。难溶于水,易溶于有机溶剂,本身也可作为有机溶剂。可燃,有毒,是一种致癌物质。能发生氧化、取代、加成反应等化学反应。 (2).用途 乙烯是合成纤维、合成橡胶、合成塑料(聚乙烯及聚氯乙烯)、合成乙醇的基本化工原料,也用于制造氯乙烯、苯乙烯、环氧乙烷、醋酸、乙醛、乙醇和炸药等。 苯主要用于合成苯乙烯,聚酰胺树脂(环己烷),苯酚,氯化苯,硝基苯,烷基苯,顺酐,农用化学品,其它医药、轻工及橡胶制品业等。另外也是一种重要的有机溶剂。 2 产品概述 生产产品为纯度大于99.7%的苯乙烯。

通过ATRP制备嵌段共聚物

通过ATRP制备嵌段共聚物的研究综述 摘要:原子转移自由基聚合(ATRP)是合成嵌段共聚物的有效途径。本文介绍了原子转移自由基聚合(ATRP)的基本原理以及ATRP在反应体系,实验方案的研究进展,并且概述了近年来采用ATRP制备嵌段共聚物的研究进展。 关键词:原子转移自由基聚合,机理,反应体系,嵌段共聚物 Abstract: The atom transfer radical polymerization (ATRP) is an effective way to synthesize block copolymers. This article describes the atom transfer radical polymerization (ATRP) as well as the basic principles of ATRP in the reaction system, the experimental research program, and an overview of recent years the use of block copolymers prepared by ATRP Research. Keywords: atom transfer radical polymerization mechanism of the reaction system, the block copolymer 1 引言: ATRP(Atom Transfer Radical Polymerization)聚合反应以过渡金属作为催化剂,使卤原子实现可逆转移,包括卤原子从烷基卤化物到过渡金属络合物(盐),再从过渡金属络合物(盐)转移至自由基的反复循环的原子转移过程,伴随着自由基活性(增长链自由基)种和大分子有机卤化物休眠种之间的可逆转换平衡反应,并抑制着自由基活性种在较低的浓度,减少增长链自由基之间的不可逆双基终止副反应,使聚合反应得到有效的控制。ATRP的核心是引发剂卤代烷R-X与单体中C=C键加成,加成物中C-X键断裂产生自由基引发聚合。示意图如下: 引发 在引发阶段,处于低氧化态的转移金属卤化物Mtn从有机卤化物R-X中吸取卤原子X,生成引发自由基R·及处于高氧化态的金属卤化物Mtn+1-X。自由基R·可引发单体聚合,形成链自由基R-M·。R-M·可从高氧化态的金属络合物Mtn+1-X中重新夺取卤原子而发生钝化反应,形成R-M-X,并将高氧化态的金属卤化物还原为低氧化态Mtn。

丁苯橡胶共混改性

---------------材料科学与工程专业成型加工工艺课程设计题目:丁苯橡胶的增强改性 姓名:季赛 学号: 150412108 班级: 2012级材料(1)班 指导老师:张建耀职称:高级工程师\教授 起止日期: 2015.11.23——2015.12.6

目录 1.设计背景 (4) 1.1改性加工目的 (4) 1.2乳聚丁苯橡胶 (6) 1.3溶聚丁苯橡胶 (6) 1.4粉末丁苯橡胶 (8) 2.丁苯橡胶增强改性加工工艺原理 (8) 2.1炭黑增强丁苯橡胶应用 (8) 2.2炭黑的补强机理 (8) 3.丁苯橡胶改性原料、助剂及设备介绍 (9) 3.1原料及助剂 (9) 1)原料 (9) 2)炭黑 (10) 3)硬脂酸 (10) 4)氧化锌 (11) 6)防老剂 (11) 7)石蜡油 (11) 8)防焦剂 (12) 9)促进剂 (12) 10)硫化剂 (13) 3.2主要设备与仪器 (13) 3.2.1混炼机 (13) 3.2.2拉伸试验机 (14) 4.加工工艺及加工流程图 (14) 4.1 配方设计 (14) 4.2加工方法 (15) 1)炼前处理 (15) 2)炭黑-橡胶混炼 (15) 3)后加工工艺 (16)

4)强度测量 (16) 4.2产品性能测试项目、性能及测试标准 (16) 1)性能指标 (16) 2)性能参数标准 (18) 4.3加工流程图 (18) 5. 设计总结 (18)

1.设计背景 丁苯橡胶(SBR) ,又称聚苯乙烯丁二烯共聚物。其物理机构性能,加工性能及制品的使用性能接近于天然橡胶,有些性能如耐磨、耐热、耐老化及硫化速度较天然橡胶更为优良,可与天然橡胶及多种合成橡胶并用,广泛用于轮胎、胶带、胶管、电线电缆、医疗器具及各种橡胶制品的生产等领域,是最大的通用合成橡胶品种,也是最早实现工业化生产的橡胶品种之一。 中文名: 丁苯橡胶外文名: Polymerized Styrene Butadiene Rubber 密度: 1.04 g/mL 性状: 白色疏松柱状固体 1.1改性加工目的 炭黑增强丁苯橡胶是以橡胶为基体,以炭黑颗粒为增强相的复合材料。炭黑在橡胶体系中起补强和填充作用,以改善橡胶制品性能。纯丁苯橡胶拉伸强度只有3.5MPa,没有应用价值,加入炭黑补强后,其拉伸强度提高到25MPa左右。 按聚合工艺,丁苯橡胶分为乳聚丁苯橡胶(ESBR)和溶聚丁苯橡胶(SSBR)。与溶聚丁苯橡胶工艺相比,乳聚丁苯橡胶工艺在节约成本方面更占优势,全球丁苯橡胶装置约有75%的产能是以乳聚丁苯橡胶工艺为基础的。乳聚丁苯橡胶具有良好的综合性能,工艺成熟,应用广泛,产能、产量和消费量在丁苯橡胶中均占首位。充油丁苯橡胶具有加工性能好、生热低、低温屈挠性好等优点,用于胎面橡胶时具有优异的牵引性能和耐磨性,充油后橡胶可塑性增强,易于混炼,同时可降低成本,提高产量。目前,世界上充油丁苯橡胶约占丁苯橡胶总产量的 50-60%。 乳聚丁苯橡胶,由丁二烯、苯乙烯为主要单体,配以其他辅助化工原料,在一定工艺条件下,经乳液法聚合首先生成丁苯胶浆,脱除胶浆中未转化的单体后,再经凝聚、干燥等工序而生产出产品胶。 溶聚丁苯橡胶,由丁二烯、苯乙烯为主要单体,在烃类溶剂中,采用有机锂化合物作为引发剂,引发阴离子聚合制得的聚合物胶液,加入抗氧剂等助剂后,经凝聚、干燥等工序而生产出产品胶。

苯乙烯合成方法-推荐下载

苯乙烯生产方法 目前,世界上苯乙烯的生产方法主要有乙苯脱氢法、环氧丙烷-苯乙烯联产法、热解汽 油抽提蒸馏回收法以及丁二烯合成法等。 1 乙苯脱氢法 乙苯脱氢法是目前国内外生产苯乙烯的主要方法,其生产能力约占世界苯乙烯总生产能力 的90%。它又包括乙苯催化脱氢和乙苯氧化脱氢两种生产工艺。 1.1 乙苯氧化脱氢法 乙苯氧化脱氢法是目前尚处于研究阶段生产苯乙烯的方法。在催化剂和 过热蒸汽的存在下进行氧化脱氢反应的,即: 2C 6H 5C 2H 5 + O 2↑ → 2C 6H 5CHCH 2 + 2H 2O 此方法可以从乙苯直接生成苯乙烯,还可以利用氧化反应放出的热量产生 蒸汽,反应温度也较催化脱氢为低。研究的催化剂种类较多,如氧化镉,氧化 锗,钨、铬、铌、钾、锂等混合氧化物,钼酸铵、硫化钼及载在氧化镁上的钴、 钼等。但这些催化剂在多处于研究阶段,尚不具备工业化条件,有待进一步研 究开发。 1.2 乙苯催化脱氢法 这是目前生产苯乙烯的主要方法,目前世界上大约90%的苯乙烯采用该方 法生产。它以乙苯为原料,在催化剂的作用下脱氢生成苯乙烯和氢气。反应方 程式如下: C 6H 5C 2H 5 → C 6H 5CHCH 2 + H 2↑ 同时还有副反应发生,如裂解反应和加氢裂解反应: C 6H 5C 2H 5 + H 2↑ → C 6H 5CH 3+ CH 4 C 6H 5C 2H 5 + H 2↑ → C 6H 6 + CH 3CH 3 C 6H 5C 2H 5 → C 6H 6 + CH 2CH 2 高温裂解生碳: C 6H 5C 2H 5 → 8C + 5H 2↑ 在水蒸汽存在下,发生水蒸汽的转化反应: C 6H 5C 2H 5 + 2H 2O → C 6H 5CH 3 + CO 2 + 3H 2 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标高等,要求技术交底。管线敷设技术包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内,强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

相关主题
文本预览
相关文档 最新文档