当前位置:文档之家› 超声平面非聚焦探头的声场特性

超声平面非聚焦探头的声场特性

超声平面非聚焦探头的声场特性
超声平面非聚焦探头的声场特性

超声平面非聚焦探头的声场特性

作者:黄磊

作者单位:中国石油天然气集团公司管材研究所,陕西,西安,710065

刊名:

无损探伤

英文刊名:NONDESTRUCTIVE INSPECTION

年,卷(期):2005,29(3)

被引用次数:1次

参考文献(2条)

1.中国机械工程学会无损检测学会超声波探伤 1989

2.声学检测技术 1988

引证文献(1条)

1.陆唯一.张琦.阙沛文石油管道检测中超声探头的选择及声场分析[期刊论文]-传感器与微系统 2007(8)本文链接:https://www.doczj.com/doc/dd3586931.html,/Periodical_wsts200503004.aspx

声学的基本性质和室内声场

声学基础 第一章声音的基本性质 1.1 声音的产生与传播 声音是人耳通过听觉神经对空气振动的主观感受。 声音产生于物体的振动,例如扬声器的纸盆、拨动的琴弦等等。这些振动的物体称之为声源。声源发声后,必须经过一定的介质才能向外传播。这种介质可以是气体,也可以是液体和固体。在受到声源振动的干扰后,介质的分子也随之发生振动,从而使能量向外传播。但必须指出,介质的分子只是在其未被扰动前的平衡位置附近作来回振动,并没有随声波一起向外移动。介质分子的振动传到人耳时,将引起人耳耳膜的振动,最终通过听觉神经而产生声音的感觉。例如,扬声器的纸盆,当音圈通过交变电流时就会产生振动。这种振动引起邻近空气质点疏密状态的变化,又随即沿着介质依次传向较远的质点,最终到达接收者。可以看出,在声波的传播过程中,空气质点的振动方向与波的传播方向相平行,所以声波是纵波。 扬声器纸盒就相当于上图中的活塞 在空气中,声音就是振动在空气中的传播,我们称这为声波。声波可以在气体、固体、液体中传播,但不能在真空中传播。 1.2 声波的频率、波长与速度 当声波通过弹性介质传播时,介质质点在其平衡位置附近作来回振动。质点完成一次完全振动所经历的时间称为周期,记为T,单位是秒(s)。质点在1秒内完成完全振动的次数称为频率,记作f,单位为赫兹(Hz),它是周期的倒数,即: f=1/T 介质质点振动的频率即声源振动的频率。频率决定了声音的音调。高频声音是高音调,低频声音是低音调。人耳能够听到的声波的频率范围约在20—20000 Hz之间。低于20Hz的声波称为次声波,高于20000Hz的称为超声波。次声波与超声波都不能使人产生听感觉。 声波在其传播途径上,相邻两个同相位质点之间的距离称为波长,记为λ,单位是米(m)。或者说,波长是声波在每一次完全振动周期中所传播的距离。

超声波探头

第三章探伤仪、探头和试块3.1第一节:探伤仪 3.2 探头 一、压电效应与压电材料 某些单晶体和多晶体陶瓷材料在应力(压缩力和拉伸力)作用下产生异种电荷向正反两面集中而在晶体内产生电场,这种效应称为正压电效应。相反,当这些单晶体和多晶体陶瓷材料处于交变电场中时,产生压缩或拉伸的应力和应变,这种效应称为负压电效应,如图所示。 负压电效应产生超声波,正压电效应接收超声波并转换成电信号。 常用的压电单晶有石英又称二氧化硅(SiO2)、硫酸锂(LiS04H20)、碘酸锂LiIO3)、铌酸锂(LiNbO3)等,除石英外,其余几种人工培养的单晶制造工艺复杂、成本高。 常用的压电陶瓷有钛酸钡(BaTi03)、锆钛酸铅(PZT)、钛酸铅(PbTiO3)、偏铌酸铅(P bNb2O4)等。 二、探头的编号方法 三、探头的基本结构 压电超声探头的种类繁多,用途各异,但它们的基本结构有共同之处,如图所示。它们一般均由晶片、阻尼块、保护膜(对斜探头来说是有机玻璃透声楔)组成。此外,还必须有与仪器相连接的高频电缆插件、支架、外壳等。 四、直探头 (一)直探头的保护膜

1.压电陶瓷晶片通常均由保护膜来保护晶片不与工件直接接触以免磨损。常用保护膜 有硬性和软性两类。氧化铝(刚玉)、陶瓷片及某些金属都属于硬性保护膜,它们适用于工件表面光洁度较高、且平整的情况。用于粗糙表面时声能损耗达20~30dB。 2.软性保护膜有聚胺酯软性塑料等,用于表面光洁度不高或有一定曲率的表面时,可 改善声耦合,提高声能传递效率,且探伤结果的重复性较好,磨损后易于更换,它对声能的损耗达6~7dB。 3.保护膜材料应耐磨、衰减小、厚度适当。为有利于阻抗匹配,其声阻抗Zm应满足 一定要求。 4.试验表明:所有固体保护膜对发射声波都会产生一定的畸变,使分辨率变差、灵敏 度降低,其中硬保护膜比软保护膜更为严重。因此,应根据实际使用需要选用探头及其保护膜。与陶瓷晶片相比,石英晶片不易磨损,故所有石英晶片探头都不加保护膜。 (二)直探头的吸收块 为提高晶片发射效率,其厚度均应保证晶片在共振状态下工作,但共振周期过长或晶片背面的振动干扰都会导致脉冲变宽、盲区增大。为此,在晶片背面充填吸收这类噪声能量的阻尼材料,使干扰声能迅速耗散,降低探头本身的杂乱的信号。目前,常用的阻尼材料为环氧树脂和钨粉。 五、斜探头 (一)结构与类型 (二)透声楔 斜探头都习惯于用有机玻璃作斜楔,以形成一个所需的声波入射角,并达到波型转换的目的。 一发一收型分割式双直探头和双斜探头也都以有机玻璃作为透声楔,这是因为有机玻璃声学

超声波特性

2.1 超声波的定义 波是由某一点开始的扰动所引起的,并按预定的方式传播或传输到其他点上。声波是一种弹性机械波。人们所感觉到的声音是机械波传到人耳引起耳膜振动的反应,能引起人们听觉的机械波频率在20Hz~20KHz ,超声波是频率大于20KHz 的机械波。 在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。 2.2超声波的物理特性 当声波从一种介质传播到另一种介质时,在两介质的分界面上,一部分能量反射回原介质,称为反射波;另一部分能量透射过分界面,在另一个介质内部继续传播,称为折射波,如图2.1所示,图中L 为入射波,S ?为反射横波,L ?为反射纵波,L ?为折射纵波,S ?为折射横波。 L 图2.1超声波的反射、折射及其波形转换 这些物理现象均遵守反射定律、折射定律。除了有纵波的反射波折射波以外,还有横波的反射和折射。 因为声波是借助于传播介质中的质点运动而传播的,其传播方向与其振动方向一致,所以空气中的声波属于纵向振动的弹性机械波。在理想介质中,超声波的波动方程描述方法与电磁波是类似的。描述简谐声波向X 正方向传播的质点位移运动可表示为: ()cos()A A x t kx ω=+ (2.1) 0()ax A x A e -= (2.2) 式中,()A x 为振幅即质点的位移,0A 为常数,ω为角频率,t 为时间,x 为传播距离,2/k πλ=为波数,λ为波长,α为衰减系数。衰减系数与声波所在介质和频率关系: 2af α= (2.3)

式(2.3)中,a 为介质常数,f 为振动频率。 2.2.1超声波的衰减 从理论上讲,超声波衰减主要有三个方面: (1) 由声速扩展引起的衰减 在声波的传播过程中,随着传播距离的增大,非平面声波的声速不断扩展增大,因此单位面积上的声压随距离的增大而减弱,这种衰减称为扩散衰减。 (2) 由散射引起的衰减 由于实际材料不可能是绝对均匀的,例如材料中外来杂质金属中的第二相析出、晶粒的任意取向等均会导致整个材料声特性阻抗不均,从而引起声的散射。被散射的超声波在介质中沿着复杂的路径传播下去,最终变成热能,这种衰减称为散射衰减。 (3) 由介质的吸收引起的衰减 超声波在介质中传播时,内于介质的粘滞性而造成质点之间的内摩擦,从而使一部分声能转变成热能。同时,由于介质的热传导,介质的稠密和稀疏部分之间进行热交换,从而导致声能的损耗,以及由于分子驰豫造成的吸收,这些都是介质的吸收现象,这种衰减称为吸收衰减。 扩散衰减仅取决于波的几何形状而与传播介质的性质无关。对于大多数金属和固体介质来说,通常所说的超声波的衰减,即p(衰减系数)表征的衰减仅包括散射衰减和吸收衰减而不包括扩散衰减。因此,空气介质的衰减系数也由两部分组成,可由下式表示: 22222238211()3v P f f K C C C C πηπβρρ=++ (2.4) 式中:K :热传导系数 f :超声波频率 η:动力粘滞系数 C :超声波传播速度 v C :定容比热 p C :定压比热 ρ:传播介质密度 式(2.4)中第一项是由内摩擦引起的衰减系数,第二项是由热传导引起的衰减系数,由于后者比前者小得多,故在忽略热传导引起的超声波衰减的情况下,衰减系数可以由下式表示: 223 83f C πηβρ= (2.5) 把C = 2.5)可得: 3223 322283()M f R T β πηργ=?? (2.6) 由式(2.6)可知:温度一定时,η、 ρ、T 均一定,衰减系数与频率的平方成正比;频率越高,衰减的系数就越大,传播的距离也就越短。在实际应用中,一般选

超声波的声场特性

第二章超声波声场的特性 第一节波源辐射声场 超声检测或超声相控阵成像检测设备都是工作于主动检测方式。即由作为生源的超声换能器或阵列超声换能器向被检测物体内发射超声波,然后由接收换能器或阵列换能器接收载有被检测物体内缺陷或组织信息的超声回波信号,再通过信息提取与处理,实现对被检测物体内部缺陷或结构的评估与成像。 2.1 波动方程 物理声学中的波动方程是研究超声(或阵列)换能器的声场特性最基本的原理和方程。若被超声检测的物体为金属材质,大部分区域被认为各点的声速和密度是一致的,被认为是均匀体,只是对于缺陷或组织不均匀区域则是不一致的;若被检测物体为生物体,物体内各点的声速与密度存在起伏,并非均匀一致。本书只讨论在工程应用的超声相控阵成像检测技术,因此仅讨论在均匀介质中的声场。在声速与密度非均匀的介质中,声波传播过程用非均匀介质中声波方程来加以描述。非均匀介质中波动方程为 ?2P?1 C2e2P et2 =1 ρ ?ρ??P(式2-1) 式中,P是声强,ρ是介质密度,c是声波的速度,▽是梯度算子。假设声速和密度较之平均声速c0和平均密度ρ0有微小偏移,即 ρ=ρ0+?ρc=c0+?c 其中?ρ<<ρ0,?c<

焊缝探伤超声波探头的选择方案参考

焊缝探伤超声波探头的选择方案参考 编号被测工件厚度选择探头和斜率选择探头和斜率 14—5mm6×6 K3 不锈钢:1.25MHz 铸铁:0.5—2.5 MHz 普通钢:5MHz 26—8mm8×8 K3 39—10mm9×9 K3 411—12mm9×9 K2.5 513—16 mm9×9 K2 617—25 mm13×13 K2 726—30 mm13×13 K2.5 831—46 mm13×13 K1.5 947—120 mm13×13( K2—K1) 10121—400 mm18×18 ( K2—K1) 20×20 ( K2—K1) 超声波探伤在无损检测焊接质量中的作用 焊缝检验方法: 1,外观检查. 2,致密性试验和水压强度试验. 3,焊缝射线照相. 4,超声波探伤. 5,磁力探伤. 6,渗透探伤.关于返修规定:具体情况具体对待,总之要力争减少返修次数在厂房建设及设备安装中大量使用钢结构,钢结构的焊接质量十分重要,无损检测是保证钢结构焊接质量的重要方法。 无损检测的常规方法有直接用肉眼检查的宏观检验和用射线照相探伤、超声波探伤、磁粉探伤、渗透探伤、涡流探伤等仪器检测。肉眼宏观检测可以不使用任何仪器和设备,但肉眼不能穿透工件来检查工件内部缺陷,而射线照相等方法则可以通过各种各样的仪器或设备来进行检测,既可以检查肉眼不能检查的工件内部缺陷,也可以大大提高检测的准确性和可靠性。至于用什么方法来进行无损检测,这需根据工件的情况和检测的目的来确定。 那么什么又叫超声波呢?声波频率超过人耳听觉,频率比20千赫兹高的声波叫超声波。用于探伤的超声波,频率为0.4-25兆赫兹,其中用得最多的是1-5兆赫兹。利用声音来检测物体的好坏,这种方法早已被人们所采用。例如,用手拍拍西瓜听听是否熟了;医生敲敲病人的胸部,检验内脏是否正常;用手敲敲瓷碗,看看瓷碗是否坏了等等。但这些依靠人的听觉来判断声响的检测法,比声响法要客观和准确,而且也比较容易作出定量的表示。由于超声波探伤具有探测距离大,探伤装置体积小,重量轻,便于携带到现场探伤,检测速度快,而且探伤中只消耗耦合剂和磨损探头,总的检测费用较低等特点,目前建筑业市场主要采用此种方法进行检测。

声场设计依据数值

1.扩声系统设计指标 根据会议现场的建筑环境,节目类型及音源动态要求,现行的多功能厅,报告厅会议室等,都按照《厅堂扩声系统声学特性指标》 GYJ25-86 的语言兼音乐扩声一级标设计,设计的指标如下: 最大声压级(空场稳态,准峰值): 125~4000 Hz,平均≥98dB 传输频率特性:125~4000Hz,≤4dB 传声增益:125~4000Hz,≥8dB 声场不均匀度: 100Hz≤8dB, 1000 Hz~6300 Hz≤6dB 噪声级:≤NR25 (扩声系统) 2.专业扩声系统术语解释 由于电子技术的发展,扩声系统中电子设备的频率响应和相位响应处理技术已经达到很高的水平,影响扩声系统还原性能的主要瓶颈是换能器(扬声器)的失真,因此扬声器是决定扩声系统设计指标和品质因素的重点,换言之,扩声系统的预期指标与扬声器的规格参数息息相关。 3.频响范围 频响范围由频率范围与频率响应组成:频率范围 指电子设备最低有效重放信号频率与最高有效重放信 号频率之间的范围,一般采用图表形式表示音箱的相对幅 度和频率的函数关系(频率响应图)。左图是某音箱理想 的频率范围: 60Hz~20KHz@-3dB;频率响应指将一个恒 压输出的音频信号与系统相连接时,音箱产生的声压随频 率变化而发生增大或衰减,相位随频率发生变化的现象, 这种声压,相位频率的相关变化关系称为频率响应,单位 为分贝(dB)。

声压与相位滞后随频率变化的曲线称为频率特性。这是考察音箱性能优劣的一个重要指标,它与音箱的性价有着直接的关系,其分贝值越小说明音箱的频响曲线越平坦、失真越小、性能越高。人耳可分辨的频响不平坦程度因人及节目内容而异,大多数人对同一节目的频响变化如果小于 2~4dB就不易觉察。 选择音箱时应是扩音系统频响范围越大越好,但也必须是平坦的,两端衰减量不大于 3dB才有意义。 声压Sound Pressure:有声波产生时,传播媒质中的压力与静压的差值。单位为帕斯卡,简称帕(Pa)。 声功率:单位时间内通过某一面积的声能,单位为W(瓦)。 声压级Sound Pressure Level:声压与基准声压的比值以10为底的对数乘以2,通常以分贝(dB)为单位,基准声压必须指明。功放的功率Power:功放的单位是W(瓦),容量的大小与重放信号的大小、频率范围、负载阻抗、以及可承受的失真电平有关。为了制定功率的测试标准,联邦贸易委员会(FTC)颁布了以输入信号为20Hz~20KHz,失真低于1%的长时间测试标准,一种是使用“单音短脉冲触发”的方法在以下频率进行: 20Hz-0.05秒脉冲信号

第2章 超声波发射声场与规则反射体的回波声压

第二章超声波发射声场与规则 反射体的回波声压 超声波探头(波源)发射的超声场,具有特殊的结构。只有当缺陷位于超声场内时,才有有可能被发现。 由于液体介质中的声压可以进行线性叠加,并且测试比较方便。因此对声场的理论分析研究常常从液体介质入手,然后在一定条件下过渡到固体介质。 又由于实际探伤中广泛应用反射法,因此本章在讨论了超声波发射声场以后,还讨论了各种规则反射体的回波声压。 第一节纵波发射声场 一、圆盘波源辐射的纵波声场 1.波源轴线上声压分布 在不考虑介质衰减的条件下,图2.1所示的液体介质中圆盘源上一点波源ds辐射的球面波在波源轴线上Q点引起的声压为 式中 P o——波源的起始声压; d s——点波源的面积; λ——波长; r——点波源至Q点的距离; κ———波数,κ=ω/c=2π/λ; ω——圆频率,ω=2πf;‘ t——时间。 根据波的迭加原理,作活塞振动的圆盘波 源各点波源在轴线上Q点引起的声压可以线性迭加,所以对整个波源面积积分就可以得到波源轴线上的任意一点声压为 其声压幅值为 (2.1) 式中 R s—波源半径; χ——轴线上Q点至波源的距离。 上述声压公式比较复杂,使用不便,特作如下简化。 当χ≥2R,时,根据牛顿二项式将(2.1)式 简化为 (2.2) 根据sinθ≈θ(θ很小时)上式可简化为 (2.3) 式中 Fs——波源面积, (2.3)式表明,当χ≥3R;/A时,圆盘源轴线上的声压与距离成反比,与波源面积成正比。 波源轴线上的声压随距离变化的情况如图2.2所示。

(1)近场区:波源附近由于波的干涉而出现一系列声压极大极小值的区域,称为超声场的近场区,又叫菲涅耳区。近场区声压分布不均,是由于波源各点至轴线上某点的距离不同,存在波程差,互相迭加时存在位相差而互相干涉,使某些地方声压互相加强,另一些地方互相减弱,于是就出现声压极大极小值的点。 波源轴线上最后一个声压极大值至波源的距离称为近场区长度,用N表示。 声压P有极大值,化简得极大值对应的距 离为 式中n=O、1、2、3、……<(D s-一x)/2λ的正整数,共有n+1个极大值,其中n=0为最后一个极大值。因此近场长度为 (2.4) 声压P有极小值,化简得极小值对应的距离为 式中,n=0、1、2、3、……N的区域称为远场区,又叫富琅和费区。远场区轴线上的声压随距离增加单调减少。当x>3N时,声压与距离成反比,近似球面波的规律,P=PoFs/λx.这是因为距离χ足够大时,波源各点至轴线上某一点的波程差很小,引起的相位差也很小,这样干涉现象可略去不计。所以远场区轴线上不会出现声压极大极小值。 2.波束指向性和半扩散角 至波源充分远处任意一点的声压如图2.3所示。 点波源d s在至波源距离充分远处任意一点M(r,O)处引起的声压为 整个圆盘源在点M(r,θ)处引起的总声压幅值为 (2.5) 式中 r——点M(r,θ)至波源中心的距离; θ——r与波源轴线的夹角;

超声波探头知识分享

超声波探头

第三章探伤仪、探头和试块 3.1第一节:探伤仪 3.2 探头 一、压电效应与压电材料 某些单晶体和多晶体陶瓷材料在应力(压缩力和拉伸力)作用下产生异种电荷向正反两面集中而在晶体内产生电场,这种效应称为正压电效应。相反,当这些单晶体和多晶体陶瓷材料处于交变电场中时,产生压缩或拉伸的应力和应变,这种效应称为负压电效应,如图所示。 负压电效应产生超声波,正压电效应接收超声波并转换成电信号。 常用的压电单晶有石英又称二氧化硅(SiO2)、硫酸锂(LiS04H20)、碘酸锂LiIO3)、铌酸锂(LiNbO3)等,除石英外,其余几种人工培养的单晶制造工艺复杂、成本高。 常用的压电陶瓷有钛酸钡(BaTi03)、锆钛酸铅(PZT)、钛酸铅(PbTiO 3)、偏铌酸铅(PbNb2O4)等。 二、探头的编号方法 三、探头的基本结构 压电超声探头的种类繁多,用途各异,但它们的基本结构有共同之处,如图所示。它们一般均由晶片、阻尼块、保护膜(对斜探头来说是有机玻璃透声楔)组成。此外,还必须有与仪器相连接的高频电缆插件、支架、外壳等。

四、直探头 (一)直探头的保护膜 1.压电陶瓷晶片通常均由保护膜来保护晶片不与工件直接接触以免磨损。 常用保护膜有硬性和软性两类。氧化铝(刚玉)、陶瓷片及某些金属都属于硬性保护膜,它们适用于工件表面光洁度较高、且平整的情况。用于粗糙表面时声能损耗达20~30dB。 2.软性保护膜有聚胺酯软性塑料等,用于表面光洁度不高或有一定曲率的 表面时,可改善声耦合,提高声能传递效率,且探伤结果的重复性较好,磨损后易于更换,它对声能的损耗达6~7dB。 3.保护膜材料应耐磨、衰减小、厚度适当。为有利于阻抗匹配,其声阻抗 Zm应满足一定要求。 4.试验表明:所有固体保护膜对发射声波都会产生一定的畸变,使分辨率 变差、灵敏度降低,其中硬保护膜比软保护膜更为严重。因此,应根据实际使用需要选用探头及其保护膜。与陶瓷晶片相比,石英晶片不易磨损,故所有石英晶片探头都不加保护膜。 (二)直探头的吸收块 为提高晶片发射效率,其厚度均应保证晶片在共振状态下工作,但共振周期过长或晶片背面的振动干扰都会导致脉冲变宽、盲区增大。为此,在晶片背面充填吸收这类噪声能量的阻尼材料,使干扰声能迅速耗散,降低探头本身的杂乱的信号。目前,常用的阻尼材料为环氧树脂和钨粉。 五、斜探头 (一)结构与类型

超声波探头-UTIII

第一节超声波探头 一.以构造分类 1.直探头: 单晶纵波直探头双晶纵波直探头 2.斜探头: 单晶横波斜探头α1<αL<αⅡ,双晶横波斜探头 单晶纵波斜探头αL<α1为小角度纵波斜探头 αL在α1附近为爬波探头 爬波探头;沿工件表面传输的纵波,速度快、能量大、波长长探测深度较表面波深,对工件表面光洁度要求较表面波松。(频率2.5MHZ波长约 2.4mm,讲义附件11、12、17题部分答案)。 3.带曲率探头: 周向曲率径向曲率。 周向曲率探头适合---无缝钢管、直缝焊管、筒型锻件、轴类工件等轴向缺陷的检测。工件直径小于2000mm时为保证耦合良好探头都需磨周向曲率。 径向曲率探头适合---无缝钢管、钢管对接焊缝、筒型锻件、轴类工件等径向缺陷的检测。工件直径小于600mm时为保证耦合良好探头都需磨径向曲率。 4.聚焦探头: 点聚焦线聚焦。 5.表面波探头:(当纵波入射角大于或等于第二临界角,既横波折射角度等于900形成表面波). 沿工件表面传输的横波,速度慢、能量低、波长短探测深度较爬波浅,对工件表面光洁度要求较爬波严格。 第一章“波的类型”中学到:表面波探伤只能发现距工件表面两倍波长深度内的缺陷。(频率2.5MHZ波长约1.3mm,讲义附件11、12题部分答

案)。 二.以压电晶体分类: 三.压电材料的主要性能参数: 1.压电应变常数d33: d33=?t/U在压电晶片上加U这么大的应力,压电晶片在厚度上发生了?t的变化量,d33越大,发射灵敏度越高(82页最下一行错)。 2.压电电压常数g33: g33=UP/P在压电晶片上加P这么大的应力.在压电晶片上产生UP这么大的电压,g33越大,接收灵敏度越高。 3.介电常数ε: ε=Ct/A[C-电容、t-极板距离(晶片厚度)、A-极板面积(晶片面积)]; C小→ε小→充、放电时间短.频率高。 4.机电偶合系数K: 表示压电材料机械能(声能)与电能之间的转换效率。 对于正压电效应:K=转换的电能/输入的机械能。

EASE声场分析说明教学提纲

E A S E声场分析说明

声场分析 计算机模拟声场分析 (3) 1. EASE 4.3电脑设计系统简介 (3) 2. 分析依据: (3) 3. 电视电话会议室声场分析 (5) 4. 电视电话会议室分析结果 (12) 5. 作战指挥室声场分析 (13) 6. 作战指挥室分析结果 (20)

计算机模拟声场分析 为使武警水电会场声学方案设计更好地符合实际的效果,运用当代先进的计算机模拟技术,根据实际尺寸建立计算机建筑模型,对方案设计的音响效果进行计算机模拟验证,以确认设计的合理性,以及能满足技术要求,达到预期效果。 设计运用的是著名的声场分析软件——EASE4.3。 1.EASE 4.3电脑设计系统简介 EASE(全称ELECHO ACOUSTIC SIMNLATOR FOR ENGINEER)是由德国人在九十年代中期开发的通用数据库,现已成为世界上最为广泛使用的声学设计软件。 EASE是采用计算机CAD技术进行模拟声场的模型建设、声学设计、声学计算与声学分析的综合设计软件。 我们现在使用的是EASE 4.3版本,主要用它进行模拟验算的声学参数有: ?声场声压的分布——对声场的均匀度、频率响应及分布进行分析计算?声场清晰度的计算——对声音清晰度的分析计算 2.分析依据: 武警水电电视电话会议室以及作战指挥室扩声系统属厅堂扩声。声学特性指标采用广播电影电视部部分标准GYJ25-86<<厅堂电声系统声学特性指标>>中语言和音乐兼用的电声系统二级(语言扩声一级)声学特性指标。

RASTI----快速语言传输指数(rapid speech transmission index)是语言传输指数法(STI法)在某些条件下的一种简化形式,用来测定与可懂度有关的语言传输质量。在EASE中0.75~1(含0.75)为优,0.6~0.75(含 0.6)为良好,0.45~0.6(含0.6)为一般,0.3~0.45(含0.3)为较差,小于0.3为差.一般大于0.5为好. ALC-----辅音清晰度损失百分比(%ALCONS)是一种语言可懂度的度量方法。在EASE中0%~3.3%为优,3.3%~6.6%为良好,6.6%~14.7%为一 般,14.7%~33.6%为较差,33.6%以上为差.一般小于10%为好. 说明:以下六种图,前两种图表示设计者的音箱布置方式,后三种图是计算机模拟分析的结果。设计选择的音箱型号是软件数据库所具备的,所以其模拟分析的结果是有一定参考价值的。 建筑模型图——表示音箱的设计布置方式; 音箱声向图——表示音箱声线主轴所指向的位置;

超声波特性

超声波的四个特性及应用特性 来源:全球五金网2011-9-8 作者:济宁天华超声电子仪器有限公司公司产品公司商机公司招商公司新闻 超声波顾名思义,超过常规声波的声波。声波是指人耳能感受到的一种纵波,其频率范围为16Hz-20KHz。当声波的频率低于16Hz时就叫做次声波,高于20KHz则称为超声波声波。 超声波特性有四个方面: 1)超声波可在气体、液体、固体、固熔体等介质中有效传播。 2)超声波可传递很强的能量。 3)超声波会产生反射、干涉、叠加和共振现象。 4)超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象。 1.束射特性 由于超声波的波长短,超声波射线能够和光线一样,可以反射、折射,也能聚焦,而且.恪守几何光学上的定律。即超声波射线从一种物质外表反射时,入射角等于反射角,当射线透过一种物质进入另一种密度不同的物质时就会产生折射,也就是要改动它的传插方向,两种物质的密度差异愈大,则折射也愈大。 2.吸收特性 声波在各种物质中传播时,随着传播间隔的增加,强度会渐进削弱,这是由于物质要吸收掉它的能量。关于同一物质,声波的频率越高,吸收越强。关于一个频率一定的声波,在气体中传播时吸收最历害,在液体中传播时吸收比拟弱,在固体中传播时吸收最小。 3.超声波的能量传送特性 超声波所以往各个工业部门中有普遍的应用,主要之点还在于比声波具有强大得多的功率。为什么有强大的功率呢?由于当声波抵达某一物资中时,由于声波的作用使物质中的分子也跟着振动,振动的频率和声波频率―样,分子振动的频率决议了分子振动的速度。频率愈高速度愈大。 物资分子由于振动所取得的能量除了与分子的质量有关外,是由分子的振动速度的平方决议的,所以假如声波的频率愈高,也就是物质分子愈能得到更高的能量、超声波的频率比声波能够高很多,所以它能够使物资分子取得很大的能量;换句话说,超声波自身能够供应物质足够大的功率。 4.超声波的声压特性 当声波通入某物体时,由于声波振动使物质分子产生紧缩和稠密的作用,将使物质所受的压

声场种类和参数

声场 消声室—房间四周均有吸声结构,因此传向各个方向的声音不会被反射。若一个房间具备自由场的条件,则会有完美的吸声效果。 消声末端—经常在高效吸声风管末端测试消声效果。 房间平均吸声系数(a)—将一个房间分成几个表面区域,单位为ft2或m2,全部房间的吸声系数,单位为赛宾或公制赛宾。 辐射─指声音以一个相当小的立体角度发射的现象。当频率增加时,这种特性更加准确。 散射场—在此环境中,各个位置的声压级相同,各个方向的声能流量也相等。 指向性因数(DI)—在远场中的任一个给定方向的声压级和平均声压级之间的差别。 从一个敞开的、排风管或风管发出的噪声,随测点和风管中心线的夹角而变化。以上所示数据为当量直径或直径约为10 ft (3.05m)的管道或风管发出的噪声。 扩散—在一个自由声场中,声波的传播使远场中声源的声压级随着离声源的距离越远而越低。 远场—声场的一部分,声压随距声源距离的增加而减少。距离每增加一倍,声压级相应减少约6dB。 自由场—指在一种环境中,声波在没有障碍物或反射的情况下,向各个方向传播。如:消声室。 硬质房间—对声音的吸收率非常低,而反射率相当高的房间。 反平方定律—在远场和自由场的条件下,声音密度的变化与距声源的距离的平方成反比。 两个远场点之间声压级的差如下所示: Lp2 = Lp1 - 20 log(R2 / R1) (B-1) 其中: Lp1 = 位置1的声压级,dB; Lp2 = 位置2的声压级,dB; R1 = 从声源到点1的距离; R2 = 从声源到点2的距离。(R1、R2单位必须相同) 公制Sabins—参看“总吸声值”。 近场—在声源和远场之间,距声源较近的位置。近场的典型特点是:只要测点与声源间距有微小变化,声压就会变化很大。 敞开的场—在一种环境里,声源可被固定在一个声学反射平面上,在无障碍物和反射的情况下,声音以半球形的形式传播。例:一间带有硬质(反射)地板的消声室;具有平坦地面而无障碍物的室外环境。 混响室—房间经过特殊处理,其四周具有高度反射性,以使声场尽可能地扩散,具有很长的混响时间。混响时间—在一个房间中,当一个稳定的声源停止发声后,平均声压级降低60dB所需要的时间。可采用如下方法估算: T = 0.049(V / A)英制单位(B-2)

超声波焊接工艺特点

超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。 一、超声波焊接特点 1) 可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。 2) 焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。 3) 焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。 4) 被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。 5) 形成接头所需电能少,仅为电阻焊的5%;焊件变形小。 6) 不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。 二、超声波焊接的分类 超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生

相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。 (1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。功率500W以下的小功率焊机多采用轻型结构的纵向振动;千瓦以上的大功率焊机多采用重型结构的弯曲振动系统;而轻型弯曲振动系统适用于中小功率焊机,它兼有上述两种振动系统的优点。 (2)环焊环焊方法如图5所示,主要用于一次成形的封闭形焊缝,能量传递采用的是扭转振动系统。焊接时,耦合杆4带动上声极5作扭转振动,振幅相对于声极轴线呈对称分布,轴心区振幅为零,边缘位置振幅最大。该类焊接方法最适合于微电子器件的封装工艺,有时环焊也用于对气密性要求特别高的直线焊缝的场合,用来代替缝焊。由于环焊的一次焊缝的面积较大,需要有较大的功率输入,因此常常采用多个换能器的反向同步驱动方式。 (3)缝焊与电阻焊中的缝焊类似,超声波缝焊实质上是由局部相互重叠的焊点形成一条连续焊缝。缝焊机的振动系统按其滚轮振动状态可分为纵向振动、弯曲振动以及扭转振动三种形式(图6)。其中最常见的是纵向振动形式,只是滚轮的尺寸受到驱动功率的限制。缝焊可以获得密封的连续焊缝,通常焊件被夹持在上下滚轮之间,在特殊情况下可采用平板式下声极。 (4)线焊它是点焊方法的一种延伸,利用线状上声极,在一个焊接循环内形成一条狭窄的直线状焊缝,声极长度就是焊缝的长度,现在可以达到150mm,这种方法最适用于金属薄箔的封口。 (5)双超声波振动系统的点焊:上下两个振动系统的频率分别为27kHz和20kHz(或15kHz),上下振动系统的振动方向相互垂直,焊接时二者作直交振动。当上下振动系统的电源各为3kW时,可焊铝件的厚度达10mm,焊点强度达到材料本身的强度。双超声波振动系统多用于集成电路和晶体管细导线的焊接,虽然焊接方法与点焊基本相同,但焊接设备复杂,要求设备的控制精度高,以便实现焊点的高质量和高可靠性焊接。

第3章 医用超声换能器与探头

第3章 医用超声换能器与探头 超声诊断仪是通过探头产生入射超声波(发射波)和接收反射超声波(回波)的,它是诊断设备的重要部件。高频电能激励探头中的晶体产生机械振动,反射超声波的机械振动又可以通过探头转换为电脉冲。也就是说探头能将电能转换成声能,又能够将声能转换成电能,所以探头又称作超声换能器。其原理来自于晶体的压电效应。 §3.1压电效应 压电效应泛指晶体处于弹性介质中所具有的一种声-电可逆特性,此现象为法国物理学者居里兄弟于1880年所发现,故也称居里效应(图3-7)。 图3-1晶体的压电效应 具有压电效应性质的晶体,称为压电晶体。目前常用于超声探头的晶体片有锆酸铅、钛酸钡、石英、硫酸锂等人工或天然晶体。钛酸钡及锆酸铅是在高温下烧结的多晶陶瓷体,把毛坯烧结成陶瓷体后,经过适当的研磨修整,

得到所需的几何尺寸,再用高压直流电场极化后,就具有压电性质,成为换能器件。 3.1.1正压电效应 在晶体或陶瓷的一定方向上,加上机械力使其发生形变,晶体或陶瓷的两个受力面上,产生符号相反的电荷;形变方向相反,电荷的极性随之变换,电荷密度同外施机械力成正比,这种因机械力作用而激起表面电荷的效应,称为正压电效应,如图3-7(a)。 3.1.2逆压电效应 在晶体或陶瓷表面沿着电场方向施加电压,在电场作用下引起晶体或陶瓷几何形状应变,电压方向改变,应变方向亦随之改变,形变与电场电压成比例,这种因电场作用而诱发的形变效应,称为逆压电效应,如图3-7(b)。 一般情况下,压电效应是线性的,然而,当电场过强或压力很大时,就会出现非线性关系。 晶体和陶瓷片因切割方位和几何尺寸的不同,产生机械振动的固有频率也不同,当外加的交变电压的频率与固有频率一致时,产生的机械振动最强;当外加的机械力的频率与固有频率一致时,所产生的电荷也最多。在超声波诊断仪中激励脉冲的频率必须与探头的固有频率相同。 §3.2压电换能器的特性 压电换能器的特性参量很多,现只简单介绍以下3种。 3.2.1频率特性 压电换能器的晶体本身是一个弹性体,因此有其固有的谐振频率,当所施力的频率等于其固有频率时,它将产生机械谐振,由于正压电效应而产生

几种常用的医学超声设备

A型超声诊断仪(amplitude) A型显示是一种最基本的显示方式,示波管上的横坐标表示超声波的传播时间,即探测深度;纵坐标则表示回波脉冲的幅度(amplitude),故称为A型。 用A型诊断仪可以测量人体内各器官的位置、尺寸和组织的声学特性,并用于疾病诊断。 M型超声诊断仪(motion) 它在A型超声诊断仪基础上发展来的一种最基本的超声诊断设备。 显像管上的亮度表示回波幅度,由A型回波幅度加到显像管Z轴亮度调制极上所控制;其纵轴表示超声脉冲的传播时间,即探测深度;显像管水平偏转板加一慢时间扫描电压。这样在做人体探查时,就构成一幅各回波目标的活动曲线图。 其在检查心脏时具有一系列优点,如对心血管各个部分大小、厚度、瓣膜运动的测量,以及研究心脏的各部分运动与心电图、心音图及脉搏之间的关系等,所以也称超声心动仪。 此外它还可以研究其他各运动界面的情况,并通过与慢时间扫描同步移动探头,做一些简单的人体断层图。 B型超声诊断仪(brightness) 其也称B型超声切面显像仪。它用回波脉冲的幅度调制显示器亮度,而显示器的横轴和纵轴则与声速扫描的位置一一对应,从而形成一幅亮度调制的超声切面图像。 D型超声多普勒诊断仪 它利用超声波传播过程中与应用目标之间的相对运动所产生的多普勒效应来探测运动目标,主要包括多普勒血流测量和血流成像两种。 目前的彩色血流成像(color flow imaging CFI)则是在实时B型超声图像中,以伪彩色表示心脏或血管中的血液流动。它是利用多次脉冲回波相关处理技术来取得血流运动信息,故常称为彩色多普勒血流成像(color Doppler flow imaging, CDFI)。 经颅多普勒(transcranial Doppler,TCD)诊断仪应用低频多普勒超声,通过颞部、枕部、框部及颈部等透声窗,可以显示颅内脑动脉的血流动力学状况。 C型和F型超声成像设备 它是在B型超声诊断仪的基础上发展起来的,主要用来获取与声束方向垂直或呈一定夹角的平面和曲线上的回波信息并成像。透射式C型成像类似普通X射线成像,反映了声束路径上所有组织总的超声特性,可分别利用总的超声衰减和传播时间进行C型成像。C型和F型扫描成像能提供一些B型超声成像不能获得的信息。 超声外科设备 超声外科学是继超声治疗和诊断之后出现的一个医用超声领域。它用较强的超声波粉碎眼部、肾部的病变组织并排出,如超声乳化白内障摘除等,以达到实施超声外科手术的目的。其优点是降低患者痛苦,缩短手术时间。 超声治疗设备 它主要利用组织吸收超声波能量等特性,即温热效应、机械效应和化学效应,达到治疗目的,目前超声加温治疗癌症是一个重要课题,利用环形相控换能器可方便的使声束聚焦于病变部位,使病变部位温度升高。相对于电磁波而言,超声治疗设备的声束方向与聚焦位置及声功率分布模式更便于控制。

超声波探头打图注意事项

超声打图注意事项 超声打图的一些基本的注意事项我初步从以下几点说明: (一)探头的选择及检查部位 1、凸阵探头:一般频率在2.0-6.0MHZ之间,打图的部位是人体较深的脏器比如:肝脏、肾 脏、胆囊、胰脏、脾脏等部位。 2、线阵探头:一般频率在6.0-12.0MHZ之间,打图部位是人体内浅表的脏器比如:甲状腺、 血管、乳腺、眼睛等部位 3、腔体探头:一般频率在5.0-9.0MHZ之间,检查途径一般是经阴道检查子宫及其附件组织、 和经直肠检查直肠周边的子宫及其附件组织和前列腺。 (二)仪器的调节 在打超声图前首先调节仪器的基本键,主要调节的内容有: 1、TGC 一般调制中间位置,如果图像近场或者远场比较暗或亮时,可适度调节各场对应的TGC。 2、深度调节标准为能清楚的看见所检查脏器的各个部位为准。 3、总增益的调节如果图像近远场都比较暗或者亮时调节此键。 通常情况下调节这三个键都能使图像达到清晰状态。 (三)如何观察图像 我们打图经常用的脏器就是肝脏、肾脏和颈部血管,这里就着重说明这几个脏器的图像如何查看。 1、肝脏右叶切面: 此切面一般在剑突下或者肋间隙就可以打出来。要能看见肝右叶的所有部位,肝包膜完整,肝脏实质内光点均匀,移动探头也可以看到三条肝静脉图片,在CFM模式下呈三条分叉的蓝色血流信号。 2、肾脏纵切面: 此切面一般在背部两侧的腰部中间处将探头竖着打或者斜着打就可以看见。要能看见肾脏包膜完整、肾脏皮质实质分界清楚,还能看见呈树枝状得肾脏血管走形,在CFM模式下呈红蓝相间的树枝状血管,血流很丰富。 3、颈动脉纵切面:

血管的超声图片清晰与否,主要看血管腔内是不是均匀的无回声区域,管壁清晰连贯,CFM 模式下血流是否充盈。 (四)列举图像 1、凸阵探头:就以肝脏右叶图和肾脏纵切面图为例,让大家更直观的看图像。 肝脏右叶切面图,可以看见肝脏包膜完整,肝实质光点分布均匀,三条肝静脉,中间最长的为肝中静脉。

超声波

Ultrasound A Deep Thermal & Non-thermal Mechanical Modality CAI BIN

?对于一位前臂开刀半年后产生黏连性疤痕组织的病患,下列超声波治疗参数的组合,何着最为合适? ?A. 間歇性:1MHZ ;0.5watt/cm2 ?B. 間歇性:1MHZ ;1-2 watt/cm2 ?C. 連續性:3MHZ ;0.5 watt/cm2 ?D. 連續性:3MHZ ;1-2 watt/cm2

纲要 ?基础部分?临床部分

What is Ultrasound? ?Located in the Acoustical Spectrum ?May be used for diagnostic imaging, therapeutic tissue healing, or tissue destruction ?Thermal & Non-thermal effects ?We use it for therapeutic effects ?Can deliver medicine to subcutaneous tissues (phonophoresis)

超声波 ?超声波是指频率在20KHz以上,不能引起正常人听觉反应(16~20KHz)的机械振动波 ?Therapeutic ultrasound waves range from 750,000 to 3,000,000 Hz (0.75 to 3 MHz)?近年多采用1MHz、3MHz超声

物理特性?超声波与声波的本质 相同,都是物体的机 械振动在弹性介质中 传播所形成的机械振 动波。 ?在传播时产生一种疏 密交替的弹性纵波, 具有一定的方向性;

EASE声场分析说明

声场分析 计算机模拟声场分析 (2) 1. EASE 4.3电脑设计系统简介 (2) 2. 分析依据: (2) 3. 电视电话会议室声场分析 (4) 4. 电视电话会议室分析结果 (11) 5. 作战指挥室声场分析 (12) 6. 作战指挥室分析结果 (19)

计算机模拟声场分析 为使武警水电会场声学方案设计更好地符合实际的效果,运用当代先进的计算机模拟技术,根据实际尺寸建立计算机建筑模型,对方案设计的音响效果进行计算机模拟验证,以确认设计的合理性,以及能满足技术要求,达到预期效果。 设计运用的是著名的声场分析软件——EASE4.3。 1.EASE 4.3电脑设计系统简介 EASE(全称ELECHO ACOUSTIC SIMNLATOR FOR ENGINEER)是由德国人在九十年代中期开发的通用数据库,现已成为世界上最为广泛使用的声学设计软件。 EASE是采用计算机CAD技术进行模拟声场的模型建设、声学设计、声学计算与声学分析的综合设计软件。 我们现在使用的是EASE 4.3版本,主要用它进行模拟验算的声学参数有: ?声场声压的分布——对声场的均匀度、频率响应及分布进行分析计算 ?声场清晰度的计算——对声音清晰度的分析计算 2.分析依据: 武警水电电视电话会议室以及作战指挥室扩声系统属厅堂扩声。声学特性指标采用广播电影电视部部分标准GYJ25-86<<厅堂电声系统声学特性指标>>中语言和音乐兼用的电声系统二级(语言扩声一级)声学特性指标。分类特性语言和音乐兼用的电声系统二级(语言扩声一级) 最大声压级 (空场稳 250-4000Hz范围内平均声压级大于或等于98dB 态准峰值声压级dB)

相关主题
文本预览
相关文档 最新文档