当前位置:文档之家› 一种波导裂缝阵列天线设计方法

一种波导裂缝阵列天线设计方法

一种波导裂缝阵列天线设计方法
一种波导裂缝阵列天线设计方法

基于HFSS的4_24微带阵列天线的研究与设计_惠鹏飞

第26卷第5期 齐 齐 哈 尔 大 学 学 报 Vol.26,No.5 2010年9月 Journal of Qiqihar University Sep.,2010 基于HFSS 的4×24微带阵列天线的研究与设计 惠鹏飞,夏颖,周喜权,陶佰睿,苗凤娟 (齐齐哈尔大学 通信与电子工程学院,黑龙江 齐齐哈尔 161006) 摘要:微带阵列天线的馈电方式有微带线馈电和同轴馈电两种方式,本文利用HFSS软件对微带阵列天线进行了研 究,分析了两种馈电方式的传输损耗及其对天线方向图的影响,利用模块化的设计方法实现了一种基于同轴线馈 电结构的多元矩形微带阵列天线。在HFSS仿真设计环境里对天线进行了物理建模,该微带阵列天线的方向图特性 良好,工程上实现比较方便。 关键词:微带阵列天线;模块化设计;HFSS 仿真;物理建模;方向图 中图分类号:TN820.1 文献标识码:A 文章编号:1007-984X(2010)05-0009-04 随着无线电技术的发展,微带天线在许多领域得到了越来越广泛的应用,主要应用场合包括:卫星通信、多普勒雷达及其它制式雷达、导弹遥测系统、复杂天线中的馈电单元等[1] 。微带天线通常采用天线阵列的形式,由馈电网络控制对天线子阵的激励幅度和相位,以获得高增益、强方向性等特点。 微带阵列天线的馈电方式主要有微带线馈电和同轴线馈电方式两种。利用微带线馈电时,馈线与微带贴片是共面的,因此可以方便地光刻,但缺点是损耗较大,在高效率的天馈系统里的应用受到较大限制[2]。本文首先对微带馈电网络产生的损耗进行了详细分析,利用HFSS 软件设计了2×4结构的微带子阵,采用同轴馈电的方式,利用模块化设计方法和方向图叠加原理最终实现了4×24矩形微带阵列天线,仿真设计结果表明,该大型矩形微带阵列天线的各项指标参数良好,设计思想得到了很好的验证。 1 微带阵列及馈电网络损耗分析 1.1 微带阵列理论 微带天线单元的增益较小,一般单个贴片单元的辐射增益只有6~8 dB,为了实现远距离传输和获得更大的增益,尤其是对天线的方向性要求比较苛刻的场合,常采用由微带辐射单元组成的微带阵列天线,如果对增益要求较高,可采用大型微带阵列天线结构[3]。 首先分析平面微带阵列天线的激励电流与电场分布情况,无论是线天线还是面天线,其辐射源都是高频电流源,天线系统将高频电流源的能量转换成电磁波的形式发射出去,讨论电流源的辐射场是分析天线的基础。假设由若干相同的微带天线元组成的平面阵结构,建立三维坐标系分析阵列天线的场量分布情况。以阵列的中心为坐标原点,天线在x 轴方向和y 轴方向的单元编号分别用m 和n 表示。以原点天线单元为相位参考点,为了简化分析,假设阵列中各单元间互耦影响可以忽略不计,各单元激励电流为 j()e xs ys m n mn I ψψ?+,天线阵在远区的辐射总场(,)E θ?为 ()(,)(,)E f S θ?θ?θ??,= 式中,(,)f θ?为阵元的方向性函数,(,)S θ?为平面阵的阵方向性函数。平面阵因子是两个线阵因子的乘积,可以利用线阵方向性分析的结论来分析平面阵列的方向性。 1.2 馈电网络及损耗分析 天线只有承载高频电流才能有电磁波辐射,馈线指将高频交流电能从电路的某一段传送到另一段所用 的设备,对天线的馈电包括对单元天线的馈电和阵列天线的馈电两种形式。当利用传输线对阵列结构进行 收稿日期:2010-06-06 基金项目:齐齐哈尔市科技局工业攻关项目(GYGG-09011-2) 作者简介:惠鹏飞(1980-),男,辽宁凌源人,讲师,硕士,主要从事雷达极化信息处理的研究,weibo505@https://www.doczj.com/doc/e512469292.html,。

波导缝隙天线的EBG的应用

波导缝隙天线的EBG 的应用 张运启 栗 曦 杨 林 (西安电子科技大学天线与电磁散射研究所,西安,710071) 摘 要:研究一种新型的EBG 结构在波导缝隙天线中的应用。这种新型的EBG 具有可以有效抑制表面波的特性,提出了在阵面缝隙单元间加载EBG 周期单元结构的方案,抑制波导缝隙天线之间的互耦。通过与传统的波导缝隙天线进行比较得出加载新型EBG 结构的波导缝隙天线在互耦上有很大改善。 关键词:波导缝隙阵列天线;Electromagnetic band-gap(EBG);互耦 The Waveguide Slot Array Antenna Above EBG Structure Zhang Yun-qi , Li Xi ,Yang Lin (National Laboratory of Antenna and Microwave Technology,Xidian university,Xi’an shaanxi,710071 ,China) Abstract :The performance of the waveguide slot array antenna above the electromagnetic band-gap(EBG) structure is investigated.The kind of EBG is able to control the surface wave.The project of control the 21S between the waveguide solt antenna by loading the periodic unit of EBG between the units has been lodged.It is found that the 21S improved in the waveguide slot array antenna through comparison. Key words : waveguide solt array antenna; EBG; couple 引 言 波导缝隙天线具有口面场分布容易控制,没有能量漏失、天线口径效率高、性能稳定、结构简单紧凑、强度高、安装方便、抗风力强等优点,而且容易实现窄波束、赋形波束、低副瓣乃至超低副瓣,所以波导缝隙天线已经成为新型雷达中天线的优选形式,被广泛应用于雷达和通讯领域。但这种形式的天线由于有比较大的金属地平面,存在强烈的TM 表面波和空间波耦合,以及地面边缘的多径干扰,这些因素都将影响天线阵列的性能。 电磁带隙结构(EBG )在电磁传输场和天线领域的应用研究越加广泛和深入,本文着重关注的Mushroom-like EBG 结构,具有有效的表面波抑制带隙和紧致的特征,这在通讯天线和阵列天线的应用中是非常重要的。 本文以此为切入点,将EBG 结构与金属波导缝隙阵列相结合,旨在利用EBG 结构对表面波的抑制特性,改善原天线的性能。 1 电磁带隙结构(EBG)单元 本文根据一种电磁带隙的快速分析方[2] 法进行建模仿真,电磁带隙(EBG )结构单元如图 1 图1 电磁带隙结构单元 仿真计算上述二端口波导的传输系数21S 的幅度,如图2所示。可以看出在00F F ?+:有带隙。由于该波导由一对理想电壁和理想磁壁组成,是一个TEM 波导,因此不存在截止频率。 图2 电磁带隙结构单元的21S 2 传统的波导缝隙阵列天线 我们建立波导缝隙阵列天线进行仿真,分析

5g微带阵列天线

5G 微带阵列天线 要求:利用介质常数为2.2,厚度为1mm ,损耗角为0.0009的介质,设计一个工作在5G 的4X4的天线阵列。 评分标准: 良:带宽〈7% 优:带宽〉7%且效率大于60% 1微带辐射贴片尺寸估算 设计微带天线的第一步是选择合适的介质基板,假设介质的介电常数为r ε,对于工作频率f 的矩形微带天线,可以用下式设计出高效率辐射贴片的宽度W ,即为: 1 21()2 r c w f ε-+= 式中,c 是光速,辐射贴片的长度一般取为/2e λ;这里e λ是介质的导波波长,即为: e λ= 考虑到边缘缩短效应后,实际上的辐射单元长度L 应为: 2L L = -? 式中,e ε是有效介电常数,L ?是等效辐射缝隙长度。它们可以分别用下式计算,即为: 1 211 (112)22r r e h w εεε-+-= ++

(0.3)(/0.264) 0.412 (0.258)(/0.8) e e w h L h w h ε ε ++ ?= -+ 2.单元的仿真 由所给要求以及上述公式计算得辐射贴片的长度L=19.15mm,W=23.72mm。采用非辐射边馈电方式,模型如图1所示: 图1 单元模型 此种馈电方式,可以通过移动馈电的位置获得阻抗匹配,设馈电点距离上宽边的偏移量为dx,经仿真得到当dx=4mm时,阻抗匹配最好。另外,之前计算出的尺寸得到的谐振点略有偏移,经过仿真优化后贴片尺寸变为L=19mm,W=23.72mm。仿真结果图如图2,图3所示。

图2 S11参数 图3 增益图 从图中可以看出谐振点为5GHz,计算的相对带宽为2.2%,增益为5.78dB。 2. 2×2阵列设计

波导缝隙天线的设计和仿真

波导缝隙天线的设计和仿真 波导馈电的缝隙阵天线自第二次世界大战以后有很大发展。它广泛用于各种领域: 1、地面、舰载、机载雷达 2、导航雷达 3、气象雷达 4、雷达信标天线LL ……………………………… 特别最近十几年,随着对雷达抗干扰要求的提高、脉冲多普勒可视雷达的发展,要求天线应具有低副瓣或极低副瓣的性能,使波导缝隙天线成为此项要求的优选形式。同时随着各种计算机辅助技术的发展,如数控机床的使用,天线的整体焊接技术等,为波导缝隙天线的使用创造了基础。 波导缝隙构成的阵列主要有两种形式,即波导宽边开缝和波导窄边开缝,我们本次主要向大家介绍的是波导宽边开缝而构成的波导缝隙天线阵的设计与仿真。 波导宽边纵缝阵列天线不但具有口面效率高、副瓣电平低等优良的电气性能,而且还有厚度小、重量轻、结构紧凑、强度高、安装方便、抗风力强、功率容量大等特点,从而在机载火控雷达、导弹巡航等方面有着其它天线无法替代的优势。下面是几个波导宽边缝隙构成的阵列在实际中的应用实例。

主要讨论的内容: 1.波导缝隙天线的设计基础理论 2.波导缝隙行波线阵天线的设计和仿真 3.波导缝隙驻波线、面阵天线的设计和仿真 4.波导缝隙天线的Ansoft HFSS的实例设计和仿真(一)波导缝隙阵天线设计的基础理论 本章中您主要的目标是: 1.熟悉波导缝隙天线的基本概念。 2.了解波导缝隙的基本等效电路。 3.理解波导缝隙天线的基本电参数和缝隙阵列的构成。 4.知道波导缝隙天线的基本设计过程。

把一根波导放在自由空间,在波导输入端输入信号,波导终端接匹配负载。如果在波导宽边或窄边上切割一个窄的缝隙,此缝隙切断波导壁上的传导电流,在缝隙上将产生电场,且对波导内壁电流产生扰动,并从波导内耦合部分电磁能量向自由空间辐射。随着缝隙切割在波导壁的位置不同,形成不同的缝隙形式。

裂缝波导管通信技术浅析-NB技术

什么是波导? 波导(WAVEGUIDE),用来定向引导电磁波的结构。在电磁学和通信工程中,波导这个词可以指在它的端点间传递电磁波的任何线性结构。但最初和最常见的意思是指用来传输无线电波的空心金属管。这种波导主要用作微波频率的传输线,在微波炉、雷达、通讯卫星和微波无线电链路设备中用来将微波发送器和接收机与它们的天线连接起来。 常见的波导结构主要有平行双导线、同轴线、平行平板波导、矩形波导、 圆波导、微带线、平板介质光波导和光纤。从引导电磁波的角度看,它们都可分为内部区域和外部区域,电磁波被限制在内部区域传播(要求在波导横截面内满足横向谐振原理)。 1893年J.J.汤姆森第一个提出波导的概念。1894年O.J.洛奇第一个用实 验证明了波导。1897年罗德?瑞利第一个完成了在空心金属圆柱形波导中传播模式的数学分析。(McLachan, 1947.) 通常,波导专指各种形状的空心金属波导管和表面波波导,前者将被传输 的电磁波完全限制在金属管内,又称封闭波导;后者将引导的电磁波约束在波导结构的周围,又称开波导。 介质波导采用固体介质杆而不是空心管。光导纤维是在光频率工作下的介 质波导。微带、共面波导、带状线或同轴电缆等传输线也可以认为是波导。 在波导通信用于实践方面,与之配套的无线设备必须做专门的设计和配套,对于高带宽、高清视频、高可靠性波导管“三高”应用场合,最典型的就是iMAX-8000W系列波导管专用移动通信系统。 波导管的通信原理 波导管用来传送超高频电磁波,通过它脉冲信号可以以极小的损耗被传送到目的地,是一种空心的、内壁十分光洁的金属导管或内敷金属的管子;波导管内径的大小因所传输信号的波长而异;多用于厘米波及毫米波的无线电通讯、雷达、导航等无线电领域。目前常见的有矩形波导管,圆形波导管,半圆形波导管,ku 波导管,雷达波导管和光线波导管。

实验八 波导缝隙阵天线的设计与仿真

实验八波导缝隙阵天线的设计与仿真 一、实验目的 1.设计一个波导缝隙阵天线 2.查看并分析波导缝隙阵天线的 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 波导缝隙阵具有口面效率高、副瓣电平低等优良的性能。这里考虑宽边纵向谐振式驻波阵列,每个缝隙相距0.5λg ,距离波导宽边中心有一定偏移。Stevenson 给出宽边上纵向并联缝隙的电导为 ()a x g g π21sin = ()()g g b a g λλπλλ2cos 09.221= 其中,x 为待求的偏移,a 为波导内壁宽边长度,λg 为波导波长。在具体的设计中,可以利用HFSS 的优化功能来确定缝隙的谐振长度。首先确定在谐振缝隙设计中存在的几个变量,主要有缝隙偏移波导中心线的距离Offset ,缝隙的长度L ,缝隙的宽度W 等。一般可根据实际的加工确定出缝隙的宽度W ,应用HFSS 的优化功能得出缝隙的偏移量Offset 和缝隙长度Length 。如图1所示,在波端口的Y 矩阵参数可以等效于距检测端口的1/2个波导波长的缝隙中心的Y 矩阵参数,根据波导缝隙的基本设计理论,在谐振时缝隙的等效阻抗或导纳为实数。因此,当缝隙谐振时有Im(Y)=0。 单缝谐振长度优化示意图如下: 设计一个由20个缝隙组成的缝隙阵,采用Chebyshev 电流分布,前10个缝的电平分布如下: n 1 2 3 4 5 6 7 8 9 10 a n 0.33 0.29 0.39 0.5 0.62 0.73 0.83 0.91 0.97 1.0 根据电平分布进行归一化:∑==101212n n a K 短 路 波端口g λ41g λ2 1L

(完整版)射频微带阵列天线设计毕业设计

射频微带阵列天线设计 摘要 微带天线是一种具有体积小、重量轻、剖面低、易于载体共形、易于与微波集成电路一起集成等诸多优点的天线形式,目前已在无线通信、遥感、雷达等诸多领域得到了广泛应用。同时研究也发现由于微带天线其自身结构特点,存在一些缺点,例如频带窄、增益低、方向性差等。通常将若干单个微带天线单元按照一定规律排列起来组成微带阵列天线,来增强天线的方向性,提高天线的增益。 本文在学习微带天线和天线阵的原理和基本理论,加以分析,利用Ansoft 公司的高频电磁场仿真软件HFSS,设计了中心频率在10GHz的4元均匀直线微带阵列,优化和调整了相关参数,然后分别对单个阵元和天线阵进行仿真,对仿真结果进行分析,对比两者在相关参数的差异。最后得到的研究结果表明,微带天线阵列相较于单个微带天线,由于阵元间存在互耦效应以及存在馈电网络的影响,微带阵列天线的回波损耗要大于单个阵元。但是天线阵列增益明显大于单个微带天线,且阵列天线比单个阵元具有更好的方向性。

关键词:微带天线微带阵列天线方向性增益 HFSS仿真 Design of Radio-Frequency Microstrip Array Antenna ABSTRACT Microstrip antenna is a kind of antenna form with many advantages like,small size, light weight, low profile, easy-to-carrier conformal, easy integration with many other of microwave integrated circuits and so on. Now microstrip array wildly applied in the filed of wireless

波导平板裂缝天线阵的设计

波导平板裂缝天线阵的设计 金剑,万笑梅,汪伟,金谋平 (中国电子科技集团公司第三十八研究所,安徽合肥230031) 摘 要:利用商业软件HFSS的S参数仿真结果,采用等效网络法对矩形波导宽边纵缝进行互耦环境下的导纳计算;并利用天线远场幅度、相位方向图仿真结果,采用口径场反演方法,对阵中辐射缝参数进行修正。通过设计实例,验证了该方法非常适合于平板裂缝天线阵的设计,有效地提高了设计效率。 关键词:波导;缝隙天线阵;天线阵设计;有源导纳 中图分类号:TN823+.24;TN957.2 文献标识码:A 文章编号:167222337(2007)0320232204 Design of Planar Waveguide Slotted Antenna Arrays J IN Jian,WAN Xiao2mei,WAN G Wei,J IN Mou2ping (N o.38Research I nstit ute of C E T C,Hef ei230031,Chi na) Abstract: The active admittance of a rectangular waveguide longitudinal slot is determined using the S parameter simulation results of commercial software HFSS and the equivalent network method in that the internal and external mutual couplings are taken into account.The aperture distribution is determined using re2deducing method and antenna simulative amplitude/phase patterns obtained by software HFSS,and the radiating slot dimensions are modified,thus good radiation patterns are https://www.doczj.com/doc/e512469292.html,ing the proposed meth2 od,planar waveguide slotted arrays can be designed easily and economically. K ey w ords: waveguide;slotted antenna array;antenna array design;active admittance 1 引言 波导平板裂缝天线具有效率高、体积小、重量轻、结构紧凑,易获得高增益、低副瓣等特点,在雷达和微波通信系统中获得了广泛的应用。对于平板缝隙阵,互耦影响较大,故计算辐射缝隙电导时必须考虑内部互耦和外部互耦。 在实际天线设计中,确定波导缝隙有源导纳的方法主要有两种,即实验测量和理论计算[124]。前者是先加工相同偏置、相同缝长的一组小阵,再测量其S参数来求缝的导纳。该方法加工测试量很大、周期长并且成本高;后者一般采用Elliott提出的有源导纳设计方法进行数值计算或采用等效磁流片法分析,采用矩量法求解。该方法考虑互耦的计算比较繁复。商业软件的迅速发展,使通过仿真精确计算辐射缝隙自导纳和有源导纳成为可能[526]。另外,由于辐射缝隙受馈电缝、短路板的影响[7],以及边缘辐射缝的影响,导纳将发生改变,造成口径场的幅相分布恶化,进而影响天线的辐射性能。 本文给出一种利用H FSS仿真结合传输矩阵法确定波导缝隙有源导纳值,并通过仿真的远场幅度相位方向图数据反演天线的口径场,在此基础上对辐射缝进行修正。该方法的使用,可实现平板裂缝天线阵的设计一次成功,极大地提高了设计效率。 2 导纳的计算 小阵由若干根线源组成,每根线源上有N个相同偏置、相同缝长的纵缝,如图1所示。这样求得的缝电导既考虑了内部互耦,又考虑了外部互耦,并且缝的长度可以方便地进行调节,省去了实验件的加工。小阵规模的选取原则是算出的导纳误差满足设计需要。采用Ansoft HFSS等商业软 第3期2007年6月 雷达科学与技术 R a d a r S c i e nc e a nd Te c hnology Vol.5No.3 J une2007 收稿日期:2006207216;修回日期:2006209222基金项目:国防预研项目

实验八-波导缝隙阵天线的设计与仿真

实验八 波导缝隙阵天线的设计与仿真 一、实验目的 1.设计一个波导缝隙阵天线 2.查看并分析波导缝隙阵天线的 二、实验设备 装有HFSS 13.0软件的笔记本电脑一台 三、实验原理 波导缝隙阵具有口面效率高、副瓣电平低等优良的性能。这里考虑宽边纵向谐振式驻波阵列,每个缝隙相距0.5λg ,距离波导宽边中心有一定偏移。Stevenson 给出宽边上纵向并联缝隙的电导为 ()a x g g π21sin = ()()g g b a g λλπλλ2cos 09.221= 其中,x 为待求的偏移,a 为波导内壁宽边长度,λg 为波导波长。在具体的设计中,可以利用HFSS 的优化功能来确定缝隙的谐振长度。首先确定在谐振缝隙设计中存在的几个变量,主要有缝隙偏移波导中心线的距离Offset ,缝隙的长度L ,缝隙的宽度W 等。一般可根据实际的加工确定出缝隙的宽度W ,应用HFSS 的优化功能得出缝隙的偏移量Offset 和缝隙长度Length 。如图1所示,在波端口的Y 矩阵参数可以等效于距检测端口的1/2个波导波长的缝隙中心的Y 矩阵参数,根据波导缝隙的基本设计理论,在谐振时缝隙的等效阻抗或导纳为实数。因此,当缝隙谐振时有Im(Y)=0。 单缝谐振长度优化示意图如下: 设计一个由20个缝隙组成的缝隙阵,采用Chebyshev 电流分布,前10个缝的电平分布如下: n 1 2 3 4 5 6 7 8 9 10 a n 0.33 0.29 0.39 0.5 0.62 0.73 0.83 0.91 0.97 1.0 根据电平分布进行归一化:∑==10 1 212n n a K 短路 波端口 g λ4 1g λ2 1L

线极化微带天线阵列的设计

线极化微带天线阵列的设计 摘要 微带、微波起源于上世纪中期,在上世纪末就已经展开了对实用天线的研究并制成了第一批实用天线,现在微带天线方面,无论在理论还是应用,都已经取得了很大进展,并在深度和广度上都获得了进一步发展。微带天线技术越来越成熟,其应用与我们的生活、军事、科技都息息相关。体积小、重量轻、剖面薄是微带天线优于普通天线的特点,并且它适合用于印刷电路技术大批量生产,所以能够制成与导弹、卫星表面相共型的结构。因此微带天线在军事、无线通信、遥感、雷达等领域得到了广泛的应用。但是根据微带天线自身的结构特点,仍存在一些缺点,例如频带窄、效率低、增益低、方向性差。解决这些问题的方法就是:将若干个天线单元有规律的排列起来,通过利用这些天线单元构成天线阵列,从而来提高天线的增益、增强天线的方向性。 本文在学习微带天线理论及微带天线阵列基本理论的基础上,利用高频电磁仿真软件HFSS对阵列天线进行仿真设计。设计了中心频率在5.8GHz的阵列天线,对天线的特性进行了深入细致的研究。分别对单个天线阵元和天线阵列进行了仿真,天线阵列的增益明显大于单个微带天线,且方向性更好。因此采用天线阵列的形式进行仿真并对结果中各相关参数进行对比分析差异,优化调整了相关参数。仿真天线的各项指标均达到要求,进行了对实物的加工,在微波暗室内测试出天线的相关参数并与设计指标、仿真结果进行比较,最终达到了设计要求。 关键词:微带天线天线阵方向性增益 HFSS仿真

ABSTRACT Microstrip, microwave, originated in the middle of the last century, in the end of la st century has launched the research of practical antenna and made the first batch of pra ctical antenna, the microstrip antenna has made breakthrough progress now, no matter in theory or application on the depth and width of further development, this new antenna has been increasingly mature, its application to our daily life, military, science and techn ology are closely related. Compared with the common antenna microstrip antenna with small volume, light weight, the characteristics of thin section, it can be made with missil e and satellite surface phase structure, and suitable for mass production printed circuit te chnology. Therefore, microstrip antenna has been widely used in wireless communicatio n, remote sensing and radar. However, according to the structure of microstrip antenna, t here are still some shortcomings, such as narrow band, low efficiency, low gain and poo r directivity. The way to solve these problems is to arrange a number of antenna element s in a regular arrangement, and make up the antenna array to improve the gain and direc tion of the antenna. Based on the theory of microstrip antenna and basic theory of microstrip antenna ar ray, HFSS is used to analyze the array antenna. The array antenna with the center freque ncy of 5.8GHZ is designed, and the characteristics of the antenna are studied in detail. T he gain of antenna array is obviously larger than that of single microstrip antenna, and t he direction is better. Therefore, the antenna array was used for simulation and the corr elation parameters in the results were compared and analyzed, and the correlation param eters were optimized and adjusted. Simulation of the antenna of the indicators are up to par, the physical processing, and testing in microwave dark room to the related paramete rs of the antenna, and comparing with design index, the simulation results, finally reach ed the design requirements. Keywords: miccrostrip antennas antenna array directivity gain HFSS simulation

波导缝隙天线的设计仿真

龙源期刊网 https://www.doczj.com/doc/e512469292.html, 波导缝隙天线的设计仿真 作者:蒋德富刘健 来源:《现代电子技术》2013年第20期 摘要:电磁仿真软件HFSS以其高精度,高可靠性在电磁仿真设计中得到了广泛的应用。但对于复杂天线的模型,其没有很好的方法简化建模操作,需要花费大量的设计时间。将HFSS提供的VBScript脚本语言功能作为接口,利用Matlab调用控制HFSS,从而协同HFSS 建立模型,达到快速建模的目的。提出了一套波导缝隙阵天线的设计方法,设计一个波导缝隙阵天线,运用Matlab协同HFSS建立天线模型,并进行仿真分析。结果验证了天线设计方法的准确性,以及运用Matlab调用HFSS建模的可行性。 关键词: HFSS; Matlab;波导缝隙天线;协同仿真 中图分类号: TN823.24?34 文献标识码: A 文章编号: 1004?373X(2013) 20?0014?03 波导缝隙阵列天线口径幅度易于控制,具有辐射效率高,方向性强,结构紧凑等特点,而且容易实现低副瓣乃至极低副瓣,因此在雷达和通信领域有着广泛的应用。高频仿真软件HFSS在电磁仿真领域有着广泛的应用,有着高仿真精度、高稳定性的特点。使用HFSS的3D 建模功能,可以很容易解决简单的模型创建问题,但是对于复杂天线结构模型的建立,没有特别有效的方法,使得建模过程十分繁琐耗时,而且容易出错。利用HFSS提供的VBScript脚本功能,可以对软件进行二次开发,以VBScript作为接口,利用Matlab调用HFSS协同建模仿真,可以简化模型建立的操作,节约设计时间。本文提出了一套波导缝隙天线的快速建模方法,设计了一个波导宽边裂缝阵列天线。并以此波导缝隙天线为例,应用Matlab协同HFSS建立模型仿真,对仿真结果进行了分析。 1 基本理论 波导缝隙天线是在波导宽壁或窄壁上开缝的天线,波导中传输的电磁波可以通过缝隙向外界进行辐射。通常有宽边偏置缝、宽边倾斜缝、窄边倾斜缝隙这几种开缝形式。根据波导终端的形式不同,波导缝隙阵天线可以分为行波阵和驻波阵。行波阵的波导终端接吸收负载,单元间距稍大或稍小于[λg2],驻波阵在距离终端[λg4]处接短路滑块,单元间距均为[λg2],本文设计的就是一个波导驻波阵天线。 1.1 波导缝隙天线理论分析 波导上的辐射缝隙向外界辐射能量,引起波导负载的变化,应用传输线理论分析波导的工作状态比较方便,将相应的缝隙等效成与传输线串联的阻抗或并联的导纳,再建立对应的等效电路模型,进而可以求出各个缝隙的等效阻抗或导纳。 Stevenson等效电路法,就是根据传输

波导缝隙天线的设计仿真方案详细教程

波导缝隙天线的设计仿真方案详细教程 1. 引言波导缝隙阵列天线口径幅度易于控制,具有辐射效率高,方向性强,结构紧凑等特点,而且容易实现低副瓣乃至极低副瓣,因此在雷达和通信领域有着广泛的应用。高频仿真软件HFSS在电磁仿真领域有着广泛的应用,有着高仿真精度、高稳定性的特点。使用HFSS 的3D建模功能,可以很容易解决简单的模型创建问题,但是对于复杂天线结构模型的建立,没有特别有效的方法,使得建模过程十分繁琐耗时,而且容易出错。利用HFSS 提供的VBScript脚本功能,可以对软件进行二次开发,以VBScript作为接口,利用Matlab调用HFSS协同建模仿真,可以简化模型建立的操作,节约设计时间。本文提出了一套波导缝隙天线的快速建模方法,设计了一个波导宽边裂缝阵列天线。并以此波导缝隙天线为例,应用Matlab协同HFSS建立模型仿真,对仿真结果进行了分析。 2.基本理论波导缝隙天线是在波导宽壁或窄壁上开缝的天线,波导中传输的电磁波可以通过缝隙向外界进行辐射。 通常有宽边偏置缝、宽边倾斜缝、窄边倾斜缝隙这几种开缝形式。根据波导终端的形式不同,波导缝隙阵天线可以分为行波阵和驻波阵。行波阵的波导终端接吸收负载,单元间距稍大或稍小于g /2 ,驻波阵在距离终端g /4 处接短路滑块,单元间距均为g /2 ,本文设计的就是一个波导驻波阵天线。 2.1 波导缝隙天线理论分析 波导上的辐射缝隙向外界辐射能量,引起波导负载的变化,应用传输线理论分析波导的工作状态比较方便,将相应的缝隙等效成与传输线串联的阻抗或并联的导纳,再建立对应的等效电路模型,进而可以求出各个缝隙的等效阻抗或导纳。Stevenson 等效电路法,就是根据传输线理论和波导模的格林函数导出矩形波导缝隙的计算公式。图1所示为波导宽边纵向偏置缝隙及其等效电路。 归一化等效谐振电导为:

阵列天线分析与综合

阵列天线分析与综合 前言 任何无线电设备都需要用到天线。天线的基本功能是能量转换和电磁波的定向辐射或接收。天线的性能直接影响到无线电设备的使用。现代无线电设备,不管是通讯、雷达、导航、微波着陆、干扰和抗干扰等系统的应用中,越来越多地采用阵列天线。阵列天线是根据电磁波在空间相互干涉的原理,把具有相同结构、相同尺寸的某种基本天线按一定规律排列在一起组成的。如果按直线排列,就构成直线阵;如果排列在一个平面内,就为平面阵。平面阵又分矩形平面阵、圆形平面阵等;还可以排列在飞行体表面以形成共形阵。 在无线电系统中为了提高工作性能,如提高增益,增强方向性,往往需要天线将能量集中于一个非常狭窄的空间辐射出去。例如精密跟踪雷达天线,要求其主瓣宽度只有1/3度;接收天体辐射的射电天文望远镜的天线,其主瓣宽度只有1/30度。天线辐射能量的集中程度如此之高,采用单个的振子天线、喇叭天线等,甚至反射面天线或卡塞格伦天线是不能胜任的,必须采用阵列天线。 对一些雷达设备、飞机着陆系统等,其天线要求辐射能量集中程度不是很高,其主瓣宽度也只有几度,虽然采用一副天线就能完成任务,但是为了提高天线增益和辐射效率,降低副瓣电平,形成赋形波束和多波束等,往往也需要采用阵列天线。 在雷达应用中,其天线即需要有尖锐的辐射波束又希望有较宽的覆盖范围,则需要波束扫描,若采用机械扫描则反应时间较慢,必须采用电扫描,如相控扫描,因此就需要采用相控阵天线。 在多功能雷达系统中,既需要在俯仰面进行波束扫描,又需要改变相位展宽波束,还需要仅改变相位进行波束赋形,实现这些功能的天线系统只有相控阵天线才能完成。 随着各项技术的发展,天线馈电网络与单元天线进行一体化设计成为可能,高集成度的T/R组件的成本越来越低,使得在阵列天线中的越来越广泛的采用,阵列天线实现低副瓣和极低副瓣越来越容易,功能越来越强。等等。 综上所述,采用阵列天线的原因大致有如下几点:

【总结】波导缝隙阵带宽总结

波导缝隙阵带宽总结 一,改善波导缝隙天线带宽的方法: 波导裂缝阵列天线具有较高的功率容量、较低的交叉极化、较低的馈电损耗以及较高的效率等优点而被广泛应用于雷达和通信领域。波导缝隙天线虽然有很多优点,但是其也有固有的缺点,即工作频带很窄,相对带宽一般在1%-4%之间。但是随着需求的发展,目前一些应用对波导缝隙天线的带宽也提出了要求,例如高分辨率合成孔径雷达,同时在这些应用中对交叉极化抑制的要求也很高,因此对宽带和低交叉极化的波导缝隙阵的研究是具有非常现实的意义的。 波导缝隙天线阵包括两种,行波阵和谐振阵。前者波导辐射缝隙间距偏离半个波导波长,一端激励一端接匹配负载,电磁波在波导内成行波状态,通常应用与大型天线阵中。后者单元间距为半个波导波长,一端激励一端在离最后一个辐射缝隙四分之一波导波长处短路,波导内电磁波呈驻波状态,这种阵一般应用于小型阵列。前者频带宽些,但在大型阵中由于波导传输损耗及终端负载的吸收,效率较低。后者一般效率高些,但是带宽窄些。总之,工作频带都较窄。 早期人们采用串-并联缝隙,倾斜偏置缝或分别匹配每个缝隙的方法来展宽带宽,但是采用串-并联缝隙或倾斜偏置缝将带来另一计划分量增加的问题,而匹配每个缝隙对于天线阵设计来说是比较困难的事情。目前,常用的改善波导缝隙天线带宽的方法有三种:1将天线分成若干个子阵;2采用中间馈电的馈电方式;3用脊波导代替矩形波导。 二,具体实例 (1) 对于波导窄边开斜缝天线阵,由于缝隙倾斜引起较高的交叉极化电平。窄边非倾斜缝辐射单元形式。由于辐射电磁波的电场分量垂直于辐射细缝,而此种

辐射缝隙完全垂直于波导的轴线,排除了单元在垂直于波导纵向的电场分量,因此辐射电磁波只包含波导轴向分量,从而得到优越的交叉极化特性。所以用非倾斜缝隙作为辐射单元组成的天线将得到非常高的交叉极化抑制性能。本文提出一种非倾斜缝的新型激励方式,将一对切角矩形金属膜片置于缝隙两边,膜片紧贴于波导的宽边和上部窄边上,这种结构有利于天线阵的制作和增加可靠性。设计加工了一个x波段的16元侧射均匀直线阵,为了有效展宽工作带宽,将天线阵划分成4个谐振子阵,并由一个波导功分器馈电。测试结果验证了设计的可行性。 图1 波导窄边非倾斜缝结构 波导窄边的电流只有y分量,当在窄边沿y向开非倾斜细缝时,其切割的电流几乎忽略不计,在缝隙内不能激励起电磁场,因此对空间不能产生辐射。为了改变这一状况,此处采用一对切角矩形金属膜片置于缝隙两边(如图l所示),改变缝隙附近波导内的场分布,从而使波导窄壁上电流具有z分量,这样非倾斜缝就可以有效切割电流,在缝隙内激励起电磁场,进而向空间产生辐射。由于波导窄边尺寸较小,为了得到谐振长度,缝隙需要扩展到波导的宽边,切割到宽边的深度为h。为了改善因单元数较多限制天线阵工作带宽的因素,将天线阵分成4个子阵,并由一个波导功分器馈电。功分器如图2所示

5g微带阵列天线讲解

5G微带阵列天线 要求:利用介质常数为2.2,厚度为1mm损耗角为0.0009的介质,设计一个工作在5G的4X4的天线阵列。 评分标准: 良:带宽〈7% 优:带宽〉7%且效率大于60% 1微带辐射贴片尺寸估算 设计微带天线的第对于工作频率即为:步是选择合适的介质基板,假设介质的介电常数为&r, f的矩形微带天线,可以用下式设计出高效率辐射贴片的宽度W, 式中,C 波长,即为: 是光速,辐射贴片的长度一般取为飞/2 ;这里e是介质内的导波 考虑到边缘缩短效应后,实际上的辐射单元长度L应为: L—C-2 丄 2 f ?. ;e 式中, 计算,即为: ;e是有效介电常数,厶L是等效辐射缝隙长度。它们可以分别用下式 1 E r +1 E r —1 h -5 ;e (1 12 ) 2 2 2 w .丄"412h(;e。①⑶川 °264 ) ? —0.258)(w/h+0.8) 2.单元的仿真 由所给要求以及上述公式计算得辐射贴片的长度L=19.15mm,W=23.72mm采 用非辐射边馈电方式,模型如图1所示:

图1单元模型 此种馈电方式,可以通过移动馈电的位置获得阻抗匹配,设馈电点距离上宽边的偏移量为dx,经仿真得到当dx=4mm P寸,阻抗匹配最好。另外,之前计算出的尺寸得到的谐振点略有偏移,经过仿真优化后贴片尺寸变为L=19mm,W=23.72mm仿真结果图如图2,图3所示。 Freq [GHz] 图2 S11参数

图3增益图 从图中可以看出谐振点为5GHz计算的相对带宽为2.2%,增益为5.78dB 2. 2 X 2阵列设计 设计馈电网络并组阵,模型图如图4所示。 图4 2 X2微带天线阵列

一种X波段波导缝隙天线的设计与仿真

一种X波段波导缝隙天线的设计与仿真 作者:李高升,卢中昊,刘锋,何建国 来源:《现代电子技术》2010年第21期 摘要:给出了波导缝隙天线设计步骤,设计一种X波段波导缝隙天线,计算了天线口径、波导数量、缝隙的单元数量、宽度、位置等参数,设计半高波导宽臂耦合谐振缝魔T和差器,在此基础上完成了天线设计。仿真结果表明,当中心频率为12 GHz时,和波束增益为28.9 dB,第一副瓣电平为-22.2 dB,所设计的天线形式可获得较好的和、差波束方向图、电压驻波比和增益等参数。 关键词:波导缝隙天线; 低副瓣; 辐射缝隙; 和差器 中图分类号:TN957.2-34文献标识码:A 文章编号:1004-373X(2010)21-0005-04 Design and Simulation of Waveguide Aperture Antenna Working in X-band LI Gao-sheng, LU Zhong-hao, LIU Feng, HE Jian-guo (College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China) Abstract: The procedures for designing a waveguide aperture antenna are presented. A waveguide aperture antenna working in X-band is designed. The aperture of antenna, number of waveguide, and parameters of aperture including number, width and location are calculated. A wide-arm coupling resonant aperture magic T comparator with half-height waveguide is designed, based on which the design of the antenna is finished. Simulation results indicate that gain of the sum beam is 28.9 dB and the first side lobe is -22.2 dB at 12 GHz. The antenna can attain good parameters such as sum and subtract pattern, voltage stand wave ratio and gain. Keywords: waveguide aperture antenna; low side lobe; radiation slot; comparator 0 引言 随着信息化水平的提高和无线电技术的发展,对高效率、低副瓣天线的需求日渐强烈,特别是弹载、机载搜索和跟踪天线,由于早年常用的抛物面天线固有的口径遮挡,难以在这两方面有大幅度提高,不能满足日益增长的需求。 波导缝隙天线在设计方面具有较大的灵活性,可调整和优化的参数多,较易实现高效率、超低副瓣和高增益,还具有承受功率高,结构紧凑等优点,得到了广泛的研究和应用[1-2]。

相关主题
文本预览
相关文档 最新文档