当前位置:文档之家› 二次函数与特殊三角形、四边形综合题

二次函数与特殊三角形、四边形综合题

二次函数与特殊三角形、四边形综合题
二次函数与特殊三角形、四边形综合题

二次函数与特殊三角形、四边形综合题

一、与等腰三角形、直角三角形相关

【例1】 如图,在梯形ABCD 中,AD BC ∥,3AD =,5DC =,10BC =,梯形的高为4.动点M 从B 点

出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t (秒).

(1)当MN AB ∥时,求t 的值;

(2)试探究:t 为何值时,MNC △为等腰三角形.

解:(1)由题意知,当M 、N 运动到t 秒时,如图①,过D 作DE AB ∥交BC 于E 点,则四边形ABED 是平

行四边形.

∵AB DE ∥,AB MN ∥.

DE MN ∥. ∴MC NC

EC CD

=. ∴ 1021035t t -=-.解得50

17t =. 5分

(2)分三种情况讨论: ① 当MN NC =时,如图②作DF BC ⊥交BC 于F ,则有2MC FC =即.

∵4

sin 5

DF C CD ∠==,

∴3

cos 5C ∠=,

∴310225t

t -=?,

解得25

8

t =. 6分

② 当MN MC =时,如图③,过M 作MH CD ⊥于H .

则2CN CH =,

∴()3

21025

t t =-?.

∴60

17t =

.7分

③ 当MC CN =时,如图④.

则102t t -=.

10

3

t =. -------------------------------------8分

综上所述,当258t =、6017

或10

3时,MNC △为等腰三角形.

【例2】 如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,

A B M C N E D A B M C N F D

A B M C

N

H D 原图

1OA =,2OC =,点D 在边OC 上且54

OD =

. (1)求直线AC 的解析式. (2)在y 轴上是否存在点P ,直线PD 与矩形对角线AC 交于点M ,使得DMC △为等腰三角形?若存在,直接写出....

所有符合条件的点P 的坐标;若不存在,请说明理由. (3)抛物线2y x =-经过怎样平移,才能使得平移后的抛物线过点D 和点E (点E 在y 轴正半轴上),且ODE △沿DE 折叠后点O 落在边AB 上O '处?

解:(1)OA =1,OC =2 则A 点坐标为(0,1),C 点坐标为(2,0) 设直线AC 的解析式为y=kx+b

01

20b k b +=?∴?

+=?

解得121

k b ?=-???=?

∴直线AC 的解析式为1

12

y x =-+ ··················

2分 (2

)1235

55(0)(0)(02))38

4P P P --,,,

,,或3(0P (正确一个得2分) ························ 8分 (3)如图,设(1)O x ′,

过O ′点作O F OC ⊥′

于F 22225

1()4

O D O F DF x ='+=+-′

由折叠知OD O D =′

2255

1()()44x ∴+-=

1

2

x ∴=或2 ··········· 10分

【例3】 在平面直角坐标系xOy 中,A 、B 为反比例函数4

y x

=

(0)x >的图象上两点,A 点的横坐标与B 点第25题

的纵坐标均为1,将4

y x

=(0)x >的图象绕原点O 顺时针旋转90°,A 点的对应点为'A ,B 点的对应点为'B .

(1)求旋转后的图象解析式; (2)求'A 、'B 点的坐标;

(3)连结'AB .动点M 从A 点出发沿线段'AB 以每秒1个单位长度的速度向终点'B 运动;动点N 同时从'B 点出发沿线段''B A 以每秒1个单位长度的速度向终点'A 运动,当其中一个点停止运动时另一个点也随之停止运动.设运动的时间为t 秒,试探究:是否存在使'MNB △为等腰直角三角形的t 值,若存在,求出t 的值;若不存在,说明理由.

解:(1)旋转后的图象解析式为4

y x

=-

(0)x >. ……………………… 1分 (2)由旋转可得'A (4,-1)、'B (1,-4). ………………………… 3分

(3)依题意,可知'45B ∠=?.若'MNB △为直角三角形,则'MNB △同时也是等腰三角形,因

此,只需求使'MNB △为直角三角形的t 值.

分两种情况讨论:

①当'B NM ∠是直角,'

B N MN =时,如图1,

∵AB ′=8,B ′A ′==AM=B ′N=MN=t , ∴B ′M=8-t ,

∵2

2

2

''B N MN B M +=,

∴2

2

2

(8)

t t t +=-. ………… 4分

解得

8t =-,

∴8t =-+ ……………… 5分 ②当'B MN ∠是直角,'B M MN

=时, 如图2,

AB ′

=8,B ′A ′==AM=B ′N=t ,

∴B ′M=MN=8-t ,

∵222

''B M MN B N +=, ∴222(8)(8)t t t -+-=, 解得

16t =±

∵168+>

,16->

∴此时t 值不存在. …………… 6分

(此类情况不计算,通过画图说明t 值不存在也可以)

综上所述,当8t =-+'MNB △为等腰直角三角形. ……………… 7分

【例4】 如图,已知抛物线1C :()2

25y a x =--的顶点为P ,与x 轴相交于A B ,两点(点A 在点B 的左边),

点A 的横坐标是1-. (1)求P 点坐标及a 的值;

(2)如图1,抛物线2C 与抛物线1C 关于x 轴对称,将抛物线2C 向左平移,平移后的抛物线记为3C ,3C 的顶点为M ,当点P M ,

关于点A 成中心对称时,求3C 的解析式()2

y a x h k =-+; (3)如图2,点Q 是x 轴负半轴上一动点,将抛物线1C 绕点Q 旋转180?后得到抛物线4C .抛物线4C 的顶点为N ,与x 轴相交于E 、F 两点(点E 在点F 的左边),当以点P 、N 、E 为顶点的三角形是直角三角形时,求顶点N 的坐标.

图2

图1

C 1

解:(1)由抛物线C 1:5)2(2

--=x a y 得顶点P 的坐标为(2,5)………….1分

∵点A (-1,0)在抛物线C 1上∴

9

5

a =.………………2分 (2)连接PM ,作PH ⊥x 轴于H ,作MG ⊥x 轴于G.. ∵点P 、M 关于点A 成中心对称, ∴PM 过点A ,且PA =MA.. ∴△PAH ≌△MAG.. ∴MG =PH =5,AG =AH =3. ∴顶点M 的坐标为(4-,5).………………………3分 ∵抛物线C 2与C 1关于x 轴对称,抛物线C 3由C 2平移得到 ∴抛物线C 3的表达式5)4(9

5

2++-

=x y . …………4分 (3)∵抛物线C 4由C 1绕x 轴上的点Q 旋转180°得到 ∴顶点N 、P 关于点Q 成中心对称. 由(2)得点N 的纵坐标为5. 设点N 坐标为(m ,5),作PH ⊥x 轴于H ,作NG ⊥x 轴于G ,作PR ⊥NG 于R. ∵旋转中心Q 在x 轴上, ∴EF =AB =2AH =6. ∴EG =3,点E 坐标为(3m -,0),H 坐标为(2,0),R 坐标为(m ,-5). 根据勾股定理,得

,104m 4m PR NR PN 2222+-=+= 50m 10m HE PH PE 2

2

2

2

+-=+= 3435NE 2

2

2

=+= ①当∠PNE =90o时,PN 2+ NE 2=PE 2, 解得m =344-

,∴N 点坐标为(3

44

-,5) ②当∠PEN =90o时,PE 2

+ NE 2

=PN 2

, 解得m =310-

,∴N 点坐标为(3

10-,5). ③∵PN >NR =10>NE ,∴∠NPE ≠90o ………7分 综上所得,当N 点坐标为(344-

,5)或(-

二、与平行四边形相关

【例5】 抛物线223y x x =-++与x 轴相交于A 、B 两点(点A 在B 的左侧),与y 轴相交于点C ,顶点为

D .

(1)直接写出A 、B 、C 三点的坐标和抛物线的对称轴;

(2)连接BC ,与抛物线的对称轴交于点E ,点P 为线段BC 上的一个动点,过点P 作PF DE ∥交抛物线于点F ,设点P 的横坐标为m :

①用含m 的代数式表示线段PF 的长,并求出当m 为何值时,四边形PEDF 为平行四边形? ②设BCF △的面积为S ,求S 与m 的函数关系式.

解:(1)A (-1,0),B (3,0),C (0,3). ········································································· 2分

抛物线的对称轴是:x =1. ··························································································· 3分

(2)①设直线BC 的函数关系式为:y=kx+b .

把B (3,0),C (0,3)分别代入得:

303

k b b +=??

=?,

解得:k = -1,b =3. 所以直线BC 的函数关系式为:3y x =-+. 当x =1时,y = -1+3=2,∴E (1,2). 当x m =时,3y m =-+,

∴P (m ,-m +3). ····································································································· 4分 在223y x x =-++中,当1x =时,4y =. ∴()14D ,.

当x m =时,2

23y m m =-++,∴()

223F m m m -++,. ··································· 5分

∴线段DE =4-2=2,线段()2

2

2333PF m m m m m =-++--+=-+.

················ 6分 ∵PF DE ∥,

∴当PF ED =时,四边形PEDF 为平行四边形.

由2

32m m -+=,解得:1221m m ==,(不合题意,舍去).

因此,当2m =时,四边形PEDF 为平行四边形. ·············································· 7分 ②设直线PF 与x 轴交于点M ,由()()3000B O ,,,,可得:3OB OM MB =+=. ∵BPF CPF S S S =+△△. ································································································ 8分

即1111

()2222S PF BM PF OM PF BM OM PF OB =

+=+= . ∴()()22139

3303222

S m m m m m =?-+=-+≤≤.

········································ 9分 【例6】 在平面直角坐标系中,已知抛物线经过()40A -,

,()04B -,,()20C ,三点. (1)求抛物线的解析式;

(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,AMB △的面积为S .求S 关于

m 的函数关系式,并求出S 的最大值.

(3)若点P 是抛物线上的动点,点Q 是直线y x =-上的动点,判断有几个位置能够使得点P Q B O ,,,为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.

【例7】 已知:如图,在平面直角坐标系xOy 中,直线3

64

y x =-+与x 轴、y 轴的交点分 别为A B 、,将

OBA ∠对折,使点O 的对应点H 落在直线AB 上,折痕交x 轴于点.C (1)直接写出点C 的坐标,并求过A B C 、、三点的抛物线的解析式;

(2)若抛物线的顶点为D ,在直线BC 上是否存在点P ,使得四边形ODAP 为平行四边形?若存

在,求出点P 的坐标;若不存在,说明理由;

(3)设抛物线的对称轴与直线BC 的交点为T Q ,

为线段BT 上一点,直接写出QA QO -的取值范围.

解:(1)点C 的坐标为(3,0).- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1分 ∵ 点A 、B 的坐标分别为(8,0),(0,6)A B ,

∴ 可设过A 、B 、C 三点的抛物线的解析式为(3)(8)y a x x =--.

将0,6x y ==代入抛物线的解析式,得1

4a =

. - - - - - - - - - - - - - - - - - - - - - - -2分 ∴ 过A 、B 、C 三点的抛物线的解析式为2111

644

y x x =-+.- - - - - - - - - - - - -3分

(2)可得抛物线的对称轴为11

2

x =

,顶点D 的坐标为 1125

(,)216

-,设抛物线的对称轴与x 轴的交点为G . 直线BC 的解析式为26y x =-+.- - - - - - - - - - 4分 设点P 的坐标为(,26)x x -+.

解法一:如图8,作OP ∥AD 交直线BC 于点P ,

连结AP ,作PM ⊥x 轴于点M . ∵ OP ∥AD ,

∴ ∠POM =∠GAD ,tan ∠POM =tan ∠GAD .

∴ PM DG OM GA =,即25

26

161182

x x -+=-.

解得167x =. 经检验167

x =是原方程的解. 此时点P 的坐标为1610

(,)77. - - - - - - - - - - - - - - - - - - - - - - - - - - - - -5分

但此时165

,72

OM GA ==,OM <GA .

∵ ,,,cos cos OM GA

OP AD POM GAD POM GAD

=

=∠=∠∠∠

∴ OP <AD ,即四边形的对边OP 与AD 平行但不相等,

∴ 直线BC 上不存在符合条件的点P . - - - - - - - - - - - - - - - - - - - - - 6分

解法二:如图9,取OA 的中点E ,作点D 关于点E 的对称点P ,作PN ⊥x 轴于

点N . 则∠PEO =∠DEA ,PE =DE . 可得△PEN ≌△DEG .

由42OA

OE =

=,可得E 点的坐标为(4,0). NE=EG=32, ON=OE -NE=52,NP=DG=25

16

.

∴ 点P 的坐标为525

(,)216

. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5分

∵ x=52时,52526261216

x -+=-?+=≠,

∴ 点P 不在直线BC 上.

∴ 直线BC 上不存在符合条件的点P .- - - - - - - - - - - - - - - - - - - - - 6分

(3)QA

三、与梯形相关

【例

8】 如图,在菱形ABCD 中,2AB cm =,60BAD ∠=?,E 为CD 边中点,点P 从点A 开始沿AC 方向

以每秒cm 的速度运动,同时,点Q 从点D 出发沿DB 方向以每秒1cm 的速度运动,当点P 到达点C 时,P Q ,

同时停止运动,设运动的时间为x 秒. (1)当点P 在线段AO 上运动时.

①请用含x 的代数式表示OP 的长度;

②若记四边形PBEQ 的面积为y ,求y 关于x 的函数关系式(不要求写出自变量的取值范围); (2)显然,当0x =时,四边形PBEQ 即梯形ABED ,请问,当P 在线段AC 的其他位置时,以P B E Q ,,,为顶点的四边形能否成为梯形?若能,求出所有满足条件的x 的值;若不能,请说明

理由.

(1)①由题意得∠BAO=30°,AC ⊥BD ∵AB=2 ∴OB=OD=1, ∴ ………

……2分

②过点E 作EH ⊥BD ,则EH 为△COD 的中位线

C

B

A

∴122

EH OC =

=

∵DQ=x ∴BQ=2-x

∴11(2)(2)222

BPQ BEQ y S S x x ??=+=

?-+?-?

2x =

…………………………3分

(2)能成为梯形,分三种情况: 当PQ ∥BE 时,∠PQO=∠DBE=30°

tan 30o OP OQ ==

13

x =

- ∴x=25 此时PB 不平行QE ,∴x=

2

5

时,四边形PBEQ

当PE ∥BQ 时,P 为OC 中点

∴AP=2

2

= ∴34

x =

此时,BQ=2-x=54≠PE ,∴x=34

时,四边形PEQB

当EQ ∥BP 时,△QEH ∽△BPO

HE QH

OP BO

= 1

21x -

= ∴x=1(x=0舍去)

此时,BQ 不平行于PE , ∴x=1时,四边形PEQB 为梯形.

………………………………2分

综上所述,当x=

25或3

4

或1时,以P ,B ,E ,Q 为顶点的四边形是梯形.……………1分

【例9】 如图,P 为正方形ABCD 的对称中心,()03A ,

,()10B ,,直线OP 交AB 于N ,DC 于M ,点H C

C

C

从原点O 出发沿x 轴的正半轴方向以1个单位每秒速度运动,同时,点R 从O 出发沿OM

方向以t .求:

(1)C 的坐标为 ;

(2)当t 为何值时,ANO △与DMR △相似?

(3)求HCR △的面积S 与t 的函数关系式;并求以A B C R ,,,为顶点的四边形是梯形时t 的值及S 的最大值.

(1)C(4,1)...................2分

(2)当∠MDR =450

时,t=2,点H(2,0).........................2分

当∠DRM =450时,t=3,点H(3,0).......................... 2分

(3)S=-21

+2t(0<t≤4);(1分)S=21

-2t(t>4)(1分)

当CR∥AB时,t=413

(1分) S=3239 (1分)

当AR∥BC时,t=29, S=8

9

(1分)

当BR∥AC时,t=31, S=

1811

(1分)

【例10】 如图,在平面直角坐标系xOy 中,点,1)A 关于x 轴的对称点为C ,AC 与x 轴交于点B ,将

△OCB 沿OC 翻折后,点B 落在点D 处.

(1)求点C 、D 的坐标;

(2)求经过O 、D 、B 三点的抛物线的解析式;

(3)若抛物线的对称轴与OC 交于点E ,点P 为线段OC 上一点,过点P 作y 轴的平行线,交抛

物线于点Q .

①当四边形EDQP 为等腰梯形时,求出点P 的坐标; ②当四边形EDQP 为平行四边形时,直接写出点P 的坐标.

解:(1

)如图所示,∵点,1)A 关于x 轴的对称点为C ,AC 与x 轴交于点B ,

∴AC ⊥x 轴于B

,0)B ,

,1)C -.…………………………1分

∴1,BC AB OB ==

∴2

,130,360OC =∠=?∠=?,

由题意可知 2130∠=∠=?,

OD OB = ∴30NOD ∠=?.

过点D 作DM x ⊥轴于M ,DN y ⊥轴于N ,

在Rt OND ?

中,12DN OD =

=

,

32ON ==. 由矩形ONDM

得2

OM DN ==

. ∵点D

在第四象限∴3

,22

(

)D -.……………………………2分 (2)设经过O 、D 、B 三点的抛物线的解析式为2

y ax bx =+.

依题意得

33

,42230.a a ?+

=-???+=?

………………………3分

解得

2,

a b =???=-??

∴此抛物线的解析式为22y x =-.………………………4分

(3

)∵2

23

22(22

y x x =-=-

-, ∴点D 为抛物线的顶点.

∴直线DM 为抛物线的对称轴,交OC 于E , 由题意可知 4360∠=∠=?,90ODC ∠=?, ∴60OEM ∠=?,

∴660∠=?, ∴760∠=?,

∴EDC ?是等边三角形,830∠=?. ∴1

12

CE DE OE OC ===

=. ①当点1P 在EC 上时,四边形11EDQ P 为等腰梯形.

∵DM ∥y ∥11PQ ,1EP 与1DQ 不平行,∴四边形11EDQ P 为梯形. 要使梯形11EDQ P 为等腰梯形,只需满足1660EDQ ∠=∠=?. ∵760∠=?,∴点1Q 在DC 上.

由1)C -、3,22(

)D -求得直线CD 的解析式为23

y x =-.

又∵点1Q 在抛物线上,∴2

22x x -=

-.

解得12x x =

=(与点D 重合,舍).∴1

P .

由(0,0)O 、1)C -求得直线OC 的解析式为y x =.

∵点1P 在

OC 上,∴2333y ==- .∴12

(,)33

P -.………6分 ②当点2P 在OE 上时,四边形22EDQ P 为平行四边形,此时2P 点坐标为

21

(

,)33

P -. ……………………8分

综上所述,当12(,)33P -时,11

EDQ P 为等腰梯形;当21

(,)33

P -时,22EDQ P 为平行四边形.

二次函数与特殊四边形综合问题专题训练(有答案)

二次函数中动点与特殊四边形综合问题解析与训练 一、知识准备: 抛物线与直线形的结合表形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊四边形,有以下常风的基本形式 (1)抛物线上的点能否构成平行四边形 (2)抛物线上的点能否构成矩形,菱形,正方形 特殊四边形的性质与是解决这类问题的基础,而待定系数法,数形结合,分类讨论是解决这类问题的关键。 二、例题精析 ㈠【抛物线上的点能否构成平行四边形】 例一、(2013河南)如图,抛物线2 y x bx c =-++与直线 1 2 2 y x =+交于,C D两点,其 中点C在y轴上,点D的坐标为 7 (3,) 2 。点P是y轴右侧的抛物线上一动点,过点P作 PE x ⊥轴于点E,交CD于点F. (1)求抛物线的解析式; (2)若点P的横坐标为m,当m为何值时,以,,, O C P F为顶点的四边形是平行四边形?请说明理由。 【解答】(1)∵直线 1 2 2 y x =+经过点C,∴(0,2) C ∵抛物线2 y x bx c =-++经过点(0,2) C,D 7 (3,) 2

∴22727 332 2c b b c c =?? =? ?∴??=-++??=?? ∴抛物线的解析式为2 7 22 y x x =-++ (2)∵点P 的横坐标为m 且在抛物线上 ∴2 71 (,2),(,2)22 P m m m F m m -+ ++ ∵PF ∥CO ,∴当PF CO =时,以,,,O C P F 为顶点的四边形是平行四边形 ① 当03m <<时,2 271 2(2)322 PF m m m m m =-+ +-+=-+ ∴2 32m m -+=,解得:121,2m m == 即当1m =或2时,四边形OCPF 是平行四边形 ② 当3m ≥时,2 217 (2)(2)32 2 PF m m m m m =+--+ +=- 232m m -= ,解得:123322 m m += =(舍去) 即当132 m += 时,四边形OCFP 是平行四边形 练习1:(2013?盘锦)如图,抛物线y=ax 2+bx+3与x 轴相交于点A (﹣1,0)、B (3,0), 与y 轴相交于点C ,点P 为线段OB 上的动点(不与O 、B 重合),过点P 垂直于x 轴的直线与抛物线及线段BC 分别交于点E 、F ,点D 在y 轴正半轴上,OD=2,连接DE 、OF . (1)求抛物线的解析式; (2)当四边形ODEF 是平行四边形时,求点P 的坐标;

2019中考数学专题汇编全集 二次函数与特殊三角形判定

第24题 二次函数综合题 类型1 二次函数与特殊三角形判定 1. 已知二次函数y =ax 2+bx -3a (a >0)经过点A (-1,0)、C (0,3),与x 轴交于另一点B ,抛物线的顶点为D . (1)求此二次函数解析式; (2)连接DC 、BC 、DB ,求证:△BCD 是直角三角形; (3)在对称轴右侧的抛物线上是否存在点P ,使得△PDC 为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由. 第1题图 (1)解:∵二次函数y =ax 2+bx -3a 的图象经过点A (-1,0)、C (0, 3), ∴根据题意,得?????a -b -3a =0-3a =3 , 解得?????a =-1b =2 , ∴抛物线的解析式为y =-x 2+2x +3; (2)证明:由y =-x 2+2x +3=-(x -1)2+4得,点D 的坐标为(1,4),点B 的坐标为(3,0), 如解图,过点D 作DE ⊥x 轴于点E ,过点C 作CF ⊥DE 于点F , ∵D (1,4),B (3,0),C (0,3),

∴OC =OB =3,DE =4,BE =2,CF =DF =1, ∴CD 2=CF 2+DF 2=2,BC 2=OC 2+OB 2=18,BD 2=DE 2+BE 2=20, ∴CD 2+BC 2=BD 2, ∴△BCD 是直角三角形; 第1题解图 (3)解:存在. 抛物线y =-x 2+2x +3对称轴为直线x =1. i )如解图,若以CD 为底边,则P 1D =P 1C , 设点P 1的坐标为(x ,y ),根据勾股定理可得P 1C 2=x 2+(3-y )2,P 1D 2=(x -1)2+(4-y )2, ∴x 2+(3-y )2=(x -1)2+(4-y )2, 即y =4-x . 又∵P 1(x ,y )在抛物线y =-x 2+2x +3上, ∴4-x =-x 2+2x +3, 即x 2-3x +1=0, 解得x 1=3+52,x 2=3-52<1(舍去), ∴x =3+52,

特殊三角形专题练习

特殊三角形专题练习 一.选择题(共9小题) 1.已知等腰三角形的周长为24,腰长为x,则x的取值范围是() A.x>12 B.x<6 C.6<x<12 D.0<x<12 2.若实数x,y满足﹣40,则以x,y的值为两边长的等腰三角形的周长是() 16或20 D. 20 A.12 B.16 C . 3.如图,在△中,∠90°,,是经过A点的一条直线,且B,C在的两侧,⊥于D,⊥于E,2,6,则的长为() 3 C. 5 D. 4 A. 2 B . 4.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣120的两个根,则k的值是()A.27 B.36C 27或36 D.18 .

5.如图,在△中,,平分∠交于点D,∥交的延长线于点E.若∠35°,则∠的度数为() A.40° B. 45°C . 60° D. 70° 6.如图,△中,⊥于D,⊥于E,与相交于F,若,则∠的大小是( ) A.40°B.45°C.50°D . 60° 7.如图,,若∠80°,则∠( )

A. 80°B 100°C.140° D. 160° . ) 8.已知如图,∥,⊥,⊥,,2,3,则△的面积为( 5 D. 无法确定 . 9.如图,已知△的面积为102,为∠的角平分线,垂直于点P, ) 则△的面积为( A. 62B.52 C. 42D . 二.填空题(共8小题) 10.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,

二次函数与等腰三角形

以二次函数与等腰三角形问题为背景的解答题 【学习目标】 这类问题主要是以一点(或以一条线段)为依托,动点和函数思想相结合以几何图形为背景,以动点为元素,构造动态型几何问题。解此类题目,应从相关图形的性质和数量关系分类讨 论来解决。此类问题较多地关注学生对图形性质的理解,用动态的观点去看待一般函数和图形结合的问题,具有较强的综合性. 【教学过程】解题思路:等腰三角形的存在性的解题方法:①几何法三步:先分类;再画图;后计算.② 代数法三步:先罗列三边;再分类列方程;后解方程、检验.再以二次函数与等腰三角形问题为背景的解答题中,这两种方法往往结合使用. 一、考点突破 12 例1、如图,已知抛物线y=﹣x2+bx+4 与x 轴相交于A、B两点,与y 轴相交于点C,若 4 已知 A 点的坐标为(﹣2,0). (1)求抛物线的解析式; 2)连接AC、BC,求线段BC 所在直线的解析式; P,使△ACP为等腰三角形?若存在,求出符合条件的(3)在抛物线的对称轴上是否存在 点P 点坐标;若不存在,请说明理

【例2】如图,在平面直角坐标系中,直线y=﹣2x+10与x 轴,y 轴相交于A,B 两点,点C 的坐标是(8,4),连接AC,BC. (1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状; (2)动点P从点O出发,沿OB以每秒 2 个单位长度的速度向点 B 运动;同时,动点Q 从点 B 出发,沿BC以每秒 1 个单位长度的速度向点C运动.规定其中一个动点到达端点时, 另一个动点也随之停止运动.设运动时间为t 秒,当t 为何值时,PA=QA? (3)在抛物线的对称轴上,是否存在点M ,使以A,B,M 为顶点的三角形是等腰三角形? 若存在,求出点M 的坐标;若不存在,请说明理由.

二次函数与四边形综合压轴题专题汇编(含答案)

72 x = B(0,4) A(6,0) E F x y O 二次函数与四边形综合压轴题专题汇编 一.二次函数与四边形的形状 例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2. (1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值; (3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由. 练习1.(河南省实验区) 23.如图,对称轴为直线7 2 x = 的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标; (2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围; ①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形? ②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由. A

练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为 (34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '. (1)求抛物线2l 的函数关系式; (2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形? (3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30 的直角三角形?若存, 求出点M 的坐标;若不存在,说明理由. 练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -, ,(20)B -,,(08)E ,. (1)求抛物线1 C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于 C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的 面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写 出自变量t 的取值范围; (3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值; (4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由. 5- 4- 3- 2- 1- 1 2 3 4 5 5 4 3 2 1 A E B C ' 1- O 2l 1l x y

二次函数综合(动点与三角形)问题方法与解析

二次函数综合(动点与三角形)问题 一、知识准备: 抛物线与直线形的结合表现形式之一是,以抛物线为载体,探讨是否存在一些点,使其能构成某些特殊三角形,有以下常见的基本形式。 (1)抛物线上的点能否构成等腰三角形; (2)抛物线上的点能否构成直角三角形; (3)抛物线上的点能否构成相似三角形; 解决这类问题的基本思路:假设存在,数形结合,分类归纳,逐一考察。 二、例题精析 ㈠【抛物线上的点能否构成等腰三角形】 例一.(2013?地区)如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c 经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)求△ABC的面积; (3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标. 分析:(1)根据直线解析式求出点A及点B的坐标,然后将点A及点B的坐标代入抛物线解析式,可得出b、c的值,求出抛物线解析式; (2)由(1)求得的抛物线解析式,可求出点C的坐标,继而求出AC的长度,代入三角形的面积公式即可计算; (3)根据点M在抛物线对称轴上,可设点M的坐标为(﹣1,m),分三种情况讨论, ①MA=BA,②MB=BA,③MB=MA,求出m的值后即可得出答案. 解:(1)∵直线y=3x﹣3分别交x轴、y轴于A、B两点, ∴可得A(1,0),B(0,﹣3), 把A、B两点的坐标分别代入y=x2+bx+c得:,

解得:. ∴抛物线解析式为:y=x2+2x﹣3. (2)令y=0得:0=x2+2x﹣3, 解得:x1=1,x2=﹣3, 则C点坐标为:(﹣3,0),AC=4, 故可得S△ABC=AC×OB=×4×3=6. (3)抛物线的对称轴为:x=﹣1,假设存在M(﹣1,m)满足题意: 讨论: ①当MA=AB时,, 解得:, ∴M1(﹣1,),M2(﹣1,﹣); ②当MB=BA时,, 解得:M3=0,M4=﹣6, ∴M3(﹣1,0),M4(﹣1,﹣6), ③当MB=MA时,, 解得:m=﹣1, ∴M5(﹣1,﹣1), 答:共存在五个点M1(﹣1,),M2(﹣1,﹣),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)使△ABM为等腰三角形. 点评:本题考查了二次函数的综合题,涉及了待定系数法求二次函数解析式、等腰三角形的性质及三角形的面积,难点在第三问,注意分类讨论,不要漏解. ㈡【抛物线上的点能否构成直角三角形】 例二.(2013)如图,已知一次函数y=0.5x+2的图象与x轴交于点A,与二次函数y=ax2+bx+c 的图象交于y轴上的一点B,二次函数y=ax2+bx+c的图象与x轴只有唯一的交点C,且OC=2.

专题 特殊三角形-讲义

特殊三角形 主讲教师:傲德 我们一起回顾 1、等腰三角形 2、等边三角形 3、直角三角形 重难点易错点解析 等腰三角形 题一:如图,已知BD=CE,AD=AE,求证:∠B=∠C. 等边三角形 题二:已知:如图,在△ABC中,AB=AC,∠A=60°,BD是中线,延长BC至点E,使CE=CD.求证:DB=DE. 直角三角形 题三:如图所示,△ABC是等腰直角三角板,过A点作AE⊥EF,过B点作BF⊥EF. 请证明:∠EAC=∠BCF,EF=AE+BF.

金题精讲 题一:如图,△ABC中,∠C=90°,∠B=30°,AD平分∠BAC交BC于D. 求证:BD=2CD. 题二:如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°,AC=2,求AB的长. 题三:如图,已知△ABC为等边三角形,D为BC延长线上的一点,CE平分∠ACD,CE=BD,求证:△ADE为等边三角形. 思维拓展 题一:已知:在同一平面内,直线m⊥l,直线n与l相交但不垂直,求证:直线m、n相交. 学习提醒 重点: 等腰三角形的性质——等边对等角、三线合一 等腰三角形的判定——等角对等边 等边三角形的性质——三边相等,3个60° 等边三角形的判定——三个角都相等,一个角是60°的等腰三角形 30°的直角三角形——30°所对直角边是斜边的一半 直角三角形的性质——两锐角互余,勾股定理 直角三角形的判定——有两角互余,勾股定理逆定理

特殊三角形 讲义参考答案 重难点易错点解析 题一:证明略 点拨:等腰三角形的性质——等边对等角、三线合一 等腰三角形的判定——等角对等边 题二:证明略 点拨:等边三角形的性质——三边相等,3个60° 等边三角形的判定——三个角都相等,一个角是60°的等腰三角形30°的直角三角形——30°所对直角边是斜边的一半 题三:证明略 点拨:直角三角形的性质——两锐角互余,勾股定理 直角三角形的判定——有两角互余,勾股定理逆定理 金题精讲 题一:证明略 题三:证明略 思维拓展 题一:证明略

二次函数与三角形综合题型

22.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A(,)和B(4,m),点P 是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C. (1)求抛物线的解析式; (2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由; (3)求△PAC为直角三角形时点P的坐标. 20.如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3). (1)求抛物线的解析式; (2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值; (3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由. 23.已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位 (h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0). (1)求抛物线C1的解析式的一般形式; (2)当m=2时,求h的值;

(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF ﹣tan∠ECP=. 22.解:(1)∵B(4,m)在直线y=x+2上, ∴m=4+2=6, ∴B(4,6), ∵A(,)、B(4,6)在抛物线y=ax2+bx+6上, ∴,解得, ∴抛物线的解析式为y=2x2﹣8x+6. (2)设动点P的坐标为(n,n+2),则C点的坐标为(n,2n2﹣8n+6), ∴PC=(n+2)﹣(2n2﹣8n+6), =﹣2n2+9n﹣4, =﹣2(n﹣)2+, ∵PC>0, ∴当n=时,线段PC最大且为.

二次函数与平行四边形综合.

【例1】 已知:如图,在平面直角坐标系xOy 中,直线3 64 y x =-+与x 轴、y 轴的交点分 别为A B 、, 将OBA ∠对折,使点O 的对应点H 落在直线AB 上,折痕交x 轴于点.C (1)直接写出点C 的坐标,并求过A B C 、、三点的抛物线的解析式; (2)若抛物线的顶点为D ,在直线BC 上是否存在点P ,使得四边形ODAP 为平行四边形?若存在,求出点P 的坐标;若不存在,说明理由; (3)设抛物线的对称轴与直线BC 的交点为T Q , 为线段BT 上一点,直接写出QA QO -的取值范围. 【例2】 如图,点O 是坐标原点,点(0)A n ,是x 轴上一动点(0)n <.以AO 为一边作矩形AOBC ,点C 在第二象限,且2OB OA =.矩形AOBC 绕点A 逆时针旋转90?得矩形AGDE .过点A 的直线y kx m =+(0)k ≠交y 轴于点F ,FB FA =.抛物线2y ax bx c =++过点E 、F 、G 且和直线AF 交于点H ,过点H 作HM x ⊥轴,垂足为点M . ⑴ 求k 的值; ⑵ 点A 位置改变时,AMH ?的面积和矩形AOBC 的面积的比值是否改变?说明你的理由. 【例3】 如图1,Rt ABC ?中,90A ∠=?,3 tan 4 B = ,点P 在线段AB 上运动,点Q 、R 分别在线段BC 、AC 上,且使得四边形APQR 是矩形.设AP 的长为x ,矩形APQR 的面积为y ,已知y 是x 的函数,其图 象是过点()1236,的抛物线的一部分(如图2所示). (1)求AB 的长; (2)当AP 为何值时,矩形APQR 的面积最大,并求出最大值. R Q B C A 二次函数与平行四边形综合

二次函数和三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P( x1,y),Q(x2,y) x 1x 2 x 2 (1) 线段对称轴是直线 (2)AB 两点之间距离公式:PQ(x1x2 ) 2( y1 y2 )2 中点公式:已知两点P x 1 , y 1 x1 x 2 , y 1y2 ,Q x2 ,y 2,则线段 PQ的中点 M为22。 Q P G O 2 、两直线的解析式为y k 1 x b 1 与y k 2 x b2 如果这两天两直线互相垂直,则有k1k21 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1L2 :y=k2x+b2 (1)当 k1=k2, b1≠b2,L1∥ L2 (2)当 k1≠ k2,,L1 与 L2 相交 (3)K1×k2= -1时,L1 与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于 45°。判定: 具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三 角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。

判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是 60°的等腰三角形是等 边三角形。 总结:( 1)已知 A、B 两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求 的点(不与 A、B 点重合)即在两圆上以及两圆的公共弦上 (2)已知 A、B 两点,通过“两线一圆” 可以找到所有满足条件的直角三角形,要求的点(不与A、B 点重合)即在圆上以及在两条与直径 AB垂直的直线上。 (二)关于等腰三角形找点(作点)和求点的不同, 1、等腰三角形找点(作点)方法:以已知边为边长,作等腰三角形,运用两园一线法,在图 上找出存在点的个数,只找不求。 2、等腰三角形求点方法:以已知边为边长,在抛物线或坐标轴或对称轴上找点,与已知点构 成等腰三角形,先设所求点的坐标,然后根据两点间的距离公式求出三点间的线段长度,然后分 顶点进行讨论, 如:已知两点 A、B,在抛物线上求一点 C,使得三角形 ABC 为等腰三角形 解法:这是求点法:先运用两点间的距离公式分别求出线段AB BC AC的长度, 第二步,作假设,(1)以点 A 为顶点的两条腰相等,即AB=AC(2)以点B为顶点的两条腰相等,即 BA=BC ( 3)以点 C为顶点的两条腰相等,即CA=CB 第三步,根据以上等量关系,求出所求点的坐标 第四步进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。 如:已知两点 A、 B,在抛物线上求一点C,使得三角形 ABC 为等腰三角形 解法:这是求点法:先运用两点间的距离公式分别求出线段AB BC AC的长度, 第二步,作假设,(1)以点 A 为顶点的两条腰相等,即 AB=AC (2)以点 B 为顶点的两条腰相等,即 BA=BC (3)以点 C 为顶点的两条腰相等,即CA=CB 第三步,根据以上等量关系,求出所求点的坐标 第四步,进行检验,这一步是非常重要的,因为求出的有些点是不符合要求的。 (三)关于直角三角形找点和求点的方法 1、直角三角形找点(作点)方法:以已知边为边长,作直角三角形,运用两线一园法,在图 上找出存在点的个数,只找不求。所谓的两线就是指以已知边为直角边,过已知边的两个端点分 别作垂线与抛物线或坐标轴或对称轴的交点,就是所求的点;一圆就是以已知边为直径,以已知 边的中点作圆,与抛物线或坐标轴或对称轴的交点即为所求的点。 2、具体方法 ( 1) k1 k21; (2)三角形全等(注意寻找特殊角,如 30°、 60°、 45°、 90 °) (3)三角形相似;经常利用一线三等角模型 (4)勾股定理; 当题目中出现了特殊角时,优先考虑全等法三、二 次函数的应用:

特殊三角形常见题型

八年级上册第二章 特殊三角形 一、将军饮马 例1 如图,在正方形ABCD 中,AB=9,点E 在CD 边上,且DE=2CE ,点P 是对角线AC 上的一个动点,则PE+PD 的最小值是( ) A 、3 B 、10 C 、9 D 、9 【变式训练】 1、如图,在矩形ABCD 中,AD=4,∠DAC=30°,点P 、E 分别在AC 、AD 上,则PE+PD 的最小值是( ) A 、2 B 、2 C 、4 D 、 2、如图,∠AOB=30°,P 是∠AOB 内一定点,PO=10,C ,D 分别是OA ,OB 上的动点,则△PCD 周长的最小值为 3、如图,∠AOB=30°,C ,D 分别在OA ,OB 上,且OC=2,OD=6,点C ,D 分别是AO ,BO 上的动点,则CM+MN+DN 最小值为 4、如图,C 为线段BD 上一动点,分别过点B ,D 作AB ⊥BD ,DE ⊥BD ,连结AC ,CE . (1)已知AB=3,DE=2,BD=12,设CD=x .用含x 的代数式表示AC+CE 的长; (2)请问点C 满足什么条件时,AC+CE 的值最小?并求出它的最小值; (3)根据(2)中的规律和结论,请构图求出代数式 的最小值 二、等腰三角形中的分类讨论 例2(1)已知等腰三角形的两边长分别为8cm 和10cm ,则它的周长为 (2)已知等腰三角形的两边长分别为8cm 和10cm ,则它的腰长为 (3)已知等腰三角形的周长为28cm 和8cm ,则它的底边为 【变式训练】 1、已知等腰三角形的两边长分别为3cm 和7cm ,则周长为 2、已知等腰三角形的一个角是另一个角的4倍,则它的各个内角的度数为 3、已知等腰三角形的一个外角等于150°,则它的各个内角的度数为 4、已知等腰三角形一腰上的高与另一边的夹角为25°,则它的各个内角的度数 5、已知等腰三角形底边为5cm ,一腰上的中线把其周长分为两部分的差为3cm ,则腰长为 6、在三角形ABC 中,AB=AC ,AB 边上的垂直平分线与AC 所在的直线相交所得的锐角为40°,则底角∠B 的度数为 B O D B O

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

特殊三角形专题练习(精.选)

特殊三角形专题练习 一.选择题(共9小题) 1.已知等腰三角形的周长为24,腰长为x,则x的取值范围是() A.x>12 B.x<6 C.6<x<12 D.0<x<12 2.若实数x,y满足﹣40,则以x,y的值为两边长的等腰三角形的周长是() A.12 B.16 C.16或20 D.20 3.如图,在△中,∠90°,,是经过A点的一条直线,且B,C 在的两侧,⊥于D,⊥于E,2,6,则的长为() A.2B.3C.5D.4 4.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣120的两个根,则k的值是()A.27 B.36 C.27或36 D.18 5.如图,在△中,,平分∠交于点D,∥交的延长线于点E.若∠35°,则∠的度数为()

A.40°B.45°C.60°D.70° 6.如图,△中,⊥于D,⊥于E,与相交于F,若,则∠的大小是() A.40°B.45°C.50°D.60° 7.如图,,若∠80°,则∠() A.80°B.100°C.140°D.160° 8.已知如图,∥,⊥,⊥,,2,3,则△的面积为() A.1B.2C.5D.无法确定

9.如图,已知△的面积为102,为∠的角平分线,垂直于点P,则△的面积为() A.62B.52C.42D.32 二.填空题(共8小题) 10.勾股定理是初等几何中的一个基本定理.这个定理有十分悠久的历史,两千多年来,人们对勾股定理的证明颇感兴趣,我国古代三国时期吴国的数学家赵爽创造的弦图,是最早证明勾股定理的方法,所谓弦图是指在正方形的每一边上各取一个点,再连接四点构成一个正方形,它可以验证勾股定理.在如图的弦图中,已知:正方形的顶点E、F、G、H分别在正方形的边、、、上.若正方形的面积=16,1;则正方形的面积= . 11.四个全等的直角三角形围成一个大正方形,中间空出的部分是一个小正方形,这样就组成了一个“赵爽弦图”(如图).如果小正方形面积为1,大正方形面积为25,则每个直角三角形的

(完整版)二次函数中平行四边形通用解决方法

●探究 (1)在图1中,已知线段AB,CD,其中点分别为E,F。 ①若A(-1,0),B(3,0),则E点坐标为__________; ②若C(-2,2),D(-2,-1),则F点坐标为__________; (2)在图2中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程; ●归纳 无论线段AB处于直角坐标系中的哪个位置, 当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=_________,y=___________;(不必证明) ●运用 在图2中,一次函数y=x-2与反比例函数的图象交点为A,B。 ①求出交点A,B的坐标; ②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。

图 2 图 3 图1 以二次函数为载体的平行四边形存在性问题是近年来中考的热点,其图形复杂,知识覆盖面广,综合性较强,对学生分析问题和解决问题的能力要求高.对这类题,常规解法是先画出平行四边形,再依据“平行四边形的一组对边平行且相等”或“平行四边形的对角线互相平分”来解决.由于先要画出草图,若考虑不周,很容易漏解.为此,笔者另辟蹊径,借助探究平行四边形顶点坐标公式来解决这一类题. 1 两个结论,解题的切入点 数学课标,现行初中数学教材中没有线段的中点坐标公式,也没有平行四边形的顶点坐标公式,我们可帮助学生来探究,这可作为解题的切入点。 1.1 线段中点坐标公式 平面直角坐标系中,点A 坐标为(x 1,y 1),点B 坐标为(x 2,y 2),则线段AB 的中点坐标为(221x x +,2 21y y +). 证明 : 如图1,设AB 中点P 的坐标为(x P ,y P ).由x P -x 1=x 2-x P ,得x P = 2 21x x +,同理y P =221y y +,所以线段AB 的中点坐标为(221x x +,221y y +). 1.2 平行四边形顶点坐标公式 □ABCD 的顶点坐标分别为A (x A ,y A )、B (x B ,y B )、C (x C ,y C )、D (x D ,y D ),则:x A +x C =x B +x D ;y A +y C =y B +y D . 证明: 如图2,连接AC 、BD ,相交于点E . ∵点E 为AC 的中点, ∴E 点坐标为(2C A x x +,2 C A y y +). 又∵点E 为B D 的中点, ∴ E 点坐标为( 2D B x x +,2D B y y +). ∴x A +x C =x B +x D ;y A +y C =y B +y D . 即平行四边形对角线两端点的横坐标、纵坐标之和分别相等. 2 一个基本事实,解题的预备知识 如图3,已知不在同一直线上的三点A 、B 、C ,在平面内另找一个点D ,使以A 、B 、C 、D 为顶点的四边形是平行四边形.答案有三种:以AB 为对角线的□ACBD 1,以AC 为对角线的□ABCD 2,以BC 为对角线的□ABD 3C .

初中数学竞赛专题分类解析 第三讲:特殊三角形

初中数学竞赛专题分类解析:特殊三角形 一、基础知识: 1)等腰三角形:对称性;底边上的高、中线和角平分线三线合一。 2)正三角形:旋转中的不变性,60 度和120 度;重心、外心、内心、垂心四心合一;内部任何一点到三边的距离和为定值;…… 3)直角三角形:勾股定理;代数化与数形结合;射影定理;斜边中线;共圆; 4)特殊的直角三角形:等腰直角三角形—对称性,旋转不变性;含30 度角的直角三角形—30 度角所对直角边是斜边的一半,包含一个等边三角形和一个顶角为120 度的等腰三角形。 二、例题分析 例1、如下左图,在四边形ABCD 中,∠B=135 度,∠C=120 度,AB=2, BC=4-2,CD=4,求AD 的长度。 例2、如上右图,四边形ABCD,对角线AC、BD 交于点E,I 是△BEC 的内心,BD⊥AC,且BD=AC=BC,M 是BC 的中点,求证:IM⊥AD,AD=2IM.

例3、如下左图△ABC 中,AB=AC,在AB 边上有两点P 和Q,在AC 边上有两点R 和S,且PQ=RS,M 和N 分别是PR 和QS 的中点,求证:MN⊥BC。 例4、如上右图,等腰△ABC 中,AB=AC,BE=CD,BD=CF,作∠C 的平分线交DF 于点G,DG=3,BC=16,若∠BED=2∠D FC,求BE 的长。 例5、如下左图,等边△ABC 的边长为4,D 是AC 边上的动点,连接BD,以BD 为斜边向上作等腰直角三角形BDE,连接AE,求AE 长的最小值。 例6、如上右图,△ABC 中,∠B AC=60 度,∠AT C=∠B TC=∠CT A=120 度,M 是BC 的中点,求证:2AM=TA+TB+TC。 例 7、如下图,△ABC 中,AB=AC,AD⊥BC 于点 D,DF⊥AB 于点 F,A E⊥CF 于点 E 且交 DF 于点 M,求证,M 是 DF 的中点。

二次函数与直角三角形

二次函数与直角三角形 1.(10分)(2006河南22题)二次函数2 18 y x = 的图象如图所示,过y 轴上一点()02M ,的直线与抛物线交于A ,B 两点,过点A ,B 分别作y 轴的垂线,垂足分别为C ,D . (1)当点A 的横坐标为2-时,求点B 的坐标; (2)在(1)的情况下,分别过点A ,B 作AE x ⊥轴于E ,BF x ⊥轴于F ,在EF 上是否存在点P ,使APB ∠为直角.若存在,求点P 的坐标;若不存在,请说明理由; (3)当点A 在抛物线上运动时(点A 与点O 不重合),求AC BD 的值. 解:(1)根据题意,设点B 的坐标为2 18 x x ?? ?? ? ,,其中0x >. 点A 的横坐标为2-,122A ? ?∴- ??? ,. ······································································ 2分 AC y ⊥轴,BD y ⊥轴,()02M ,, AC BD ∴∥,32MC = ,2 128 MD x =-. Rt Rt BDM ACM ∴△∽△. BD MD AC MC ∴=. 即2 1282 2 x x -=. 解得12x =-(舍去),28x =. ()88B ∴,. ··················································································································· 5分 (2)存在. ··················································································································· 6分 连结AP ,BP . 由(1),1 2 AE = ,8BF =,10EF =. 设EP a =,则10PF a =-. AE x ⊥轴,BF x ⊥轴,90APB =∠, y D B M A C O x

二次函数与平行四边形综合

第十八讲二次函数与平行四边形综合 一、教学内容 1.二次函数的表示 , 二次函数图像与性质; 2.平行四边形的性质和判定; 3.函数图像与平行四边形的综合应用,典型应用、图像题; 二、例题细看 【例 1】已知:如图,在平面直角坐标系 将OBA 对折,使点O的对应点xOy 中,直线 y 3 与 x 轴、y轴的交点分别为 A、B , x 6 4 H 落在直线 AB 上,折痕交x 轴于点C. ( 1)直接写出点 C 的坐标,并求过A、B、C 三点的抛物线的解析式; ( 2)若抛物线的顶点为 D ,在直线BC上是否存在点P ,使得四边形ODAP 为平行四边形?若存在,求出点P 的坐标;若不存在,说明理由; ( 3)设抛物线的对称轴与直线BC的交点为 T ,Q 为线段BT上一点,直接写出 QA QO 的取值范围 . 【考点分析】二次函数综合题 y B H 1 O1 C A x D T 【PEC分析】( 1)点 A 的坐标是纵坐标为 0,得横坐标为 8,所以点 A 的坐标为( 8, 0); 点B 的坐标是横坐标为 0,解得纵坐标为 6,所以点 B 的坐标为( 0, 6); 由题意得: BC是∠ ABO的角平分线,所以OC=CH, BH=OB=6 ∵AB=10,∴ AH=4,设 OC=x,则 AC=8-x 由勾股定理得: x=3 ∴点 C 的坐标为( 3, 0)将此三点代入二次函数一般式,列的方程组即可求得;

( 3)如图,由对称性可知QO=QH,|QA-QO|=|QA-QH| .当点 Q与点 B 重合时, Q、 H、 A 三点共线,|QA-QO|取得最大值4(即为 AH的长);设线段OA的垂直平分线与直线 BC的交点为 K,当点 Q与点 K 重合时, |QA-QO|取得最小值 0. 【跟踪练习】例 1.(浙江义乌市 ) 如图,抛物线y x22x 3与x轴交A、B两点(A点在B点左侧),直线 l 与抛物线交于A、C两点,其中C点的横坐标为2. ( 1)求 A 、 B 两点的坐标及直线AC 的函数表达式; ( 2)P 是线段 AC 上的一个动点,过 P 点作 y 轴的平行线交抛物线于 E 点,求线段 PE 长度的最大值; ( 3)点 G 是抛物线上的动点,在x 轴上是否存在点F,使 A 、C、 F、 G 这样的四个点为顶点的四边 形是平行四边形?如果存在,求出所有满足条件的 F 点坐标;如果不存在,请说明理由. A 【例 2】如图,点O是坐标原点,点A(n ,0) 是 x 轴上一动点(n 0) .以 AO 为一边作矩形AOBC ,点C在第二象限,且OB 2OA .矩形AOBC 绕点 A 逆时针旋转90 得矩形AGDE .过点 A 的直线 y kx m ( k 0) 交y轴于点F,FB FA .抛物线y ax 2bx c 过点E、F、G且和直线AF 交于点 H ,过点 H 作 HM x 轴,垂足为点M . ⑴求 k 的值; ⑵点 A 位置改变时,AMH 的面积和矩形AOBC的面积的比值是否改变?说明你的理由. y C B D G M F E A O x H 【 PEC分析】( 1 )由题意知O B=2OA=2n,在直角三角形AEO 中, OF=OB-BF=-2n-AF,因此可用勾股定理求出AF 的表达式,也就求出了FB 的长,由于 F 的坐标为( 0 , m )据此可求出m , n 的关系式,可用 n 替换掉一次函数中m 的值,然后将 A 点的坐标代入即可求出k 的值. ( 2 )思路同( 1)一样,先用n 表示出 E、 F、 G 的坐标,然后代入抛物线的解析式中,得出 a ,b , c 与n 的函数关系式,然后用n 表示出二次函数的解析式,进而可用n 表示出 H 点的坐标,然后求出△AMH

(名师整理)最新数学中考专题冲刺《二次函数动点成特殊三角形问题》压轴真题训练(含答案)

冲刺中考《二次函数动点成特殊三角形问题》压轴专题 1.如图,在平面直角坐标系中,二次函数y =- 1 3 x2+bx+c的图象与坐标轴交于A,B, C三点,其中点A的坐标为(-3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ. (1)填空:b=________,c=________; (2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由; (3)在x轴下方的二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由. 第1题图 解:(1)1 3 ,4; 【解法提示】∵二次函数y=-1 3 x2+bx+c与x轴交于A(-3,0),B(4,0), ∴ b c= b c= --+ ? ? ? -++ ?? 330 16 40 3 ,解得 b= c= ? ? ? ?? 1 3 4 , 1

(2)可能是,理由如下: ∵点P在AC上以每秒1个单位的速度运动, ∴AP=t, ∵点Q在OB上以每秒1个单位的速度运动,∴OQ=t, ∴AQ=t+3, ∵∠PAQ<90°,∠PQA<90°, ∴若要使△APQ是直角三角形,则∠APQ=90°, 在Rt△AOC中,OA=3,OC=4, ∴AC=5, 如解图①,设PQ与y轴交于点D, 第1题解图① ∵∠ODQ=∠CDP,∠DOQ=∠DPC=90°, 2

相关主题
文本预览
相关文档 最新文档