当前位置:文档之家› MAPK信号转导通路与疼痛敏化调控研究进展Word版

MAPK信号转导通路与疼痛敏化调控研究进展Word版

MAPK信号转导通路与疼痛敏化调控研究进展Word版
MAPK信号转导通路与疼痛敏化调控研究进展Word版

MAPK信号转导通路与疼痛敏化调控研究进展

广东省中医院麻醉科(广州市,510120)项红兵招伟贤华中科技大学同济医学院附属同济医院麻醉科(武汉市,430030)董航

[摘要] 疼痛敏化调控的细胞机制尚未阐明。丝裂原活化蛋白激酶(mitogen activated protein kinases,MAPK)家族是将胞外刺激信号转换至胞核内产生转录和翻译后效应的细胞信息传递的共同通路之一,其在疼痛敏化调控的病理生理变化中起了重要作用。

[关键词] MAPK;疼痛

在疼痛传递调制过程中细胞外伤害性感受信号向胞核内转导信息时,需要细胞内信号分子的参与,丝裂原活化蛋白激酶(mitogen activated protein kinases,MAPK)级联效应是细胞内主要的共同信号转导系统。近年来,有关对慢性疼痛的信号转导通路和细胞内信号分子的研究取得了一定的进展,本文就MAPK信号转导通路及其在疼痛敏化调控中的作用作一综述。

1 MAPK信号转导通路

丝裂原活化蛋白激酶(MAPK)属于丝氨酸/苏氨酸蛋白激酶家族,能够将胞外刺激信号转导成胞内的转录和翻译后效应。MAPK信号转导通路采用高度保守的三级激酶级联传递信号:细胞外刺激通过某些环节使MAPKKK(MAPK kinase kinase)激活,转而激活MAPKK(MAPK kinase),然后通过双位点即苏氨酸和酪氨酸同时磷酸化激活MAPK(见图1)。激活的MAPK可通过磷酸化转录因子、细胞骨架相关蛋白、酶类等多种底物来调节包括疼痛敏化在内的多种病理生理过程。

MAPK家族包括胞外信号调节蛋白激酶(extracellular signal-regulated kinase, ERK)、p38MAPK(其命名缘于该物质克隆编码是由360个氨基酸组成的38KD蛋白)、c-Jun氨基末端激酶/应激激活蛋白激酶(JNK/SAPK)和ERK5。目前在疼痛领域对MAPK信号转导通路研究最多的是: (1)ERK通路, ERK能被膜去极化和Ca2+内流所激活, 能被其上游激酶[MEK 即MAPK/ERK激酶, 为MAPKK之一种] 所激活, ERK涉及到神经元可塑性,如长时程增强(LTP)、学习和记忆, 已知生理和病理性ERK活动依赖性激活发生在CNS中,特别是海马中。( 2) p38 MAPK 激活通路,外周炎症和神经断离能诱发DRG神经元p38MAPK激活,伤害感受神经元中MAPK激活通过转录依赖和非转录依赖方式参与痛觉过敏的产生。

2 ERK信号通路与疼痛敏化调控

在疼痛敏化过程中,神经元的可塑性发生在初级传入神经元和脊髓背角神经元中。因适应外周组织的伤害性刺激和外周组织的电刺激,背根神经节(DRG)和

背角神经元中ERK发生磷酸化,即伤害感受神经元中ERK活动依赖性激活;另外,外周炎症和神经断离后这些伤害感受神经元中ERK被激活,通过关键基因产物的转录调节导致持续炎症和神经病理性疼痛。

2.1 伤害性刺激后DRG神经元中ERK激活

背根神经节(DRG)是许多伤害性刺激传入的通道,与疼痛相关的许多受体、离子通道以及信号转导分子都存在于DRG。当前许多焦点集中在疼痛传递调制过程中初级传入神经元的信号传导机制。以往认为炎性介质如PGE2、5-HT、肾上腺素和神经生长因子(NGF),在初级传入神经元中通过激活蛋白激酶A(PKA)或PKC 来产生痛敏。最近研究已经显示,ERK级联反应发生于肾上腺素引发的痛敏,Ras-MEK-ERK-CREB(cAMP反应元件结合蛋白)通路不依赖PKA或PKC而被激活。将NGF注入外周组织,能增加p-ERK(磷酸化的ERK)标记的酪氨酸(trkA)阳性DRG神经元。然而只有少数信号传导研究涉及到初级传入神经元的活动依赖性研究。已经证实,在外周组织的伤害性刺激或外周神经的电刺激过程中初级传入神经元(DRG神经元)中ERK的活动依赖性激活,一种MEK抑制剂U0126能剂量依赖性减轻辣椒素注射后的热痛敏。这些结果表明,DRG神经元中ERK通路的激活参与了急性疼痛条件下外周敏化。另外,有害刺激后DRG神经元中ERK的磷酸化对于检测每个神经元中各种疼痛相关分子的激活状态是有价值的。

2.2 ERK激活和DRG神经元中基因表达

ERK通路与神经营养因子依赖的外周神经元生长和分化有联系,目前对其了解较为翔实。例如对于NGF、trkA的高亲和力受体,通过至少6种不同通路发出信号,其中MAPK通路是主要的(即ERK通路)。在这个通路中,激活的受体引起GTP锚定,从而激活小G蛋白Ras。反过来,Ras-GTP循环三级酶链反应即MAPK 激酶激酶(Raf)、MEK磷酸化、使ERK磷酸化并激活。炎症和神经损伤导致DRG 神经元中基因转录和蛋白合成的改变,例如炎症后脑源性神经营养因子(BDNF)已知在trkA表达的小型和中型DRG神经元中合成增加,相反神经损伤后增加的BDNF是发生在解剖学上的中到大型DRG神经元。最近显示:外周炎症和坐骨神经损伤后ERK激活能调节初级传入神经元中BDNF的表达,注射弗氏完全佐剂(CFA) 1d后外周炎症引起ERK磷酸化增加,主要发生在有trkA表达的小型和中型DRG 神经元中。用MEK抑制剂U0126治疗能逆转CFA注射引发的痛敏和DRG神经元中p-ERK和BDNF的增加。相反,神经损伤后3、7、14d,神经断离主要引起中到大型DRG神经元和卫星状胶质细胞中ERK激活。U0126能抑制神经断离后引发的自残行为并逆转p-ERK和BDNF的增加。为了阐明内源性NGF的改变是否触发p-ERK 和BDNF表达的变化与外周炎症和神经断离术后所见的一致,有研究尝试了在大鼠鞘内注射重组hNGF和抗NGF物质。在这个实验中,鞘内应用NGF引起了p-ERK 和BDNF标记细胞的增加,且主要是在小直径的神经元中;而应用抗NGF,引起p-ERK和BDNF的增加,发生在中至大直径的DRG神经元中。这些发现表明:外周炎症和神经断离后初级传入纤维中ERK激活发生在DRG神经元的类型中,通过改变靶源性NGF,促进持续炎症和神经病理痛的发生,通过BDNF表达的转录调控p38激活和DRG神经元的基因表达。

2.3 ERK激活和脊髓背角神经元中基因表达

最近,一些研究表明:ERK在一种特征性的慢性疼痛状态即持续性痛敏(对热、机械刺激发生痛觉过敏)发挥作用。角叉菜胶、完全弗氏佐剂注入爪部引发炎症后能导致持续的炎性痛敏,脊髓背角神经元ERK能被上述刺激磷酸化,其炎性痛敏能被ERK抑制剂所激活。另有研究表明,急性伤害性刺激如福尔马林或辣椒素,能引起脊髓ERK的磷酸化,一种MEK抑制剂PD98059能减少皮下注射福尔马林所引起的急性痛反应,这表明在急性(30~60min短时间)伤害性感受过程中ERK存在非转录机制角色。ERK不仅通过非转录过程产生短时程功能变化,也通过增加基因转录产生长时程适应性变化。例如激活的ERK从胞浆移位到核内,激活RsK2,接着将丝氨酸133中的转录因子CREB(环磷腺苷反应元件结合蛋白)磷酸化。CREB磷酸化后与DNA上启动子区域中的cAMP(环磷腺苷)反应元件位点结合,进而启动基因转录,这表明实际上是外周炎症和神经损伤导致背角神经元中CREB的磷酸化。然而,除了即刻早期基因如c-fos外,通过ERK调节的特异靶基因还不十分清楚。Ji等最近证实背角神经元中ERK的激活促进持续的炎性痛,是通过强啡肽原和神经激肽-1(NK-1)的转录调制。

3 p38MAPK信号通路与疼痛敏化调控

3.1伤害性刺激后DRG神经元中p38激活

作为一种通过单独胞内级联反应而运转的MAPK,p38是参与胞内炎症和凋亡等应激反应的介质。最近证实,瞬时型感受器电位离子通道(TRPV1),以前称为Vanilloid受体1(VR1),受到DRG神经元中NGF引起的p38MAPK通路的激活所调节,Deleroix等研究表明:在CFA所致炎性痛大鼠模型中,NGF在炎性组织中表达,沿外周神经末梢逆行转运至DRG内细胞体,NGF激活胞体内的p38MAPK,后者可增加VR1的蛋白表达,而增加的VR1顺行转运至外周末端伤害感受器,增加对热的敏感性。而以上过程则能被p38MAPK的特异性阻断剂SB203580阻断,鞘内注射了SB203580的大鼠对伤害性热刺激的痛敏降低,而对伤害性机械刺激的痛敏则无变化,同时SB203580对炎性肿胀亦无影响。上述实验结果证实,炎性痛过程中,NGF激活p38MAPK导致VR1蛋白表达增加是维持炎性热痛觉过敏的一条重要通道。另外,Ji等研究也显示,DRG中p38MAPK的激活需要NGF引起的TRPV1表达的增加,有助于炎性痛敏的维持。

最近报告表明,外周炎症和神经离断引起小型DRG神经元中p38激活。一种p38抑制剂SB203580能降低炎症引起的热痛敏和L5脊神经结扎引起的机械性感觉异常。考虑到外周炎症和神经离断术后p38激活发生在不同的DRG神经元群,p38有可能在不同介质和病理条件下引起的疼痛状态中担任不同的角色。

3.2神经胶质细胞中p38MAPK激活

神经胶质细胞参与大脑的免疫调节,是中枢神经系统中炎性介质如iNOS和TNF-α产生的重要源泉之一,有报道p38 MAPK通路参与诱导星形胶质细胞中iNOS和TNF-α的产生,p38 MAPK在介导细胞炎性介质的释放中发挥重要的作用(见图1)。

图 1 p38 MAPK介导的细胞炎性介质的释放

脊髓胶质细胞(包括小胶质细胞和星形胶质细胞)的激活参与了疼痛发病机制。胶质细胞释放的前炎因子产生了痛敏,外周炎症、神经损伤和癌模型中脊髓小胶质细胞和星形胶质细胞被激活。磷酸化的p38MAPK(p-p38MAPK)存在于脊髓非神经细胞中,外周炎症仅引起p-p38MAPK水平的中度增加,而外周神经离断在脊髓小胶质细胞中引起p38MAPK激活。p38MAPK抑制剂通过阻滞p38MAPK激活能减少坐骨神经炎性痛模型中炎症引起的痛觉过敏和痛感觉异常。Tsuda等研究发现,脊神经损伤的同侧脊髓背角p-p38MAPK免疫荧光水平和蛋白水平均明显增加,在背角小胶质细胞中发现有p-p38MAPK免疫荧光,而神经元和星形胶质细胞中则未发现;损伤同侧脊髓单个高活性小胶质细胞中p-p38MAPK免疫荧光水平远远高于对侧静止期小胶质细胞p-p38荧光水平,鞘内注射p38MAPK抑制剂SB203580能阻止神经损伤引起的触痛异常的进一步发展,这些结果证实:神经损伤引起的疼痛高敏反应依赖于脊髓背角高活性小胶质细胞中p38MAPK信号通路的激活。此外,外周神经离断后引起DRG神经元周围的卫星状胶质细胞中p38

MAPK激活,这些发现强调了DRG以及外周神经离断后脊髓中胶质细胞和胶质细胞-神经元相互作用的重要性。

4 结语

在背根神经节和脊髓背角神经元伤害感受引起可塑性的产生和维持过程中,MAPK信号转导通路的激活有重要角色,不仅增加基因转录,而且引起靶蛋白的翻译后调制,这些研究结果给我们了解疼痛敏化条件下细胞/分子机制提供了新方法。另外,MAPK信号转导通路有众多路径,在疼痛敏化调控过程中提供了多个层面发挥拮抗疼痛作用的位点。因此有理由相信在初级传入纤维和脊髓背角的MAPK信号转导通路上可能存在从药理学上干预疼痛而提供的潜在靶点。

(注:可编辑下载,若有不当之处,请指正,谢谢!)

1 PPAR信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇 和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。它们作为脂 肪传感器调节脂肪代谢酶的转录。PPARs由PPARα、PPARβ和PPARγ 3种亚型组成。PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生 长发育等。另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与 凋亡。PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶( ERK-和p38.M APK) ,蛋白激酶A和C( PKA,PKC) ,AM PK和糖原合成酶一3( G SK3) 等调控。调控PPARa生长信号的酶报道有M APK、PKA和G SK3。PPARβ广泛表达于各种组织,而PPAR γ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。PPAR-γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用, 而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。鉴于目前人 们对PPAR—γ信号通路尚不甚清,PPARs通常是通过与9-cis维甲酸受体( RXR)结合实现其转录活性的。 2 MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activated protein kinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等)。 MAPKs家族的亚族 :ERKs(extracellular signal regulated kinase):包括ERK1、ERK2。生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。 JNKs(c-Jun N-terminal kinase)包括JNK1、JNK2、JNK3。此亚族成员能使 Jun转录因子N末端的两个氨基酸磷酸化而失活,因此称为Jun N末端激酶(JNKs)。物理、化学的因素引起的细胞外环境变化以及致炎细胞因子调节此通路。P38 MAPKs:丝氨酸/络氨酸激酶,包括p38 α、p38β、p38γ、p38δ。p38 MAP K参与多种细胞内信息传递过程 ,能对多种细胞外刺激发生反应,可磷酸化其它细胞质蛋白,并能从胞浆移位至细胞核而调节转录因子的活性来改变基因的表达水平 ,从而介导细胞生长、发育、分化及死亡的全过程。 ERK5:是一种非典型的MAPK通路,也叫大MAPK通路,只有一个成员。它可被各种刺激因素激活。不仅可以通过磷酸化作用使底物活化,并且通过C端的物理性结合作用激活底物。 3 ERBB信号途径:ErbB 蛋白属于跨膜酪氨酸激酶的 EGF 受体家族成员。ErbB 的命名来源于在禽红白血病 B( v-Erb-B) 发现的 EGF 受体的突变体,因而 EGF 受体 亦称为“ ErbB1”。人源 ErbB2 称为HER2, 特指人的 EGF 受体。ErbB 家族的

白介素IL-6信号转导及其通路研究概述 细胞因子是一类参与免疫系统的细胞之间通信的蛋白质,除此之外,许多细胞因子在免疫系统之外也具有调节功能。1986年白介素IL-6作为B细胞刺激因子被Kishimoto组分子克隆。IL-6在免疫系统外的活性还有肝细胞刺激因子和骨髓细胞分化诱导蛋白。 白介素IL-6含有184个氨基酸,属于糖基化蛋白质。IL-6可以由多种类型细胞合成和分泌,包括单核细胞、T细胞、成纤维细胞和内皮细胞。IL-6结合受体有两种,一种是特异性受体IL-6R(80kDa I型跨膜蛋白),另一种是gp130,是IL-6家族细胞因子的所有成员的常见受体亚单位。gp130可以在所有细胞表达,但IL-6R的表达受到更多的限制,主要发现于肝细胞、嗜中性粒细胞、单核细胞和CD4+ T细胞。 白介素IL-6受体gp130的二聚化会导致两种细胞内信号通路的启动:经典信号通路和反式信号通路(见下文)。白介素IL-6的受体IL-6R可以在细胞膜经过蛋白质水解,形成可溶性的IL-6R(sIL-6R),在人类中,也可以在翻译阶段进行剪接mRNA,进而产生sIL-6R。在经典信号通路中,IL-6与膜上的IL-6R结合,随后与结合在细胞膜上的gp130结合,启动细胞内信号传导。在IL-6反式信号通路中,IL-6与sIL-6R结合,IL-6和sIL-6R的复合物与细胞膜结合的gp130结合,从而引发细胞内信号。 白介素IL-6是最重要的炎症细胞因子之一。IL-6在通过膜结合和可溶性受体的信号传导中是独特的。有趣的是,这两种途径的生物学后果有很大差异,通过膜结合受体的经典IL-6信号通路主要是再生和保护性的,可溶性IL-6R的IL-6反式信号通路是促炎症的。响应于受体激活的IL-6的细胞内信号传导是通过STA T依赖和STAT独立的信号模块,其由复杂的调节网络调节。IL-6的复杂生物学对该细胞因子的治疗靶向具有影响。 白介素IL-6胞内信号通路可以简单的概述为:IL-6与受体复合物结合后,激活JAK1。JAK1磷酸化gp130细胞质部分内的酪氨酸残基,这些磷酸酪氨酸基序是STAT转录因子,SOCS3反馈抑制剂和衔接蛋白和磷酸酶SHP2的募集位点。SHP2连接到MAPK级联,使Gab1磷酸化,磷酸化的Gab1转移到质膜上,协调正在进行的MAPK和PI3K活化。Src家族激酶独立于受体磷酸化并激活Y AP。 白介素IL-6信号转导第一步:激活JAK。 大多数细胞因子受体缺乏胞内激酶活性,生长因子的受体例外。白介素IL-6胞内信号转导首先激活Janus激酶(JAK),开启酶促反应。通过JAK N末端的同源结构域内(JH)

TCR信号通路研究新进展 T细胞相关免疫疗法在近期的癌症研究中大放异彩,“主力部队”是CAR-T和TCR-T这两种技术。相对于 CAR-T细胞疗法,TCR-T疗法的关注度相对低些,但是这两种细胞疗法都属于利 用患者自身的 T淋巴细胞治疗癌症的前沿基因疗法。研究发现,在实体瘤治疗方面,TCR疗 法可能比CAR疗法更有优势。 T细胞在免疫系统中具有重要作用,可以攻击病原体和肿瘤细胞。T细胞受体(TCR)能识别 不同的广泛亲和力的配体,参与激活多种生理过程。TCR细胞疗法定制功能性TCR,具有最 佳的抗原识别特性,利用人体免疫系统来对抗癌症。那么,这种疗法的分子机制是什么呢? 与之相关的TCR信号通路的分子调控机制有怎样的研究进展呢?本文将对这些问题进行综 合性讲述。 TCR蛋白结构 图一TCR复合物结构 T细胞作为适应性免疫应答的主要组成部 分,其抗原识别受体结构以被证实,克隆获得的TCR 由α-链和β-链构成异源二聚体。TCR异源二聚体主要与CD3的多个信号转导亚基结合,如 图所示,CD3γ、CD3δ和CD3ε异源二聚体以及CD3δ同源二聚体。在CD3的不同亚基含 有免疫受体酪氨酸的活化基序-ITAM,但是每个亚基的数量不 同,CD3γ、CD3δ和CD3ε分 别含有一个,而CD3δ含有三个串联的ITAM,这样就使的每个T细胞受体可以产生10个ITAM。酪氨酸磷酸化的ITAM可以使TCR与胞内信号转导通路发生偶联,向TCR募集含有SH2结构 域的蛋白质,如酪氨酸激酶ZAP70。但是现在还没有解决为什么TCR复合物包含这么多的信 号转导亚基和ITAM的问题,主要有两种假说,一种是CD3分子或单独的ITAM可能通过募 集独特的效应分子,执行不同的信号转导功能;另一种是 多个ITAM的主要功能是放大TCR 信号。 TCR识别与抗原递呈细胞(APC)呈递的可以结合MHC分子(pMHC)的肽。单独的TCR能够识别具有广泛亲和力的不同配体(自身肽和外来 肽)。TCR参与触发不同的功能输出。在 胸腺中,pMHC与TCR信号结合强度决定了细胞发育与分化过程。当结合力在最小值到最大 值之间时,促进胸腺细胞的存活,并转化 成CD4+CD8-或CD4-CD8+的成熟阶段;如果TCR与pMHC太低或太高,细胞会发生凋亡。在外围,自体pMHC对TCR的低亲和力结合提供了维

总字数:19,361 图:5 表:0 第七章细胞信号转导异常与疾病 第一节细胞信号转导系统概述 一、受体介导的细胞信号转导通路 二、细胞信号转导通路调节靶蛋白活性的主要方式 第二节信号转导异常发生的环节和机制 一、细胞外信号发放异常 二、受体或受体后信号转导异常 第三节与信号转导异常有关的疾病举例 一、胰岛素抵抗性糖尿病 二、肿瘤 三、心肌肥厚和心衰

第七章细胞信号转导异常与疾病 细胞信号转导系统(signal transduction system或cell signaling system)由能接收信号的特定受体、受体后的信号转导通路以及其作用的靶蛋白所组成。细胞信号转导系统具有调节细胞增殖、分化、代谢、适应、防御和凋亡等作用,它们的异常与疾病,如肿瘤、心血管病、糖尿病、某些神经精神性疾病以及多种遗传病的发生发展密切相关。受体和细胞信号转导分子异常既可以作为疾病的直接原因,引起特定疾病的发生;亦可在疾病的过程中发挥作用,促进疾病的发展。细胞信号转导异常可以局限于单一成分(如特定受体)或某一环节,亦可同时或先后累及多个环节甚至多条信号转导途径,造成调节信号转导的网络失衡。对信号转导系统与疾病关系的研究不仅有助于阐明疾病的发生发展机制,还能为新药设计和发展新的治疗方法提供思路和作用靶点。 第一节细胞信号转导系统概述 信号转导过程包括细胞对信号的接受,细胞内信号转导通路的激活和信号在细胞内的传递。激活的信号转导通路对其靶蛋白的表达或活性/功能的调节,如导致如离子通道的开闭、蛋白质可逆磷酸化反应以及基因表达改变等,导致一系列生物效应。 一、受体介导的细胞信号转导通路 细胞的信号包括化学信号和物理信号,物理信号包括射线、紫外线、光信号、电信号、机械信号(摩擦力、压力、牵张力以及血液在血管中流动所产生的切应力等)以及细胞的冷热刺激等。已证明物理信号能激活细胞内的信号转导通路,但是与化学信号相比,目前多数物理信号是如何被细胞接受和启动细胞内信号转导的尚不清楚。 化学信号又被称为配体(ligand),它们包括:①可溶性的化学分子如激素、神经递质和神经肽、细胞生长因子和细胞因子、局部化学介质如前列腺素、细胞

综述与进展 p38M APK信号转导通路与细胞凋亡研究进展 王誉霖1,张励才2 作者单位:1.安徽省宣城市人民医院麻醉科242000;2江苏徐州医学院作者简介: 王誉霖(1978,女,吉林市人,住院医师,硕士。研究方向:疼痛信号转导及调控。 主题词p38丝裂原活化蛋白激酶类;细胞凋亡;综述 中图分类号R345文献标识码A文章编号1674 8166(201012 1665 03 丝裂原活化蛋白激酶(mitog en2activated pr otein kinase,MA PK级联是细胞内广泛存在的丝/苏氨酸蛋白激酶超家族,是将细胞质的信号传递至细胞核并引起细胞核发生变化的重要物质。目前在人类已鉴定了4条MAPK途径:细胞外信号调节蛋白 激酶(ex tra cellular sig nal regulated protein kinase,ERK途径,C Jun 基末端激酶(c Jun N term inal kinase,JN K/应激活化蛋白(stress activated protein kinase,SAPK途 径,ERK5/大丝裂素活化蛋白激酶1(big MAP MAP kinase,BM K1途径和p38M APK(p38mitogen activated protein kinases,p38MA PK 传导途径[1]。p38 信号途径是 MAPK家族中的重要组成部分,多种炎症因子和生长因子及应激反应可使p38MAPK的酪氨酸和苏氨酸双磷酸化,从而激活p38M APK,使它在炎症、细胞应激、凋亡、细胞周期和生长等多种生理和病理过程中起重要作用。因此,p38MAPK 通路参与了多种刺激引起的信号级联反应,表明它在引起多种细胞反应中起重要作用,并且,p38在细胞凋亡中也有着重要的调节效应。1 p38M APK信号转导通路 丝裂原活化蛋白激酶(m ito gen activated pr otein kinase,MA PK级联是细胞内重 要的信号转导系统之一。在哺乳动物细胞M APK通路主要有:细胞外信号调节激酶(extracellular signal r eg ulated kinase,ERK ffi路、p38MA PK 通路、c jun 氨基末端激酶(c jun N term inal kinase,JNK通路和ERK5 通路[1]。其中,p38MAPK 是M APK 家族中的重要成员。

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图:

2、免疫荧光技术 Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP)

Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot 和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、GST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。

1JAK-STAT信号通路 1)JAK与STAT蛋白 JAK-STAT信号通路是近年来发现的一条由细胞因子刺激的信号转导通路,参与细胞的增殖、分化、凋亡以及免疫调节等许多重要的生物学过程。与其它信号通路相比,这条信号通路的传递过程相对简单,它主要由三个成分组成,即酪氨酸激酶相关受体、酪氨酸激酶JAK和转录因子STAT。(1)酪氨酸激酶相关受体(tyrosinekinaseassociatedreceptor) 许多细胞因子和生长因子通过JAK-STAT信号通路来传导信号,这包括白介素2?7(IL-2?7)、GM-CSF(粒细胞/巨噬细胞集落刺激因子)、GH(生 长激素)、EGF(表皮生长因子)、PDGF(血小板衍生因子)以及IFN(干扰素)等等。这些细胞因子和生长因子在细胞膜上有相应的受体。这些受体的共同特点是受体本身不具有激酶活性,但胞内段具有酪氨酸激酶JAK 的结合位点。受体与配体结合后,通过与之相结合的JAK的活化,来磷酸化各种靶蛋白的酪氨酸残基以实现信号从胞外到胞内的转递。 (2)酪氨酸激酶JAK(Januskinase) 很多酪氨酸激酶都是细胞膜受体,它们统称为酪氨酸激酶受体(receptor tyrosinekinase,RTK),而JAK却是一类非跨膜型的酪氨酸激酶。JAK是英文Januskinase的缩写,Janus在罗马神话中是掌管开始和终结的两面神。之所以称为两面神激酶,是因为JAK既能磷酸化与其相结合的细胞因子受体,又能磷酸、JAK1个成员:4蛋白家族共包括JAK结构域的信号分子。SH2化多个含特定

JAK2、JAK3以及Tyk2,它们在结构上有7个JAK同源结构域(JAKhomologydomain,JH),其中JH1结构域为激酶区、JH2结构域是“假”激酶区、JH6和JH7是受体结合区域。 (3)转录因子STAT(signaltransducerandactivatoroftranscription)STAT被称为“信号转导子和转录激活子”。顾名思义,STAT在信号转导和转录激活上发挥了关键性的作用。目前已发现STAT家族的六个成员,即STAT1-STAT6。STAT蛋白在结构上可分为以下几个功能区段:N-端保守序列、DNA结合区、SH3结构域、SH2结构域及C-端的转录激活区。其中,序列上最保守和功能上最重要的区段是SH2结构域,它具有与酪氨酸激酶Src的SH2结构域完全相同的核心序列“GTFLLRFSS”。 2)JAK-STAT信号通路 与其它信号通路相比,JAK-STAT信号通路的传递过程相对简单。信号传 递过程如下:细胞因子与相应的受体结合后引起受体分子的二聚化,这使得与受体偶联的JAK激酶相互接近并通过交互的酪氨酸磷酸化作用而活化。JAK激活后催化受体上的酪氨酸残基发生磷酸化修饰,继而这些磷酸化的酪氨酸位点与周围的氨基酸序列形成“停泊位点”(dockingsite),同时含有SH2结构域的STAT蛋白被招募到这个“停泊位点”。最后,激酶JAK 催化结合在受体上的STAT蛋白发生磷酸化修饰,活化的STAT蛋白以二 聚体的形式进入细胞核内与靶基因结合,调控基因的转录。值得一提的是,一种JAK激酶可以参与多种细胞因子的信号转导过程,一种细胞因子的信号通路也可以激活多个JAK激酶,但细胞因子对激活的STAT分子却具有一定的选择性。例如IL-4激活STAT6,而IL-12 。STAT4却特异性激活

生物技术通讯 LETTERSINBIOTECHNOLOGYVol.18No.2Mar.,2007 综述 文章编号:1009-0002(2007)02-0336-03 蛋白质组学方法在细胞内信号转导研究中的应用 李敏,周慧,崔银秋 吉林大学生命科学学院生物大分子实验室,吉林长春130021 [摘要]蛋白质组学的新技术为我们研究细胞内的信号转导过程提供了更广泛和崭新的思路,它克服了传统技术的局限 性,实现了对蛋白的高通量分析。简要综述了蛋白质组学技术在信号转导过程中信号分子的确定、定量,磷酸化等翻译后修 饰的识别,以及蛋白质之间相互作用研究等方面的应用。 [关键词]蛋白质组学;信号转导 [中图分类号]Q25FQ503[文献标识码]A ApplyingProteomicMethodstoCellularSignalTransductionResearch LIMin,ZHOUHui,CUIYin-qiu BiomacromoleculeLab,CollegeofLifeScience,JilinUniversity,Changchun130021,China [Abstract]Improvedtechnologiesthathaveemergedinproteomicsprovideusmuchmorecomprehensiveandnewin- sightsintocellularsignaltransductionresearch.Ithasovercomethelimitationsoftraditionalmethodsandrealizedthe high-throughputproteinanalysismode.Inthisletter,theapplyingofproteomictechnologiesindefiningandquantitating signalingmolecules,identifyingpost-translationalmodificationssuchasphosphorylation,andprotein-proteininteractionsre- searchduringcellularsignaltransductionwerereviewed. [Keywords]proteomicsFsignaltransduction 20世纪90年代以来,对细胞内信号转导途径的研究逐渐成为国内外生物学界广泛关注的热点。由于信号的传递在细胞的增殖、分化和生存等过程中都起着十分关键的作用,因而逐渐成为解决许多重要理论及实践问题的基本思路和有力武器。近年来有关细胞信号转导研究的方法层出不穷。传统地,人们主要利用RNA干扰技术、抗体免疫沉淀、32P标记结合蛋白质印迹法(Westernblotting)、SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)等方法来检测和鉴定信号传递过程中差异表达的信号分子及关键蛋白的磷酸化。这些方法和技术能够做小量的分析,但无法进行大规模的研究。随着双向电泳(twodimensionalelectrophoresis,2-DE)和质谱技术的不断完善与发展,蛋白质组学方法越来越多地被用于研究胞内信号转导过程。它弥补了传统方法的不足之处,实现了高通量大规模的研究模式。近年来,蛋白质组学方法应用于信号转导的研究,主要在对蛋白表达谱的检测和定量、翻译后修饰的识别,以及蛋白质之间相互作用图谱的绘制等方面。蛋白质组学方法为我们完整地绘制细胞内信号转导网络图提供了更为可靠的依据。以下就近年来该领域的一些新技术及应用做一简要综述。 1信号蛋白的寻找和确定 细胞受到外界的刺激后,首先吸引许多锚定蛋白、衔接蛋白的结合,引起蛋白的相互作用,并随之引发胞内的一系列信号蛋白的改变(如级联磷酸化事件的发生),最终信号传递到核基因,表达或阻抑表达一些特征蛋白,或者作用于某些特定的细胞器,引发其他生物学效应。由此可见,要了解一种信号途径的具体过程,首先要对该过程的特征信号分子及下游所表达的蛋白进行确定。目前,二维电泳结合质谱技术(MALDI-TOF-MS或ESI-MS)已经成为蛋白质组学的首选工具,来获得不同状态下的细胞全蛋白质组。许多研究通过选择性抑制或激活信号通路并筛选2-DE的效应分子成功地鉴定了信号转导过程中的靶标。本文作者所在研究室[1]利用2-DE结合MALDI-TOF-MS,对处于不同生理条件下的NIH3T3细胞的全细胞裂解液进行双向电泳分离及软件分析。在我们筛选的aFGF拮抗剂小肽存在的条件下,鉴定出3种表达量下调、1种表达量上升的蛋白,其中鸟苷酸结合蛋白α-11亚单位和1C型核因子分别参与胞内aFGF信号传导以及转录调控。近来人们又开发出许多以2-DE为基础的改进方法,包括从样本制备、分离到染色等各方面,来对蛋白进行更好的分离分析,如亚细胞分离、差异凝胶电泳(DIGE)技术等[2]。 2-DE的优势是能够更直观地提供信号蛋白的相对分子质量、等电点、相对表达丰度等信息,但它在分离一些pI过大或过小、疏水性强的低丰度蛋白时有很大的困难。最近研究较多的多维蛋白质鉴定技术(multidimensionalproteinidentificationtech-nique,MudPIT)[3]弥补了上述缺陷。MudPIT能够更有效地检测疏水蛋白,且在分析来自胞内细胞器的蛋白时具有更高的效率。最常用的是二维液相色谱(2D-LC),它首先对蛋白复合物进行酶 [收稿日期]2006-08-30 [基金项目]吉林省科技发展计划项目(20040411-3) [作者简介]李敏(1982-),女,硕士研究生 [通讯作者]崔银秋,(E-mail)cuiyq@jlu.edu.cn 336

植物Ca2+信号的研究进展 摘要 为了适应环境,调节自身代谢和生长, 在植物的生长发育过程中,需要对各种外界环境刺激以及植物内部生理信息做出反应,因此,植物产生了自己的信号系统。Ca2+作为一种信号分子,它几乎参与了生命体所有的生理生化活动,在植物细胞的信号系统中也起着举足轻重的作用。钙是植物生长发育必需的大量元素之一,在细胞水平上, 钙在细胞分裂、极性形成、生长、分化、凋亡等过程中均有重要的调节功能, 能维持细胞壁, 细胞膜及膜结合蛋白的稳定性并参与调节和控制植物的许多生理生化反应, 是植物代谢的重要调节者。针对国内外对植物Ca2+信号的研究情况,综述了Ca2+信号的产生、Ca2+信号参与的各种植物生理过程、Ca2+信号的检测以及其研究的最新进展。 关键词:植物; Ca2+信号; 检测; 研究进展

钙元素广泛存在于自然界和各种生物体内, 而游离态的Ca2+更是在生命活动中扮演着举足轻重的角色, 它几乎参与了生命体所有的生理生化活动。作为一种信号分子, Ca2+在受精、胚胎发育、基因表达、细胞分化、组织形成、代谢调控等过程中都有参与, 可以说, Ca2+信号无处不在[1]。1967年, Ridg-wang和Ashley通过向藤壶肌纤维中微注射水母发光蛋白, 第一次测定静息态胞内钙离子浓度[Ca2+]以来, 对于Ca2+信号的研究即风生水起。虽然植物Ca2+信号的研究起步较动物细胞晚, 但依然取得了一些成果。对植物Ca2+信号的研究, 不但能揭示生命的奥秘, 同时能帮助我们更加清楚地了解各种生命活动。为此, 针对国内外对植物Ca2+信号的研究情况, 笔者对Ca2+信号的生理功能、信号的产生、Ca2+信号参与的各种植物生理过程、以及其研究的最新进展进行了综述。 1.Ca2+的功能 Heilbrunn在1937~1952年发表的著作中, 提出了Ca2+在生物系统中复杂和多功能性的观点。认为利用Ca2+是所有活细胞的基本特征。在他提出的“细胞刺激理论”中认为:当细胞受到各种刺激时, 细胞内原来浓度很低的Ca2+水平明显增高。Heilbrunn提出Ca2+的一些细胞效应有:(1)促进细胞黏合和胞间通讯;(2)影响酶活性, 如ATP酶酯酶等;(3)调节细胞分裂;(4)控制细胞的代谢活动;(5)调节细胞溶质中溶胶-凝胶状态转变;(6)高浓度Ca2+可能造成细胞死亡, 溶质中Ca2+浓度如果太高, 会与细胞内的磷酸根产生沉淀, 而磷酸根是细胞能量及物质代谢所必须的;(7)调节细胞膜的透性。钙在维持细胞膜方面有着重要作用, 电镜观察表明, 缺钙导致细胞膜解体, 加钙又恢复常态。可见钙有稳定细胞膜结构, 防止细胞膜损伤的作用。有机酸是植物代谢的中间产物, 钙能和有机酸结合成为可溶性的钙盐结晶, 其中最为普遍的就是草酸钙。据报道, 在外源Ca2+诱导下, 细胞内可形成草酸钙结晶移去外源Ca2+, 结晶会消失。草酸钙的形成有以下生理作用:(1)消除有机酸在植物体内的过多积累。(2)草酸钙的形成过程是可逆的,植物体内钙离子过多形成草酸钙, 消除过量钙对植物的伤害, 当钙离子浓度不能满足植物需要时,草酸钙释放出Ca2+以满足植物的需要。 2.植物Ca2+信号的产生和终止 高度区域化的植物细胞内结构中, 在质膜液泡膜内质网膜上都存在着跨膜的钙离子电化学梯度, 细胞质和细胞核内游离钙离子也呈现不均匀分布, 这些梯度分布在静止状态是相对稳定的, 在受到刺激时会发生变化。钙离子梯度是钙信号产生的基础,即植物细胞Ca2+空间分布的不均衡性是产生Ca2+信号的生物基础。植物细胞中, 静息态的胞内Ca2+浓度([Ca2+] i)为100~200nM, 而细胞外(细胞壁)和细胞内(内质网、液泡、线粒体、高尔基体、细胞核)钙离子库中钙离子浓度却是胞内的数十倍, 达到了1~10mM[2,3]。当细胞受到信号刺激时, Ca2+从钙离子库中释放, 使胞内Ca2+浓度瞬间升高,激活Ca2+依赖蛋白和激酶CPKs引起细胞代谢以及基因表达的改变。当Ca2+重新进入细胞内钙离子库或流出细胞进入胞外钙离子库时, 信号得以终止。钙离子浓度的调节是通过各种钙离子通道, 钙离子泵和钙离子转运来实现的[4]。 3.植物Ca2+信号的多样性 Ca2+信号几乎参与了各种植物生理过程, 包括花粉管生长、细胞分裂、受精等;同时, Ca2+信号还参与植物的抗逆反应和对光线的感知。由此可见, Ca2+

目录 actin肌丝 (5) Wnt/LRP6 信号 (7) WNT信号转导 (7) West Nile 西尼罗河病毒 (8) Vitamin C 维生素C在大脑中的作用 (10) 视觉信号转导 (11) VEGF,低氧 (13) TSP-1诱导细胞凋亡 (15) Trka信号转导 (16) dbpb调节mRNA (17) CARM1甲基化 (19) CREB转录因子 (20) TPO信号通路 (21) Toll-Like 受体 (22) TNFR2 信号通路 (24) TNFR1信号通路 (25) IGF-1受体 (26) TNF/Stress相关信号 (27) 共刺激信号 (29) Th1/Th2 细胞分化 (30) TGF beta 信号转导 (32) 端粒、端粒酶与衰老 (33) TACI和BCMA调节B细胞免疫 (35) T辅助细胞的表面受体 (36) T细胞受体信号通路 (37) T细胞受体和CD3复合物 (38) Cardiolipin的合成 (40) Synaptic突触连接中的蛋白 (42) HSP在应激中的调节的作用 (43) Stat3 信号通路 (45) SREBP控制脂质合成 (46) 酪氨酸激酶的调节 (48) Sonic Hedgehog (SHH)受体ptc1调节细胞周期 (51) Sonic Hedgehog (Shh) 信号 (53) SODD/TNFR1信号 (56) AKT/mTOR在骨骼肌肥大中的作用 (58) G蛋白信号转导 (59) IL1受体信号转导 (60) acetyl从线粒体到胞浆过程 (62) 趋化因子chemokine在T细胞极化中的选择性表达 (63) SARS冠状病毒蛋白酶 (65) SARS冠状病毒蛋白酶 (67) Parkin在泛素-蛋白酶体中的作用 (69)

T C R细胞通路研究进展标准化管理部编码-[99968T-6889628-J68568-1689N]

T C R信号通路研究新进展 T细胞相关免疫疗法在近期的癌症研究中大放异彩,“主力部队”是CAR-T和TCR-T这两种技术。相对于CAR-T细胞疗法,TCR-T疗法的关注度相对低些,但是这两种细胞疗法都属于利用患者自身的T淋巴细胞治疗癌症的前沿基因疗法。研究发现,在实体瘤治疗方面,TCR疗法可能比CAR疗法更有优势。 T细胞在免疫系统中具有重要作用,可以攻击病原体和肿瘤细胞。T细胞受体(TCR)能识别不同的广泛亲和力的配体,参与激活多种生理过程。TCR细胞疗法定制功能性TCR,具有最佳的抗原识别特性,利用人体免疫系统来对抗癌症。那么,这种疗法的分子机制是什么呢?与之相关的TCR信号通路的分子调控机制有怎样的研究进展呢?本文将对这些问题进行综合性讲述。 TCR蛋白结构 图一TCR复合物结构 T细胞作为适应性免疫应答的主要组成部分,其抗原识别受体结构以被证实,克隆获得的TCR由α-链和β-链构成异源二聚体。TCR异源二聚体主要与CD3的多个信号转导亚基结合,如图所示,CD3γ、CD3δ和CD3ε异源二聚体以及CD3ζ同源二聚体。在CD3的不同亚基含有免疫受体酪氨酸的活化基序-ITAM,但是每个亚基的数量不同,CD3γ、CD3δ和CD3ε分别含有一个,而CD3ζ含有三个串联的ITAM,这样就使的每个T细胞受体可以产生10个ITAM。酪氨酸磷酸化的ITAM可以使TCR与胞内信号转导通路发生偶联,向TCR募集含有SH2结构域的蛋白质,如酪氨酸激酶ZAP70。但是现在还没有解决为什么TCR复合物包含这么多的信号转导亚基和ITAM的问题,主要有两种假说,一种是CD3分子或单独的ITAM可能通过募集独特的效应分子,执行不同的信号转导功能;另一种是多个ITAM的主要功能是放大TCR信号。 TCR识别与抗原递呈细胞(APC)呈递的可以结合MHC分子(pMHC)的肽。单独的TCR能够识别具有广泛亲和力的不同配体(自身肽和外来肽)。TCR参与触发不同的功能输出。在胸腺中,pMHC与TCR信号结合强度决定了细胞发育与分化过程。当结合力在最小值到最大值之间时,促进胸腺细胞的存活,并转化成CD4+CD8-或CD4-CD8+的成熟阶段;如果TCR与pMHC太低或太高,细胞会发生凋亡。在外围,自体pMHC对TCR的低亲和力结合提供了维持初始T细胞所必需的强直性存活信号,并且还可以促进其与外来抗原高亲和力遭遇时的完全激活。 图二TCR结合强度对胸腺细胞的影响 TCR信号强度对于产生合适的应答T细胞至关重要。TCR信号传导应答指导 CD4+T细胞分化成功能不同的T辅助细胞亚群,对特定T细胞亚群(如调节性T 细胞)也起着关键作用。TCR细胞的强度和持续时间与记忆T细胞分化相关,也是诱导T细胞无能或耗竭的基本决定因素。TCR信号受到生化及分子机制的调控,导致信号放大或衰减。调控TCR的机制复杂多样,不过可以分为三个基本层面:早期信号转导效应分子(如关键激酶和磷酸酶的调节);信号分子发育阶段(特异性表达调控);以及TCR信号强度的动态调控。 TCR信号通路概述 图三:TCR信号通路概述

ERK信号转导通路 在MAPK家族中,ERK是最先被发现并被了解最多的成员。ERK包括了两种异构体ERKl 和ERK2(分别为P44和P42)。两个磷酸化受体位点即酪氨酸和苏氨酸被谷氨酸残基分隔开来,故其磷酸化位点基序是TEY。目前认为,P38和JNK属于“应激诱导”的MAPK,而ERK被认为是与细胞增殖、转化和分化相关的MAPK。 ERK级联反应包括典型的3个层次MAPKs的序贯激活过程。Raf蛋白(MAPKKK)的激活能磷酸化MEKl/2(MAPKK),并使后者激活,从而使随后的ERKl/2(MAPK)发生双重磷酸化而被缉获。ERK的激活对于Ras诱导的细胞反应、转录因子(如Elkl、cEtsl和c—Ets2)的激活以及激酶(如P90rskl、MNKl和MNK2)的激活是至关重要的。 ERK通路的激活包括了以下3种方式:酪氨酸激酶受体对Ras的激活、Ca2+对Ras的激活以及PKC对ERK通路的激活。生长因子与细胞表面的受体酪氨酸激酶(RTK)结合,诱发生长因子受体胞质中的酪氨酸残基自身磷酸化,导致受体二聚体化与活化。细胞表面的生长因子受体具有募集Grb2和SOS复合物的能力。SOS在与生长因子受体结合的过程中移位至胞质,并与Ras相互作用,促进Ras与GTP结合,使Ras活化。此外,Ca2+可通过不同的作用机制激活Ras蛋白:①通过l型电压依赖性的钙离子通道流人细胞内,经由Src家族蛋白激酶的介导,导致表皮生长因子受体(EGFR)酪氨酸磷酸化,进而通过Shc—Grb2—SOS复合物激活Ras;②通过Ca2+敏感性的Ras鸟嘌呤核苷酸释放因子(Ras—GRF)和Ca2+—钙调蛋白复合物与Ras—GRF结合,通过诱导Ras进行GTP交换而激活Ras;③在大鼠嗜铬细胞瘤PCI2细胞中,胞质Ca2+的升高,可诱发酪氨酸磷酸化,激活蛋白酪氨酸激酶(PYK2)。PYK2与Grb2和SOS形成复合物,同时伴随着Shc的激活。活化的PYK2通过直接募集Srb2—SOS复合物,或间接通过Shc而激活Ras。Ras是一种G蛋白,可通过与Grb2—SOS复合物发生相互作用而被激活。在这一过程中,SOS催化鸟嘌吟二磷酸盐发生转位,从而形成Ras—GTP复合体,使Ras激活,成为具有功能活性的Ras蛋白。Ras被激活后将Raf募集于细胞膜,随后Raf 发生磷酸化作用和寡聚化作用。PKC的同工酶也可以磷酸化并激活Raf—1蛋白激酶,使Raf —1发生自身磷酸化。 Raf家族属于MAPKKK,是高度保守的丝氨酸—苏氨酸激酶,通过与Ras蛋白的相互作用而被缉获。Raf家族成员包括A—Raf、B—Raf和Raf—1(即c—Raf或c—Raf—1)。每一异构体包括3个保守区域,称为CRl、CR2和CR3。前面的两个保守区域位于氨基末端,并含有调节Raf催化区域的部分,其激酶区域位于CR3。Raf被激活后使MEKl/2磷酸化,最终使ERKl/2发生磷酸化而被激活。激活的ERKl/2转位至核内,通过使P90RSK、MSK以及转录因子ELK—1、Stat3磷酸化而激活转录,引起细胞生长、增殖与分化。

专业文献综述 题目: 脱落酸在植物细胞信号转导中的作用姓名: 学院: 专业: 班级: 学号: 指导教师: 职称:

摘要:脱落酸(ABA)是一种重要的植物激素,受到生物胁迫和非生物胁迫的调控,在植物对胁迫环境抗逆性中发挥重要作用。当植物受到外界条件影响后会导致植物体内ABA含量上升,调节气孔的开度,防止植物体进一步失水,维持细胞渗透平衡;参与相关抗逆基因的表达调控,产生抗逆分子;通过延长种子休眠期等以适应逆境;通过一些调节因子调节植物细胞内环境稳定。本文介绍了脱落酸的合成、调控、作用机制及其在植物逆境胁迫中的作用。 关键词:脱落酸;合成;作用机制;胁迫

细胞信号转导是在特定时空条件下将外界生长、发育、分化等信息通过一定的途径转移至细胞内并调控相关基因表达的过程。细胞的一切生命活动都与信号转导有关。细胞信号转导系统具有调节细胞增殖、分化、代谢、应激、防御、凋亡和胀亡等作用[1]。脱落酸(ABA)是一种重要的植物激素,参与植物胚胎发育、种子休眠、果实成熟以及逆境胁迫等许多方面,对植物生长发育起着调节作用[2]。植物接受胁迫信号,影响基因的表达,引起植物体内ABA水平上调,从而增加植物的抗逆性。ABA在植物干旱、高盐、低温等逆境胁迫反应中起重要作用,它是植物的抗逆诱导因子,因而被称为植物的“胁迫激素”。本文介绍了脱落酸的合成、调控、作用机制及其在植物逆境胁迫中的作用。 1 脱落酸的合成与调控 ABA主要在叶绿体中合成,然后转移到其他组织中积累起来。研究发现不仅植物的叶片,立体的根系,特别是根尖也能合成大量的脱落酸。进一步研究发现,植物的其他器官,特别是花、果实、种子也能合成脱落酸。 脱落酸是C15化合物,在植物体内有两条合成途径,一是直接途径:3个异戊烯单位聚合成C15前体—法呢焦磷酸(FPP),由FPP经环化和氧化直接形成15碳的ABA。另一个是高等植物中的C40间接途径:质体内的MEP途径,由C40的类胡萝卜素转化形成[3]。迄今为止,脱落酸生物合成中几乎全部基因都已经被克隆。进一步的研究发现,在脱落酸代谢途径中有多个步骤受到差异调控,从而在转录和转录后水平对脱落酸含量进行精细调控。 在非胁迫条件下脱落酸可能在维管组织中合成,然后被运送到气孔等目标部位,有研究表明脱落酸在凋亡的叶片和子叶的保卫细胞中也有所表达。脱落酸的代谢调控并不仅仅局限于生物合成途径中的某一部分,而是一个多位点的协调过程。MEP途径中的DXP合成酶、类胡萝卜素代谢中参与其合成的八氢番茄红素去饱和酶和参与其转化的ZEP都能够在种子和幼苗中引起脱落酸的积累[4]。除了代谢途径自身的酶基因外,脱落酸的生物合成也依赖于内部和外部的各种信号,以及发育阶段、组织和器官的特异性等等。在胚的发育早期,脱落酸促进胚的生长;而在发育晚期则通过与赤霉素相拮抗而抑制胚的生长[5]。 2 脱落酸的作用机制 现在研究认为,在干旱、高盐或低温等逆境胁迫条件下,可能存在的机制是:逆境胁迫条件促使植物体内脱落酸的积累,脱落酸诱导ABA响应元件基因表达,从而产生对逆境抗性[6]。从胁迫刺激到植物作出反应是一系列复杂的信息传递过程,包括三个环节:一是感受细胞或组织对原初信号(环境刺激)的感知传导和反应,产生胞间信号;二是胞间信使在细胞或组织间的传递,并最终到达受体细胞的作用位点;三是受体细胞对胞间信使的接受、转导和反应,使受体组织中生理生化和功能的最优化组合,最终体现为植物对环境刺激或逆境的适应或抗性[7]。从这个角度来说脱落酸在植物体内产生作用主要表现在3个方面:通过受体作用、通过基因表达作用、通过信号因子作用。 2.1 通过受体作用 ABA信号转导研究最突出的进展之一是ABA受体PYR/PYL/PCAR蛋白的鉴定

经典信号通路之Wnt信号通路 1、Wnt信号通路简介 Wnt信号通路是一个复杂的蛋白质作用网络,其功能最常见于胚胎发育和癌症,但也参与成年动物的正常生理过程. 2、Wnt信号通路的发现 Wnt得名于Wg (wingless) 与Int.wingless 基因最早在果蝇中被发现并作用于胚胎发育,以及成年动物的肢体形成INT 基因最早在脊椎动物中发现,位于小鼠乳腺肿瘤病毒(MMTV)整合位点附近。Int-1 基因与wingless 基因具有同源性。 果蝇中wingless 基因突变可导致无翅畸形,而小鼠乳腺肿瘤中MMTV复制并整合入基因组可导致一种或几种Wnt基因合成增加。 3、Wnt信号通路的机制 Wnt信号通路包括许多可调控Wnt信号分子合成的蛋白质,它们与靶细胞上的受体相互作用,而靶细胞的生理反应则来源与细胞和胞外Wnt配体的相互作用。尽管发应的发生及强度因Wnt配体,细胞种类及机体自身而异,信号通路中某些成分,从线虫到人类都具

有很高的同源性。蛋白质的同源性提示多种各异的Wnt配体来源于各种生物的共同祖先。 经典Wnt通路描述当Wnt蛋白于细胞表面Frizzled受体家族结合后的一系列反应,包括Dishevelled受体家族蛋白质的激活及最终细胞核内β-catenin水平的变化。Dishevelled (DSH) 是细胞膜相关Wnt受体复合物的关键成分,它与Wnt结合后被激活,并抑制下游蛋白质复合物,包括axin、GSK-3、与APC蛋白。axin/GSK-3/APC 复合体可促进细胞内信号分子β-catenin的降解。当“β-catenin 降解复合物”被抑制后,胞浆内的β-catenin得以稳定存在,部分β-catenin进入细胞核与TCF/LEF转录因子家族作用并促进特定基因的表达。 4、Wnt介导的细胞反应 经典Wnt信号通路介导的重要细胞反应包括: 癌症发生。Wnts, APC, axin,与TCFs表达水平的变化均与癌症发生相关。 体轴发育。在蟾蜍卵内注射Wnt抑制剂可导致双头畸形。 形态发生。 (此文档部分内容来源于网络,如有侵权请告知删除,文档可自行编辑修改内容, 供参考,感谢您的配合和支持)

相关主题
文本预览
相关文档 最新文档