当前位置:文档之家› 4-现代生物技术在食品工业中的应用研究进展

4-现代生物技术在食品工业中的应用研究进展

4-现代生物技术在食品工业中的应用研究进展
4-现代生物技术在食品工业中的应用研究进展

江西农业学报 2009,21(5):134~136Acta Agricu lt urae Ji angxi

现代生物技术在食品工业中的应用研究进展

华宝珍,马成杰,罗玲泉

收稿日期:2009-02-25

作者简介:华宝珍(1972-),女,湖北武汉人,工程师,主要从事食品生物技术研究与开发工作。

(光明乳业技术中心华中地区研究所,湖北武汉430040)

摘 要:生物技术在其自身发展过程中始终与食品的加工和制造密不可分,现代生物技术的进步对食品工业的发展产生了巨大的影响。根据国内外食品工程领域中生物技术的研究应用现状,阐述了现代生物技术在食品工业中的应用研究进展。

关键词:生物技术;食品工业;应用;基因工程;研究进展

中图分类号:Q81 文献标识码:A 文章编号:1001-8581(2009)05-0134-03

R esearch Progress in App lica tion ofM odern B iotechnology in Food Industry

HUA Bao-z hen,MA Cheng-jie,L UO Ling-quan

(Centra l Ch i na A rea R esearch Institute ,Technol ogy Centre of Guang m i ngM il k Industry ,Wuhan 430040,Chi na)Abstra ct :B iotechnol ogy has a l w ays been i nseparab le with t he fo od processi ng and m anu factur i ng i n its o wn deve l op mental course ,and the pro gress of modern b i otechnolo gy has made a notab l e i nfl uence o n the i m prove m ent of f ood engi neer i ng .This paper revie wed the research progress i n the appli cati on ofm odern biotechnol ogy i n fo od engineer i ng according to t he resea rch and app licati on status of b i otechnolo gy i n f ood i ndustry in t he wor l d .

K ey wor ds :B iotechnol ogy ;F oo d i ndustry ;Appli catio n ;Gene engi neer i ng ;R esearch progress

随着生命科学日新月异的进步和食品工业的发展,现代生物技术对食品工业的发展发挥着越来越重要的作用。不同于以发酵为支撑的传统生物技术,现代生物技术在食品工业中的应用以现代分子生物学和基因工程技术为基础,包括了细胞生物学、微生物学、生物化学、免疫学等几乎所有生物学科的次级学科,构成了相互联系、密不可分的有机整体,具有强大的发展潜力和良好的发展前景,现代生物技术已经渗透到食品科学与工程的方方面面。

现代生物技术是以生命科学为基础,利用生物或生物组织、细胞及其他组成部分的特性和功能,设计、构建具有预期性能的新物质或新品系,并与工程原理相结合,加工生产生物制品的综合性技术。现代生物技术包括基因工程、蛋白质工程、细胞工程、酶工程和发酵工程等五个领域,其在食品工业的应用有着广阔的市场和发展前景。

1 基因工程

基因工程是指在分子水平上将异源基因与载体D NA 在体外进行重组,然后将重组子引入到受体细胞中,进行复制和表达,从而改造生物特性,生产出符合人类需要的产品或创造生物新性状的一种技术。利用基因工程技术将一些植物、动物或微生物的基因植入另一种植物、动物或微生物中,接受的一方由此获得了在自然条件下所没有的品质,按植入的基因类型可将食品可分为植物性转基因食品、动物性转基因食品和基因工程菌[1]

。1.1 优化食品生物资源及食品品质 基因工程应用于植物食品原料的生产上,可进行品种改良、新品种开发与原料增产,如选育抗病植物、耐除草剂植物、抗虫性或抗病毒植物、耐盐或耐旱植物等,使食品原料的供应更加多样。

同时,在改善食品品质方面,可以利用转基因工程以及反义RNA 技术,使转基因番茄具有抑制聚半乳糖醛酸酶活性,番茄的成熟即可被控制,能延长番茄的储存期;或者改良玉米、稻米等作物氨基酸组成及含量,提高谷类作物的营养价值。在畜产品的生产上,利用基因工程技术可大量生产牛生长激素,并应用于乳牛,以增加牛乳的产量、饲料利用率,并加速肉牛的生长速度。猪生长激素也被应用于控制生猪总重与瘦肉的比率,减少肥肉,以迎合消费者的需求[2]。

1.2 改良食品工业菌种 食品工业如酒类、酱油、食醋、发酵乳制品等的发展,关键在于是否有优良的微生物菌种,将基因工程应用于微生物育种,从事发酵菌种的改良研究,已经成为改良食品工业菌种的一个重要途径。例如,在啤酒酵母的改良中,将A -乙酰乳酸脱羧酶基因克隆到啤酒酵母中进行表达,可降低啤酒双乙酰含量而改善啤酒风味;选育出分解B -葡萄糖和糊精的啤酒酵母,能够明显提高麦芽汁的分解率并改善啤酒质量;构建具有优良嗜杀其他菌类活性的嗜杀啤酒酵母已成为纯种发酵的重要措施[3]

。再如,乳杆菌中超氧化物歧化酶(S OD)活性越高越有利于该菌在有氧条件下的存活[4]

,诸多研究也证实了S OD 具有抗肿瘤、抗衰老、对抗细胞凋亡等生物活性与功能

[5,6]

,克隆大肠杆菌锰超氧化物

歧化酶基因(S ODA)并在保加利亚乳杆菌中成功表达,使S OD 与益生菌相结合制备发酵乳,将出现功能更强大的保健食品

[7]

此外,基因工程技术还可以与食品卫生分析检测结合。例如,采用基因探针技术检测有害微生物具有特异

性强、灵敏度高和操作简便、省时等优点,通过考查待测样品与标记性DNA探针能否形成杂交分子,即可判断样品中是否含有此种微生物,并且还可以通过测定放射性强度以考查样品中微生物数量[8]。

2蛋白质工程

蛋白质工程是在基因重组技术、生物化学、分子生物学、分子遗传学等学科的基础之上,融合了蛋白质晶体学、蛋白质动力学、蛋白质化学和计算机辅助设计等多学科而发展起来的新兴研究领域。蛋白质工程可以按照人类的需求创造出原来不曾有过、具有不同功能的蛋白质及其新产品,或生产具有特定氨基酸顺序、高级结构、理化性质和生理功能的新型蛋白质,可以定向改造酶的性能,生产新型功能性食品。

2.1改善凝乳酶性质在干酪加工中,凝乳酶作为重要的凝结剂而被广泛应用。在动物凝乳酶供应紧缺的情况下,市场上开发出了多种微生物凝乳酶。但由于其它酶类在特异性、凝结活性、蛋白分解活性、最适p H值、热稳定性等性质上与天然凝乳酶有一定的差异,因此在食品加工中易引起产量降低和成熟中出现不良风味的缺点。通过凝乳酶蛋白质工程技术的研究,目前已经在解释酶的某些结构与功能性质、基团与功能性质、酶的翻译和激活等方面取得了一定进展,在改变酶的某些性质方面取得了一定效果。这项工程可以潜在地增强和优化凝乳酶的各项酶学性质,为凝乳酶资源的开发和在食品加工中的合理利用带来了光明的前景[9]。

2.2研究和优化纤维素酶的性质纤维素酶是糖苷水解酶的一种,它可以将纤维素水解成单糖,进而发酵成乙醇,从而解决农业、再生能源以及环境污染等问题。为了更好地利用纤维素,愈来愈多的国内外学者开始关注纤维素酶的研究。

蛋白质工程作为一种工具用来研究纤维素酶的催化机制,主要包括对潜在活性中心氨基酸残基进行基因定点突变、体外分子定向进化和对定点突变酶进行动力学分析。通常采用基因定点突变技术对典型纤维素酶家族序列不变残基和三维构像进行确认,并通过设计新的三维复合体来对酶进行修整和探索[10]。

3细胞工程

细胞工程是在细胞水平上改造生物遗传特性和生产性能,以获得特定的细胞、细胞产品或新生物体的技术,包括细胞融合、细胞培养及细胞核移植等。利用细胞杂交、细胞培养等技术可获得遗传性状有所改良的新菌株或动植物细胞、生产食品添加剂与酶制剂等。

3.1细胞工程育种在细胞水平上的原生质体制备与融合有利于实现远缘遗传物质的直接交换,促进遗传资源的创新。王建华等利用曲霉种间的原生质体融合获得了比亲本菌株淀粉酶产量提高11

4.00%~204.81%,且耐高温性能也有所提高的新菌株[11]。再如,大多数难以栽培的食用菌都与植物有共生或寄生关系,人工栽培出菇问题一直无法解决,原生质体融合技术则可以去除细胞壁的屏障,实现了远缘杂交,为难以人工栽培的食用菌育种提供了新方法[12]。

3.2细胞培养利用细胞工程技术生产生物来源的天然食品或天然食品添加剂,是细胞工程的一个重要领域,应用范围包括生产天然药物(人参皂苷、紫杉醇、长春碱等)、食品添加剂(花青素、胡萝卜素、紫草色素、天然香料等)和酶制剂(S OD酶、木瓜蛋白酶等)等。S OD是一种颇受关注的酶,目前S OD主要从动物血液中分离和纯化获得,由于血液中含有大量的杂蛋白,分离纯化工艺复杂,难以达到要求;天然植物中分离和纯化S OD,又受到地理环境和气候条件等影响,难以满足需求。李志勇等研究了大蒜细胞在发酵罐培养过程中S OD合成及培养基中各种基质的消耗规律,获得的最大生物量和S OD总酶活分别为163g D W/L和7.72@104U/L,取得了较好的放大效果,为植物细胞培养S OD的工业化生产奠定了基础[13]。袁丽红等对细胞培养生产的紫草色素与天然紫草色素进行了理化性质的比较研究,结果表明,两者的组成成分基本一致,耐热性、耐氧化性及不同p H值条件下颜色的变化无明显差异,这表明工业化生产天然色素、天然香料等具有较好的发展前景[14]。

4酶工程

酶工程是指利用酶、细胞或细胞器等具有的特异催化功能,借助生物反应装置和通过一定的工艺手段生产出人类所需要产品。酶工程在食品工程中的应用技术已经比较成熟,包括各种酶的开发和生产、酶的分离和纯化、酶或细胞的固定化技术[15]、固定化酶反应器的研制以及酶的应用等。

4.1开发新型食品添加剂近年来在发达国家,酶工程加快了新酶源的开发,使功能性食品添加剂,如营养强化剂、低热量的甜味剂、食用纤维和脂肪替代品等得到迅速发展[16]。

甜菊苷是一种非营养型功能性甜味剂。甜菊苷具有轻微的苦涩味,通过酶法改质后可除去苦涩味,从而改善了其风味。酶处理方法是在甜菊苷溶液中加入葡萄糖基化合物,采用葡萄糖基转移酶处理,生成葡萄基甜菊苷。甘草中所含的甜味物质甘草苷是一种功能性甜味剂,具有补脾益气、解毒保肝、润肺止咳的功效。甘草苷经B-葡糖苷酸酶处理,生成单葡糖苷酶基甘草酸,其甜度为甘草甜素的5倍,是高甜度的甜味剂和解毒剂。

4.2酶工程在食品保鲜中的应用酶制剂保鲜技术是利用酶的催化作用,防止或消除外界因素对食品的不良影响,从而保持食品原有的优良品质与特性的技术。例如葡萄糖氧化酶加在瓶装饮料中,吸去瓶颈空隙中氧而延长保鲜期;溶菌酶对革兰氏阳性菌有较强的溶菌作用,可用于肉制品、干酪、水产品、乳制品、水果等的保鲜,且具无毒

135

5期华宝珍等:现代生物技术在食品工业中的应用研究进展

性、底物专一、高度催化、作用条件温和等优点[17]。

4.3食品分析与检测方面的应用由于酶具有特异性,因此,也适合于动植物化学组分的定性和定量分析。例如,采用柠檬酸裂解酶测定柠檬酸的含量[18],采用乙醇脱氢酶测定食品中的乙醇含量[19]。NiculescuM等也报道了

一种基于乙醇脱氢酶的传感器,它可以灵活自动地进行白酒分析,能够对白酒发酵过程进行实时监控,具有选择性好、灵敏度高、测量简便、快速等优点[20]。此外,在食品中加入一种或几种酶,根据它们作用于食品中某些组分的结果,可以评价食品的质量,这是一种十分简便的方法。

5发酵工程

发酵工程是指采用工程技术手段,利用微生物和有活性离体酶的某些功能,为人类生产有用的生物产品,或者直接用微生物参与控制某些生产的一种技术。现代发酵工程包括微生物资源的开发利用、微生物菌种的选育、固定化细胞技术、生物反应器设计、发酵条件的利用及自动化控制、发酵产品的分离与提纯等技术。发酵工程技术涉及到新食品配料、食品加工催化剂、饮料稳定剂、D -氨基酸及其衍生物制造等诸多食品工业领域[20]。

5.1改造传统的食品加工工艺从植物中萃取食品添加剂不仅成本高,而且来源有限。化学合成法生产食品添加剂虽然成本低,但是化学合成率低、周期长,而且可能危害人体健康。因此,生物技术,尤其是发酵工程技术成为食品添加剂生产的首选方法。目前,利用微生物发酵生产的食品添加剂主要有维生素C、维生素B

12

、维生

素B

2

、甜味剂、增香剂和色素等产品。发酵工程生产的天然色素、天然新型香味剂正在逐步取代人工合成的色素和香精。

5.2开发大型真菌一些药用真菌,如灵芝、冬虫夏草、茯苓等,含有调节机体免疫功能、抗癌、防衰老的有效成分,是发展功能性食品的一个重要原料来源。对于这些名贵的药用真菌,一方面可通过野外采摘和人工种植相结合的方式进行资源收集,但是这种方式的产量低,易受天气和季节的影响;另一方面,则可以通过发酵途径实现工业化生产,例如河北省科学院微生物研究所等筛选出了繁殖快、生物量高的优良灵芝菌株,应用于深层液体发酵研究并取得了成功,建立了一整套发酵和提取新工艺,为研制功能性食品提供更为广阔的药材原料。发酵培养虫草菌也在中国医学科学院药物研究所实现,分析其产品的化学成分和药理功效,与天然冬虫夏草基本一致。

6前景展望

随着生命科学和生物技术日新月异的发展,代谢组学、蛋白质组学、生物芯片、生物信息学等重大技术相继问世并取得了快速发展,大大扩展了生物技术的涵盖范围,也为现代生物技术在食品工业中的应用奠定了更加坚实的基础[21,22]。在现代生物技术快速发展的带动下,食品工业必将会有更加广阔的前景。参考文献:

[1]孙建全,张倩,马建军,等.基因工程技术在食品工业中的应用

[J].山东农业科学,2008,(2):106~108.

[2]汪秋安.基因工程食品[J].广西轻工业,2003,(6):5~6.

[3]冯婷,何聪芬,吕琳,等.现代生物技术在食品工业中的应用

[J].生物技术通报,2004,(3):36~40.

[4]Amanatido u A,Ben nikM H,Gorr i s L G,et a.l Supero xi Dedis2

mut ase Plays an I m portant Role i n the Survi val of Lacto bacillus Sake upo n Ex posure t o Elevat ed Oxy gen[J].A rch.M icro bi o.l, 2001,176(1~2):79~88.

[5]O berl eyL W.Anticancer Therapy by Overexpressi on of Supero x2

ide D is mutase[J].Anti o xi d.R edo x.Si gn.,2001,3(3):461 ~472.

[6]Levi n E D,Christo pherN C,Lateef S,et a.l Extrace ll ular Supero x2

i de D i s mutas e Overexpressi o n Prot ects agai nst Agi ng Induced

Cog niti v e I mpair ment i nM ice[J].Behav.G ene.t,2002,32(2): 119~125.

[7]黄勇,张德纯.锰超氧化物歧化酶基因的克隆和在保加利亚乳

杆菌中的表达[J].食品科学,2005,26(5):92~95.

[8]徐茂军.基因探针技术及其在食品卫生检测中的应用[J].食

品与发酵工业,2001,27(2):66~71.

[9]杨宝进,罗军.凝乳酶蛋白质工程的研究[J].中国乳品工业,

2005,33(12):36~43.

[10]张晓勇,陈秀霞,高向阳.纤维素酶的蛋白质工程[J].纤维素

科学与技术,2006,14(2):55~59.

[11]王建华,赵学慧.曲霉种间原生质体融合改良产淀粉酶能力

的研究[J].华中农业大学学报,2007,26(5):642~645. [12]邹莉,孟雪,李绍鹏.难栽培食用菌原生质体融合技术研究进

展[J].黑龙江农业科学,2006,(2):67~69.

[13]李志勇,王菊芳,郭勇.大蒜细胞悬浮培养生产S OD的初步放

大[J].生物技术,2002,12(3):32~33.

[14]袁丽红,罗雪梅.细胞培养生产的紫草色素与天然紫草色素

理化性质比较[J].南京化工大学学报,1996,18(2):45~50.

[15]吕微,伍季,付有利.固定化细胞技术及其在食品工业中的应

用[J].江西农业学报,2008,20(2):76~78.

[16]范伟平,欧阳平凯,吴月.酶工程技术在食品添加剂生产中的

应用[J].食品工业科技,1997,(6):81~84.

[17]张远.酶制剂及其在食品保鲜中的应用[J].安徽农业科学,

2005,33(3):469~470.

[18]丁辰.酶法检测果汁中柠檬酸的含量[J].中国果蔬,2006,

(3):55.

[19]胡云良.改良乙醇脱氢酶法测定血清中微量乙醇[J].中国卫

生检验杂志,2008,18(1):47~48.

[20]N i culescuM,Erichsen T,SukharevV.Q ui no he mo P rotei n A l2

co hol Dehydrogenas e-based Reagentl essAmpero metri c B i osen2 s or fo r EthanolMonit ori ng duri ngW i ne Fer ment ati on[J].Ana2 l ytica Chi m i ca A cta,2002,(463):39~51.

[21]李炜炜,陆启玉.酶工程在食品领域的应用研究进展[J].粮

油食品科技,2008,16(3):34~36.

[22]史先振.现代发酵工程技术在食品领域的应用研究进展[J].

中国酿造,2005,(12):1~4.

136江西农业学报21卷

现代生物技术研究进展 luojuan 摘要:生物技术是21世纪最具有发展前景和活力的学科,世界各国都将生物技术视为一项高新技术,生物技术在相关领域中的应用也成为应用技术研究中的热点。生物技术又叫生物工程,是综合运用生物学、细胞生物学、微生物学、生物化学等基础科学和生化工程等原理和技术而形成的一门综合性的科学技术。 关键词:现代生物技术细胞工程酶工程发酵工程基因工程蛋白质工程研究进展 一、现代生物技术概述[1] 生物技术包括传统生物技术和现代生物技术。传统生物技术主要是自然发酵技术和自然杂交育种技术。现代生物技术是指以现代生物学研究成果为基础,以基因工程为核心的新兴学科。现代生物技术主要包括:细胞工程、酶工程、发酵工程、基因工程、蛋白质工程。 二、细胞工程研究进展[2] 细胞工程的概念及其基本操作细胞工程属于广义的遗传工程,是将一种生物细胞中携带的全套遗传信息的基因或染色体整个导入另一种生物细胞,从而改变细胞的遗传性,创造新的生物类型。它包括细胞融合、细胞重组、染色体工程、细胞器移植、原生质体诱变及细胞和组织培养技术。 近年来,在该领域的研究最引人注目的是细胞融合技术和细胞杂交,并取得一些突破性研究进展。应用细胞融合技术可以培育新型生物物种。可实现种间育种。 1975年英国科学家研制成功了淋巴细胞杂交瘤技术,由此技术获得的单克隆抗体很快应用于临床实践,被称为20世纪80年代的“生物导弹”。目前单克隆抗体技术已用于治疗诊断癌症、艾滋病等多种疑难疾病,及快熟诊断人类、动物和农作物病害等方面,成为细胞工程在医学上最重要的成就之一。 日本秋田生物技术公司和遗传资源开发利用中心联合采用细胞工程的原生质体突变,将“秋田小町”稻育成“新秋田小町”新品种。该稻试种过程中,产量大大提高,取得了明显的经济效益。我国科学家利用细胞工程的原生质体育种在世界上首创了食用菌属间原生质体杂交。这种属间杂交新品种,既有香菇的独特香味和优良品质,又有平菇的高产量、生长周期短、易栽培、抗逆性强等特性。 随着细胞工程技术的不断发展,植物细胞和组织培养这一细胞工程技术也无例外地得到发展,目前已在许多植物上,特别是在农林生产实践中得到了广泛应用。尤其在林木优良品种和无性系的快速繁殖方面进展较快。 细胞工程已成为当代社会经济重要支柱性技术之一。 三、酶工程的研究进展[3] 酶工程就是在一定的生物反应装置中,利用酶的催化功能,将相应的原料转化成有用物质的一门技术。 化学酶工程又称初级酶工程,主要由酶学与化学工程技术相互结合而形成。在开发自然酶制剂方面,大规模生产和应用的商品酶只有数十种,如水解酶、凝乳酶、果胶酶等。在食品工业中的应用主要是淀粉加工,其次是乳品加工、果汁加工、食品烘烤及啤酒发酵;在轻化工业中的应用主要包括洗涤剂制造、毛皮工业、明胶制造、胶原纤维制造、牙膏和化妆品的生产、造纸、废水废物处理和饲料加工等;在能源开发上的应用主要是利用微生物或酶工程技术从生物体中生产燃料,也可利用微生物作为石油勘探、二

现代生物技术在食品领域中的应用 发表时间:2010-09-30T14:27:21.670Z 来源:《魅力中国》2010年9月第1期作者:肖付才[导读] 本文阐述了基因工程、细胞工程、酶工程等现代生物技术在食品发酵业的应用。肖付才(许昌职业技术学院园林园艺系,河南许昌 461000)摘要:本文阐述了基因工程、细胞工程、酶工程等现代生物技术在食品发酵业的应用。代生物学和分子生物学的发展,对基因工程、细胞工程、酶工程、发酵工程等现代生物技术工程产生重要影响,其在食品发酵生产中的应用越来越广。 关键词:生物技术;基因工程;细胞工程中图分类号:Q81 文献标识码:A 文章编号:1673-0992(2010)09A-0164-01 生物技术是21世纪高新技术革命的核心内容,具有巨大的经济效益及潜在的生产力。专家预测,到2010~2020年,生物技术产业将逐步成为世界经济体系的支柱产业之一。生物技术是以生命科学为基础,利用生物机体、生物系统创造新物种,并与工程原理相结合加工生产生物制品的综合性科学技术。现代生物技术则包括基因工程、蛋白质工程、细胞工程、酶工程和发酵工程等领域。在我国的食品工业中,生物技术工业化产品占有相当大的比重;近年,酒类和新型发酵产品以及酿造产品的产值占食品工业总产值的17%。现代生物技术在食品发酵领域中有广阔市场和发展前景,本文主要阐述现代生物技术在食品发酵生产中的应用。 一、基因工程技术在食品发酵生产中的应用基因工程技术是现代生物技术的核心内容,采用类似工程设计的方法,按照人类的特殊需要将具有遗传性的目的基因在离体条件下进行剪切、组合、拼接,再将人工重组的基因通过载体导入受体细胞,进行无性繁殖,并使目的基因在受体细胞中高速表达,产生出人类所需要的产品或组建成新的生物类型。发酵工业的关键是优良菌株的获取,除选用常用的诱变、杂交和原生质体融合等传统方法外,还可与基因工程结合,进行改造生产菌种。 (一)改良面包酵母菌的性能面包酵母是最早采用基因工程改造的食品微生物。将优良酶基因转入面包酵母菌中后,其含有的麦芽糖透性酶及麦芽糖的含量比普通面包酵母显著提高,面包加工中产生二氧化碳气体量提高,应用改良后的酵母菌种可生产出膨润松软的面包。 (二)改良酿酒酵母菌的性能利用基因工程技术培育出新的酿酒酵母菌株,用以改进传统的酿酒工艺,并使之多样化。采用基因工程技术将大麦中的淀粉酶基因转入啤酒酵母中后,即可直接利用淀粉发酵,使生产流程缩短,工序简化,革新啤酒生产工艺。目前,已成功地选育出分解β-葡聚糖和分解糊精的啤酒酵母菌株、嗜杀啤酒酵母菌株,提高生香物质含量的啤酒酵母菌株。 (三) 改良乳酸菌发酵剂的性能乳酸菌是一类能代谢产生乳酸,降低发酵产品pH值的一类微生物。乳酸菌基因表达系统分为组成型表达和受控表达两种类型,其中受控表达系统包括糖诱导系统、Nisin诱导系统、pH 诱导系统和噬菌体衍生系统。相对于乳酸乳球菌和嗜热链球菌而言,德氏乳杆菌的基因研究比较缺乏,但是已经发现质粒pN42和PJBL2用于构建德氏乳杆菌的克隆载体。有研究发现乳酸菌基因突变有2种方法:第一种方法涉及(同源或异源的)可独立复制的转座子,第二种方法是依赖于克隆的基因组DNA 片断和染色体上的同源部位的重组整合而获得。通过基因工程得到的乳酸菌发酵剂具有优良的发酵性能,产双乙酰能力、蛋白水解能力、胞外多糖的稳定形成能力、抗杂菌和病原菌的能力较强。 二、细胞工程技术在食品发酵生产中的应用细胞工程是生物工程主要组成之一,出现于20世纪70年代末至80 年代初,是在细胞水平上改变细胞的遗传特性或通过大规模细胞培养以获得人们所需物质的技术过程。细胞工程主要有细胞培养、细胞融合及细胞代谢物的生产等。细胞融合是在外力(诱导剂或促融剂)作用下,使两个或两个以上的异源(种、属间) 细胞或原生质体相互接触,从而发生膜融合、胞质融合和核融合并形成杂种细胞的现象。细胞融合技术是一种改良微生物发酵菌种的有效方法,主要用于改良微生物菌种特性、提高目的产物的产量、使菌种获得新的性状、合成新产物等。与基因工程技术结合,使对遗传物质进一步修饰提供了多样的可能性。例如日本味之素公司应用细胞融合技术使产生氨基酸的短杆菌杂交,获得比原产量高3倍的赖氨酸产生菌和苏氨酸高产新菌株。酿酒酵母和糖化酵母的种间杂交,分离子后代中个别菌株具有糖化和发酵的双重能力。日本国税厅酿造试验所用该技术获得了优良的高性能谢利酵母来酿制西班牙谢利白葡萄酒获得了成功。目前,微生物细胞融合的对象已扩展到酵母、霉菌、细菌、放线菌等多种微生物的种间以至属间,不断培育出用于各种领域的新菌种。 三、酶工程技术在食品发酵生产中的应用酶是活细胞产生的具有高效催化功能、高度专一性和高度受控性的一类特殊生物催化剂。酶工程是现代生物技术的一个重要组成部分,酶工程又称酶反应技术,是在一定的生物反应器内,利用生物酶作为催化剂,使某些物质定向转化的工艺技术,包括酶的研制与生产,酶和细胞或细胞器的固定化技术,酶分子的修饰改造,以及生物传感器等。酶工程技术在发酵生产中主要用于两个方面,一是用酶技术处理发酵原料,有利于发酵过程的进行。如啤酒酿制过程,主要原料麦芽的质量欠佳或大麦、大米等辅助原料使用量较大时,会造成淀粉酶、俘一葡聚糖酶、纤维素酶的活力不足,使糖化不充分、蛋白质降解不足,从而减慢发酵速度,影响啤酒的风味和收率。使用微生物淀粉酶、蛋白酶、一葡聚糖酶等制剂,可补充麦芽中酶活力不足的缺陷,提高麦汁的可发酵度和麦汁糖化的组分,缩短糖化时间,减少麦皮中色素、单宁等不良杂质在糖化过程中浸出,从而降低麦汁色泽。二是用酶来处理发酵菌种的代谢产物,缩短发酵过程,促进发酵风味的形成。啤酒中的双乙酰是影响啤酒风味的主要因素,是判断啤酒成熟的主要指标。当啤酒中双乙酰的浓度超过阈值时,就会产生一种不愉快的馊酸味。双乙酰是由酵母繁殖时生成的α-乙酰乳酸和α-乙酰羟基丁酸氧化脱羧而成的,一般在啤酒发酵后期还原双乙酰需要约5~10d 的时间。崔进梅等报道,发酵罐中加入α-乙酰乳酸脱羧酶能催化α-乙酰乳酸直接形成羧基丁酮,可缩短发酵周期,减少双乙酰含量。 四、小结在食品发酵生产中应用生物技术可以提高发酵剂的性能,缩短发酵周期,丰富发酵制品的种类。不仅提高了产品档次和附加值,生产出符合不同消费者需要的保健制品,而且在有利于加速食品加工业的发展。随着生化技术的日益发展,相信会开发出更多物美价廉的发酵制品,使生物加工技术在食品发酵工业中的应用更加广泛。参考文献

◆ 生物技术的确切定义: 人们运用现代生物科学,工程学和其他基础学科的知识,按照预先的设计,对生物进行控制和改造或模拟生物及其功能,用来发展商业性加工,产品生产和社会服务的新技术领域。 ◆ 生物技术的构成 ◆ 生物技术各构成成分之间的关系 现代生物技术的核心是基因工程,而现代生物技术的基础和归宿则是发酵工程和酶工程,否则就不能获得产品和经济效益,也就体现不了基因工程和细胞工程的优越性。 基因工程的定义: ▼ 是指按照人们的意愿和设计方案, ▼ 以分子生物学,分子遗传学,生物化学和微生物学为理论基础, ▼ 通过将一种生物细胞的基因分离出来或人工合成新的基因, 在体外进行酶切和连接并插入载体分子构成遗传物质的新组合, ▼ 导入到自身细胞或另一种细胞中进行复制和表达等实验手段, ▼ 有目的的实现动物,植物和微生物等物种之间的DNA 重组和转移, 使现有物种在短时间内趋于完善或创造出新的生物特性。 发酵工程的定义 : 基因工程 细胞工程 发酵工程 酶工程 蛋白质工程

利用微生物的某种特性,通过现代化工程技术手段进行工业规模生产的技术. 包括: ①传统发酵(有时称酿造), ②近代的发酵工业如酒精,如乳酸,丙酮-丁醇等 ③目前新兴的如抗生素,有机酸,氨基酸,酶制剂, 核苷酸,生理活性物质,单细胞蛋白等的发酵生产 酶工程的定义 : 酶工程是利用酶所特有的生物催化性能,将酶学理论与化工技术结合而成的一门生物技术。也就是利用离体酶或者直接利用微生物细胞,动植物细胞,细胞器的特定功能,借助于工程学手段来生产酶制剂并应用于相关行业的一门科学。 细胞工程的定义 : 是利用细胞生物学和分子生物学技术,通过类似于工程学的步骤,在细胞整体水平或细胞器水平上,按照人们的意愿改变细胞内的遗传物质已获得新型生物或特定细胞产品的一门综合性科学技术。 蛋白质工程的定义 : 蛋白质结构和功能的研究为基础,运用遗传工程的方法,借助计算机信息处理技术的支持,从改变或合成基因入手,定向地改造天然蛋白质或设计全新的人工蛋白质使之具有特定的结构、性质和功能,能更好地为人类服务的一种生物技术。 生物技术:农业生物技术、医药生物技术、食品生物技术、海洋生物

姓名: ** 班级: *** 学号: *** 指导老师: *** 完成日期:2012****

生物技术在食品中的应用 ******(***) [摘要] 目前,生物技术在食品工业中的作用表现在4个方面:一是食品原料和微生物的改良,提高食品营养价值及加工性能;二是生产各种功能食品有效成分、新型食品和食品添加剂;三是可直接应用于食品生产过程中物质的转化;四是工业化生产预定的食品或食品的功能成分。此外,在食品生产相关领域,如食品包装、食品检测等方面,生物技术也得到越来越广泛的应用。随着现代生物技术的迅猛发展,生物技术在食品工业中的应用也日益广泛和深入。它的发展对于解决现存的食物资源短缺问题、丰富食品种类、满足不同消费需求,开发新型功能性食品等均有突出贡献。现以基因工程和酶工程为主要内容,分析生物技术在食品工业中的应用。 [关键词] 生物技术基因工程酶工程食品工业应用 [正文] 现代生物技术在食品中及食品加工制造上的应用,涉及基因工程、细胞工程、发酵工程、酶工程以及现代分子检测技术。其中基因工程技术为核心技术,它能带动其他技术的发展。 基因工程技术是指将外源的核酸分子(目的基因)导入到原来没有这类基因的宿主生物体内,并能持续稳定的繁殖,从而使宿主生物产生新的性状。基因工程的基本程序:①获取所需的目的基因;②把目的基因与选好的载体(如小型环状DNA分子)连接在一起,即重组;③把重组载体转入宿主细胞;④对重组分子进行选择;⑤表达成蛋白,采用合适条件,获得高表达的产品。 自1973年美国斯坦福大学和旧金山大学Coken和Boyer两位科学家成功地实现了DNA分子重组实验,揭开了基因工程发展的序幕,人类有能力按照自己的意愿去操作不同的基因,再接着1982年抗卡那霉素向日葵、1997年克隆羊多莉的诞生...基因工程的兴起和发展,使得转基因生物技术为食品行业的发展注入了新的动力,直接加快了对粮食产量的提高和食品营养的改善,解决了了发展中国家人民的温饱问题。 目前,基因工程在食品工业中的应用主要包括改良食品加工的原料、改良食品微生物菌种性能、应用于食品酶制剂的生产、改良食品加工工艺以及保健食品等。其中,改良食品加工的原料可分为改良动物性食品源和改良植物性食品源。例如为了提高奶牛的产奶量但又不影响奶的质量,可采用基因工程技术生产的牛生长激素BST注射到母牛上,便可达到提高母牛产奶的目的。为了提高猪的瘦肉含量或降低猪脂肪含量,则采用基因重组的猪生长激素,注射至猪上,便可使猪

当今世界,我们所处的这个时代,是科学技术飞速发展、知识信息爆炸的知识经济时代,世界各国都在相互竞争,竞争的焦点集中在科学技术上,谁的科技发达,谁的综合国力就强大。 现在世界七大高新技术分别是:现代生物技术、航天技术、信息技术、激光技术、自动化技术、新能源技术和新材料技术。 其中生物技术列在首位,生物技术之所以令世界各国如此重视,是因为它是解决人类所面临的诸如食物短缺、人类健康、环境污染和资源匮乏等重大问题上有着不可比拟的优越性,还因为它与理、工、农、医等科技的发展、与伦理道德、法律等社会问题都有着密切的关系。 高新技术的重要特征之一是学科横向渗透,纵向加深,综合交错,发展迅速。所以世界各国争相投巨资发展,确定生物技术为21世纪经济和科技发展的优先领域。 基因工程 基因工程( 又称DNA 重组技术、基因重组技术) , 是20 世纪70 年代初兴起的技术科学, 是用人工的方法将目的基因与载体进行DNA重组, 将DNA 重组体送入受体细胞, 使它在受体细胞内复制、转录、翻译, 获得目的基因的表达产物。这种跨越天然物种屏障, 把来自任何生物的基因置于毫无亲缘关系的新的寄主生物细胞之中的能力, 是基因工程技术区别于其他技术的根本特征。 基因工程技术是一项极为复杂的高新生物技术, 它利用现代遗传学与分子生物学的理论和方法, 按照人类所需, 用DNA 重组技术对生物基因组的结构和组成进行人为修饰或改造, 从而改变生物的结构和功能, 使之有效表达出人类所需要的蛋白质或人类有益的生物性状。基因工程从诞生至今, 仅有30 年的历史, 然而, 无论是在基础理论研究领域, 还是在生产实际应用方面, 都已取得了惊人的成绩。首先,基因工程给生命科学自身的研究带来了深刻的变化。目前科学家已完成了多种细胞器的基因组全序列测定工作。其次, 基因工程具有广泛的应用价值, 能为工农业生产、医药卫生、环境保护开辟新途径。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学和以基因功能鉴定为目标的功能基因组学,又被称为后基因组研究,成为系统生物学的重要方法。 我国在结构生物学研究方面具有较好的基础。60年代,我国科学家在世界上首次人工合成了胰岛素;70年代初又测定出1.8 埃; 分辨率的猪胰岛素三维结构,成为世界上为数不多的能够测定生物大分子三维结构的国家,这些研究工作处于当时的世界先进水平。 基因克隆是70年代发展起来的一项具有革命性的研究技术,可概括为∶分、切、连、转、选。 "分"是指分离制备合格的待操作的DNA,包括作为运载体的DNA和欲克隆的目的DNA;"切"是指用序列特异的限制性内切酶切开载体DNA,或者切出目的基因;"连"是指用DNA连接酶将目的DNA同载体DNA连接起来,形成重组的DNA分子;"转"是指通过特殊的方法将重组的DNA 分子送入宿主细胞中进行复制和扩增;"选"则是从宿主群体中挑选出携带有重组DNA分子的个体。基因工程技术的两个最基本的特点是分子水平上的操作和细胞水平上的表达,而分子水平上的操作即是体外重组的过程,实际上是利用工具酶对DNA分子进行"外科手术"。DNA克隆涉及一系列的分子生物学技术,如目的DNA片段的获得、载体的选择、各种工具酶的选用、体外重组、导入宿主细胞技术和重组子筛选技术等等。从不同的重组DNA分子获得的转化子中鉴定出含有目的基因的转化子即阳性克隆的过程就是筛选。目前发展起来的成熟筛选方法如下:(一)插入失活法 外源DNA片段插入到位于筛选标记基因(抗生素基因或β-半乳糖苷酶基因)的多克隆位点后,

食品生物技术专业简介 专业代码570101 专业名称食品生物技术 基本修业年限三年 培养目标 本专业培养德、智、体、美全面发展,具有良好职业道德和人文素养,掌握生物化学、微生物发酵技术、食品生物新技术等基本知识,具备发酵、产品分离提取、菌种培养等能力,从事调味品及食品添加剂、酒、饮料及精制茶等生物食品的生产操作、设备使用和维护、生产过程质量监控、工艺与设备管理、技术研发辅助等工作的高素质技术技能人才。 就业面向 主要面向生物食品制造技术及应用行业,在发酵、产品分离提取、菌种培养等岗位群,从事生产操作、设备使用和维护、生产过程质量监控、工艺与设备管理、技术研发辅助、生物产品检验检疫、生物产品销售等工作。 主要职业能力 1.具备对新知识、新技能的学习能力和创新创业能力; 2.具备在工作中发现问题和寻找解决问题方法的能力; 3.具备食品生物新技术初步研发的能力; 4.掌握生产过程质量管理的相关知识及技能,具备生物食品生产过程质量监控的能力; 5.掌握生物食品工艺技术及应用,具备生物食品生产工艺与设备管理的能力; 6.掌握微生物菌种培养、发酵和产品提取的基本知识及技能,具备生物食品生产操作的能力; 7.了解相关生产设备的结构、工作原理及基本操作,具备生物食品生产设备使用

和维护的能力。 核心课程与实习实训 1.核心课程 生物化学、微生物基础、微生物发酵技术、发酵工程设备、食品质量与安全、发酵食品生产技术、食品生物新技术等。 2.实习实训 在校内进行微生物基础技能训练、微生物发酵技术技能训练、发酵食品生产技术综合训练、食品生物新技术研发训练等实训。 在生物食品生产企业进行实习。 职业资格证书举例 发酵工微生物培菌工酿酒工酱油酱类制作工食用酶制剂制造工 衔接中职专业举例 食品生物工艺 接续本科专业举例 生物技术生物工程酿酒工程

食品生物技术试题 甘肃农业大学12级食品质量与安全-李红科 一、单项选择题 1 通过()和酶工程处理废弃物,提高资源的利用率并减少环境污染( A )A发酵工程 B基因工程 C蛋白质工程 D酶工程 2 ()是生物技术在食品原料生产、加工和制造中的应用的一个学科(B) A微生物学 B食品生物技术 C生物技术 D绿色食品 3 在引起食品劣变的因素中(C)起主导作用 A虫害 B物理因素 C微生物 D化学因素 4下列哪些食品保藏方法不属于物理保藏法(B) A脱水干燥保藏法 B熏制保藏法 C冷藏保藏法 D罐藏法 5 细胞工程包括动植物题的体外培养技术、()、细胞反应技术。 A细胞改造 B细胞修饰 C细胞杂交 D细胞衰老 6 自然选育过程中采取土样时主要选择()之间的土壤(B) A 3-10cm B 5-15cm C10-15cm D 10-20cm 7 下列不属于真空冷冻干燥法中冷冻干燥的步骤是(B) A制冷 B高压 C供热 D抽真空 8 食品生产中的危害分析与关键控制点是(D) A GMP B ISO C CCP D HACCP 9 下列不属于纯种分离的常用方法的是(B) A 组织分离法 B 单孢分离法 C 划线分离法 D 稀释分离法 10 下列分离方法具有简单、快速的特点的是(B) A稀释分离法 B划线分离法 C组织分离法 D 单孢分离法11()是采样与生产相近的培养基和培养条件,通过三角瓶的容量进行小型发酵试验,以求得适合于工业生产用菌种(C) A 培养 B 分离 C 筛选 D 鉴定 12 诱变育种是以(C)为基础的育种 A自然突变 B 基因突变 C 诱发突变 D 基因重组 13 在整个诱变育种工作中,工作量最大的是(A) A 筛选 B 分离 C 鉴定 D 培养 14 分子育种是应用()来进行的育种方式(B) A 酶工程 B 基因工程 C 蛋白质工程 D 细胞工程 15 通过基因工程改造后的菌株被称为(B) A“蛋白菌” B“工程菌” C “酶菌” D“细胞菌” 16冷冻保藏的温度一般要求在( C )摄氏度 A 1 B-10 C -20 D-5 17 发酵工业中培养基所使用的碳源中最易利用的糖是(A) A葡萄糖 B蔗糖 C淀粉 D乳糖 18(A)是人工配制的提供微生物或动植物生长、繁殖、代谢和合成人们所需要产物的营养物质和原料。 A培养基 B人工培养基 C合成培养基 D天然培养基 19 在引起肉腐败的细菌中,温度较高时(B)容易发育

食品生物技术应用研究进展 生物技术是对生命有机体进行加工改造和利用的技术,是21世纪高新技术的核心之一,发达国家皆将生物技术列为国家级重点科技并积极开发。生物技术已被应用于工农业、食品加工、医疗保健等众多领域中。而食品生物技术是生物技术的重要分支学科,主要指生物技术在食品工业中的应用。另外,在食品生产相关领域如食品包装、食品检测等方面,食品生物技术也得到越来越广泛的应用。 1 生物技术在食品工业中的应用 1.1 对食品资源的改造 1.1.1 生产转基因食品应用现代生物技术,特别是重组DNA技术,可将生物的特定性状转移到植物、动物和微生物中;与此同时,人们采用细胞生物学方法,建立了细胞融合技术,并进行动物、植物细胞大量控制性培养,按照预定的设计改造遗传物质,从而得到转基因动植物。如应用基因工程和细胞工程对各类植物进行改良,发展了植物抗病抗虫害品种:改良蔬菜、水果采收后的品质;改良植物原料加工特性。目前,生长速度快、抗病力强、肉质好的转基因兔、猪、鸡已经问世,为改善人们的膳食结构提供了一条新的思路和方法。 据统计,美国农业部现已批准生产的转基因农作物有7大类,35种。我国现已批准可商业化生产的有6项,涉及食品的有3项,包括转基因耐储藏番茄.抗黄瓜花叶病毒甜椒,抗花叶病毒番茄。处于中试阶段的与食品有关的转基因植物有抗除草剂水稻、抗虫水稻、抗病毒大白菜、抗病毒番茄、转Bt基因抗虫棉花、抗青枯叶病马铃薯、抗旱马铃薯、高氨基酸马铃薯等。

1.1.2改良食品原料发酵微生物食品原料加工中.一个非常重要的方面就是应用发酵技术进行微生物转化。持续创新使发酵食品不断得以改善并日趋多样化,但是许多创新只是局限于为现有产品选择新的可改变产品特性的生产菌。 用于发酵的微生物基因序列的揭示和高产量后基因组技术的出现使我们对传统加工方法的认识发生了巨大的变化。现在,有10种真菌基因组序列已被公开.而且通过公开的基因序列数据库,更多的真菌基因序列将被阐明。Jewett 等以黑匣子代谢组学方法为例进行了综述,为真菌基因组序列非依赖性的代谢作用多样性功能分析提供了可能。 根据它们高度的特异性和多样性.通过这些方法.通常可以确定其次级代谢产物。后基因组技术为开发发酵生物体的天然生物活性提供了新的可能.对改变微生物在相关生产条件下的性能有重要意义.这将为选择最佳的微生物菌种并利用这些微生物生产出有特色或新型的发酵产品提供新的方法。Van Hyckama Vlieg 等以乳酸乳球菌属微生物为例,对这些技术及其应用潜能进行了综述。 1.2对食品加工工艺的改进 1.2.1 延长食品保鲜期一方面.选育并推广适宜贮藏加工的品种,为食品生产提供更多易于贮藏的原料。主要是利用遗传工程技术选择培育对乙烯敏感性低的新品种.从基因工程角度解决农副产品的保鲜问题。另一方面,应用酶工程技术,利用生物酶制造一种有利于食品保质的环境.吸去瓶颈空隙中的氧而延长保鲜期:溶菌酶对革兰氏阳性菌有很强的溶菌作用,用于肉制品、干酪、水产品等的保鲜。 1.2.2 改进肉、奶、水产品的加工肉的加工保鲜方面主要是提高肉的综合品质以及瘦肉、肥肉、嫩肉的综合利用,如肉的嫩化、发酵香肠的生产和增加

现代生物技术在环境保护中的应用研究进展 摘要介绍了我国生态环境现状,阐述了现代生物技术在治理环境污染应用方面的优点及其在环境保护中的应用情况,并对其应用前景进行了展望,以期促进现代生物技术在环境保护中的应用。 关键词现代生物技术;环境保护;应用;前景 随着现代工业技术的迅速发展,我国国民经济社会总体发展速度较快,城市化进程的步伐也日益加快。在经济高速发展过程中,环境问题也随之而来。为了全面建设小康社会,保证国民健康,维护社会可持续、健康发展,必须采取有力措施进行环境保护。因此,积极利用现代生物技术、加强环境保护已经成为人民日益关注的课题。为了实现社会健康、持续发展,实现各类资源的永续利用,环保工作者的首要工作任务就是努力保护和提高环境质量。 1 我国生态环境现状 在我国过去几十年的经济快速发展中,由于片面重视经济GDP的高速发展而忽视了经济发展中的环境保护,导致目前环境状况十分严峻。近年来虽采取了大量控制措施,但环境质量下降的趋势仍在继续。我国是世界上环境污染最为严重的国家之一,由于工业“三废”污染、农用化肥和农药的污染,造成水体污染严重,无法利用。全国约300个城市工业生产和居民生活用水较为短缺,成为缺水城市,占全国600个城市中的50%;而农村这一情况更加严重,约有1亿人口和2亿头牲畜饮水困难。在广大农村,由于水体和土壤的严重污染,耕地利用效率大大降低,不仅减少了有效耕地面积,而且直接威胁居民身体健康,引发各类疾病[1]。目前的当务之急就是要尽快应用高新技术,综合治理和保护环境,从而有效控制环境污染,保持生物多样性和生态平衡。 2 现代生物技术在治理环境污染方面的优点 由于基因重组技术的发现和应用,一项以基因工程为核心的现代生物技术迅速崛起,并成为高新产业革命的重要标志之一。现代生物技术是以DNA分子技术为基础,包括微生物工程、细胞工程、酶工程、基因工程、蛋白质工程等一系列高新技术。环境生物技术是由现代生物技术与环境工程相结合的新兴交叉学科,是应用生物圈的某部分使环境得以控制,或治理预定要进入生物圈的污染物的生物技术。这一技术在解决环境问题过程中显示出了独特的功能和显著的优越性,不仅充分体现出这项技术是一个纯生态的过程,且从根本上体现了可持续发展的战略思想。在环境的保护和污染治理中,环境生物技术与传统方法相比较,具有明显优势。生物转化技术可以真正实现清洁生产的目的,其充分利用生物过程减少生产中产生的污染,很大程度上代替了传统生产中的化学过程,更有利于实现无废生产,促进了生产工艺的生态化。现代生物技术的发展,尤其是酶工程、细胞工程、基因工程等,提高了生产效率,强化了环境生物处理过程,在工农业生产中应用这些技术,可以降低成本,其高专一性等特性为环境生物技术在环境保护中的应用展示了更为广阔的前景。 3 现代生物技术在环境保护中的应用 3.1 环境监测与评价 近年来,国内外研究较多的是应用PCR技术生物芯片、生物传感器等生物高新技术进行环境监测。Niedrhauser等利用PCR技术检测了食品中的单核细胞生利斯特氏菌(易导致人类脑膜炎)。传统方法至少需10 d时间,应用PCR技

一、名词解释 1、基因:是具有遗传效应的DNA片段。 2、质粒:质粒存在于许多细菌以及酵母菌等生物中,是细胞染色体外能够自主复制的很小的环状DNA分子。 3、限制酶:是可以识别特定的核苷酸序列,并在每条链中特定部位的两个核苷酸之间的磷酸二酯键进行切割的一类酶 4、基因工程:又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性、获得新品种、生产新产品。 5、酶工程:是指工业上有目的的设置一定的反应器和反应条件,利用酶的催化功能,在一定条件下催化化学反应,生产人类需要的产品或服务于其它目的的一门应用技术。 6、末端转移酶:是一种无需模板的DNA聚合酶,催化脱氧核苷酸结合到DNA 分子的3'羟基端。 7、葡萄糖淀粉酶:又称糖化酶。它能把淀粉从非还原性未端水解a-1.4葡萄糖苷键产生葡萄糖,也能缓慢水解a-1.6葡萄糖苷键,转化为葡萄糖。同时也能水解糊精,糖原的非还原末端释放β-D-葡萄糖。 8、相对酶活力:具有相同酶蛋白量的固定化酶与游离酶活力的比值称为相对酶活力。 9、α-淀粉酶:可以水解淀粉内部的α-1,4-糖苷键,水解产物为糊精、低聚糖和单糖,酶作用后可使糊化淀粉的黏度迅速降低,变成液化淀粉,故又称为液化淀粉酶、液化酶、α-1,4-糊精酶。 10、甲基化酶:作为限制与修饰系统中的一员,用于保护宿主DNA 不被相应的限制酶所切割。 11、葡萄糖异构酶:也称木糖异构酶,能将D-葡萄糖、D-木糖、D-核糖等醛糖可逆地转化为相应的酮糖。 12、发酵工程:是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。13、补料分批发酵:又称“流加发酵”,是指在微生物分批发酵过程中,以某种方式向发酵系统中补加一定物料,但并不连续地向外放出发酵液的发酵技术,是介

现代生物技术产业化发展的现状与趋势 摘要:综述了现代生物技术的发展现状,介绍了农业生物技术的疫苗、工业生物技术、医药生物技术及其在生物技术领域中的应用情况,介绍了生物技术领域重点攻关课题研究进展,展望了今后的发展方向。 关键词:现代生物技术产业化现状与趋势 1 前言 生物技术也称生物工程,它是在分子生物学基础上建立的、为创建新的生物类型或新生物机能的实用技术,是现代生物科学和工程技术相结合的产物。具体而言,生物工程技术包括转基因植物、动物生物技术、农作物的分子育种技术、医药生物技术、纳米生物技术、重要疾病的生物治疗等。当前,世界生物技术发展已进入大规模产业化的起始阶段,蓬勃兴起和迅猛发展的生物医药、生物农业、生物能源、生物制造、生物环保等领域,正在促使生物产业成为世界经济中继信息产业之后又一个新的主导产业[1]。 现代生物技术以20世纪70年代DNA重组技术的建立为标志,以世界上第一家生物技术公司——Gene-Tech的诞生(1976)年为纪元[2]。此后,越来越多的科学家投身于分子生物学研究领域,并取得了许多重大的进展。至此,以基因工程为核心的技术上的革命带动了现代发酵工程、酶工程、细胞工程以及蛋白质工程的发展,形成了具有划时代意义和战略价值的现代生物技术。生物技术的最大特点是具有再生性,可以循环利用生物体为操作对象,在节约原材料和能源方面有巨大的潜力,而且投资少、周期短、经济效益大,并且没有污染。他是推动经济发展、社会进步的一项关键技术,在解决人类社会面临的一系列重大问题,如粮食、健康、环境和能源方面已经取得并将取得更大进展,对促进社会经济诸领域的发展有着不可估量的影响。 2 全球现代生物技术的发展现状 产值继续增长 2013年,全球生物工程药品市场规模为2705亿美元,2014年增长至3051亿美元。基于疾病诊断和治疗对重组技术、医药生物技术以及DNA测序技术等的需求不断增加,全球生物技术市场预计以%的年复合增长率增长,至2020年全球

食品生物技术专业求职简历 【导语】求职简历是求职者生活、学习、工作、经历、成绩的概括。以下是苏阳文斋整理的食品生物技术专业求职简历,欢迎阅读! 【篇一】食品生物技术专业求职简历 姓名:XXX 性别:女 年龄:23岁 学历:本科 政治面貌:共青团员 现居城市:武汉 籍贯:湖北 婚姻状况:未婚 联系电话:××××××××××× 电子邮箱: 求职意向 人才类型:应届毕业生 工作类型:全职 期望薪资:2000-3000元 工作地点:湖北省 求职行业:医药、生物、美容餐饮、酒店、娱乐旅游

求职职位:药品生产/质管生物技术制药讲师/助教其他销售人员 教育经历 2010.09-2014.07武汉大学生物技术本科 专业描述:主修生物技术课程,包括植物学、植物生理学、动物学、微生物学、生物化学、生态学、细胞生物学、细胞工程、遗传学、分子生物学、基因工程、人体级动物生理学、生物工艺学、酶工程等。 语言水平 英语掌握程度:良好 获得证书 2011-09一等优秀奖学金 2013-01普通话二级乙等 自我评价 我是一个外向,友善,包容的女生。热爱生活、喜欢与别人共事。在工作上,讲究常识和实用性,注意现实的情况,自然不做作,容易接受新朋友和适应新环境。乐意与人相处,有一种真正的生活热情。脾气随和、适应性强,热情友好和慷慨大方。优点:适应能力强,学习能力强,能吃苦,有责任心,人缘好,做事有头有尾。 【篇二】食品生物技术专业求职简历 姓名: 性别:女 出生年月:1987-6-22 民族:保密 学历:本科 现居住地:河北省-石家庄市

工作年限:应届毕业生 联系电话: 求职意向 应聘类型:全职 应聘职位: 应聘行业: 期望工作地区:石家庄市 期望月薪:面议 自我评价 在校期间,担任过校学生会部长,组织能力得到较强的锻炼,对工作责任心强,注重团队合作,善于取长补短。学习成绩优秀,再学习能力较强。为人真诚善良,曾参予公益献血。做事认真负责,吃苦耐劳,课余时间经常参加家教,服务员等勤工俭学活动。 我对生活积极、热情,具有进取精神,愿意从基层做起,可以虚心听取他人意见,相信凭借自己的努力可以尽快胜任工作的需要。对工作及学习能脚踏实地,会尽力克服困难来完成自己的任务,有不服输的精神。此外,形象气质佳。 工作经历 中国农业科学院2009-3至2009-6:实习生 所在部门:植物保护所 工作描述:本人主要协助研究员对课题进行一定的研究及操作,并取得一些成绩,得到了老师的一致好评,甚至打算让我留下来做实验员。 教育背景 2005-9至2009-6学校名称:河北农业大学 专业名称:生物技术 取得学历:本科

现代生物技术的发展 姓名:王利新 学号: 学院:

摘要:现代生物技术是通过生物化学与分子生物学的基础研究而快速发展起来的。医药生物技术起步最早、发展最快,目前世界已有2000多家生物技术公司,其中70%从事医药产品的开发。生物技术工业总体日趋成熟,正在由风险产业变成以商业为动力,以市场为中心的产业。 应用生物技术已有可能产生几乎所有的多肽和蛋白质,基因工程技术的应用已使新药研究方法和制药工业的生产方式发生重大变革。该文对现代生物技术在医药和基因工程现代化的应用进行了全面、深入的论述。 【关键词】生物技术;医药;基因工程技术; 率高近十几年来,在利用生物技术制取新药方面取得了惊人的成就,已有不少药物应用于临床。例如人胰岛素、人生长激素、干扰素、乙肝疫苗、人促红细胞生成素(Epo)、GM-集落刺激因子(GM-CSF)、组织溶纤酶原激活素、白细胞介素-2及白介素-11等。正在研究的有降钙素基因相关因子、肿瘤坏死因子、表皮生长因子等140多种。随着生物技术药物的发展,多肽与蛋白质类药物的研究与开发,已成为医药工业中一个重要的领域,同时给生物制剂带来了新的挑战。在实际应用中,基因工程药物受到一定限制,如口服应用时生物利用度低,会受到消化酶的破坏,在胃酸作用下不稳定,在体内半衰期较短等,因此只能注射给药或局部用药。为了克服这些缺陷,已开始改为合成这些天然蛋白质的较小活性片段,即所谓“多肽模拟”或“多肽结构域”合成,又叫“小分子结构药物设计”。这类药物可口服,有利于由皮肤、粘膜给药,用于治疗免疫缺陷症、HIV 感染、变态反应性疾病、风湿性关节炎等,其制造成本也更低。这种设计思想也已应用于多糖类药物、核酸类药物和模拟酶的有关研究。小分子药物设计属于第二代结构相关性药物设计,所设计的分子能替代原先天然活性蛋白与特异靶相互作用。 在给药方式的研究方面,对注射用溶液和注射用无菌粉末(目前上市的多肽蛋白质类药物多为此种剂型),除了继续改进其稳定性外,还通过一些其他技术手段,研制出了化学修饰型、控释微球型和脉冲式给药系统。在非注射途径的给药系统,即包括鼻腔、口服、直肠、口腔、肺部给药方面也已取得重大进展。国内市场上主要有基因工程乙肝疫苗、干扰素、重组人白介素-2、G-CSF(增白细胞)、重组人红细胞生成素(EPO)等15种自己生产的基因工程药品。已经批准

食品生物技术选择题 第一章绪论(10) 1.第一次绿色革命,解决了人类社会因人口增加造成的食物短缺,哪种学科的产生和发展 为此做出了巨大贡献?( B ) A.基因学说 B.遗传育种学 C.纯种培养技术 D.乳糖操纵子学说 2. 食品生物技术是现代生物技术在食品领域中的应用,那么食品生物技术的核心和基础是( C )。 A. 细胞工程 B. 酶工程 C. 基因工程 D. 蛋白质工程 3. 下列有关细胞工程、发酵工程、基因工程说法错误的是( D )。 A. 现代细胞工程就是对经过基因工程改造的组织进行细胞培养和细胞融合 B. 现代细胞工程不再是传统意义上组织培养技术 C. 现代发酵工程所采用的菌株是通过基因工程获得的高效表达菌株 D. 通过基因工程获得的高效表达菌株可能是微生物的产物、也可能产生于动植物基因,但 不可能来自人的基因。 4. 下列哪项不属于基因工程技术在食品领域中的应用( D )。 A. 利用基因工程技术可以设计出具有免疫功能性食品 B. 利用基因工程技术可以设计出增加维生素的食品 C. 利用基因工程技术可以设计出调节人体代谢的食品 D. 中国传统酒文化中的食品酒也是利用基因工程技术设计出来的。 5. 随着人们生活水平的提高,对奶酪的需求将越来越大,下列哪种酶与奶酪的生产密切相关( B )。 A. 淀粉酶 B. 木瓜蛋白酶 C 纤维素酶 D. 葡萄糖氧化酶 1. 在生物技术发展中的重大历史事件中,下列哪件开创了现代生物技术产业发展的新纪元( B )。 A 应用动物胚胎移植技术进行牛胚胎移植 B. 应用重组DNA技术进行新药的开发 C. 应用重组人胰岛素技术治疗糖尿病 D. 利用基因工程菌生产凝乳酶 2. 在现代生物技术的研究和应用方面,最具活力、研究得最多、发展最快的领域是( D )。 A. 农业领域 B. 食品工业领域 C. 现代检测技术领域 D. 生物制药和医药领域

第一章食品生物技术 一、细胞工程 1、概念:是指应用现代细胞生物学、发育生物学、遗传学和分子生物学的理论与方法,在细胞水平上的遗传操作,重组细胞的结构和内含物,以改变生物的结构和功能,即通过细胞融合、核质移植、染色体或基因移植以及组织和细胞培养等方法,快速繁殖和培养出人们所需要的新物种的生物工程技术。 2、细胞工程主要包括:1.细胞融合2.细胞拆分 3.染色体工程 4.细胞培养工程 2.1 细胞融合 (1)概念:用人工方法使2种或2种以上的体细胞合并形成一个细胞,不经过有性生殖过程而得到杂种细胞的方法,用人工方法使2种或2种以上的体细胞合并形成一个细胞,不经过有性生殖过程而得到杂种细胞的方法。 (2)Somatic Hybridization(体细胞杂交) 2.2 细胞拆合工程 (1)概念:是通过物理或化学方法将细胞质与细胞核分开,再进行不同细胞间核质的重新组合,重建成新细胞。 (2)Somatic Cell Nuclear Transfer Cloning(体细胞细胞核移植克隆):Donor somatic cell/nuclei (捐赠者体细胞核)(宿主细胞或者蛋白质或细胞质) 2.3 染色体工程 (1)概念:是按照预先的设计,添加、消除或替代同种或异种染色体的全部或一部分,从而达到定向改变生物遗传性状或选育新品种的目的。他是从染色体水平改变细胞遗传组成的细胞工程技术。目前主要应用于植物遗传育种领域。 2.4 细胞培养工程 (1)概念:是细胞工程中重要的组成部分,是在人工条件下高密度大规模培养动、植物细胞来生产生物产品的技术。如今这一技术已广泛应用于现代生物制药和食品研究和生产中。为生产疫苗、细胞因子、生物产品和食品配料提供了强有力的工具。 二、动物细胞工程 (一)动物细胞培养 1、细胞原代培养 (1)取材分离:取出组织块放入小烧杯中,用剪刀将组织块剪碎 (2)组织消化:是用酶法将剪碎的组织块分散成细胞团或单细胞。

◆生物技术的确切定义: 人们运用现代生物科学,工程学和其他基础学科的知识,按照预先的设计,对生物进行控制和改造或模拟生物及其功能,用来发展商业性加工,产品生产和社会服务的新技术领域。 ◆生物技术的构成 ◆生物技术各构成成分之间的关系 现代生物技术的核心是基因工程,而现代生物技术的基础和归宿则是发酵工程和酶工程,否则就不能获得产品和经济效益,也就体现不了基因工程和细胞工程的优越性。 基因工程的定义: ▼是指按照人们的意愿和设计方案, ▼以分子生物学,分子遗传学,生物化学和微生物学为理论基础, ▼通过将一种生物细胞的基因分离出来或人工合成新的基因, 在体外进行酶切和连接并插入载体分子构成遗传物质的新组合, ▼导入到自身细胞或另一种细胞中进行复制和表达等实验手段, ▼有目的的实现动物,植物和微生物等物种之间的DNA重组和转移,使现有物种在短时间内趋于完善或创造出新的生物特性。 发酵工程的定义 : 利用微生物的某种特性,通过现代化工程技术手段进行工业规模生产的技术. 包括: ①传统发酵(有时称酿造), ②近代的发酵工业如酒精,如乳酸,丙酮-丁醇等 ③目前新兴的如抗生素,有机酸,氨基酸,酶制剂, 核苷酸,生理活性物质,单细胞蛋白等的发酵生产 酶工程的定义 : 酶工程是利用酶所特有的生物催化性能,将酶学理论与化工技术结合而成的一门生物技术。也就是利用离体酶或者直接利用微生物细胞,动植物细胞,细胞器的特定功能,借助于工程学手段来生产酶制剂并应用于相关行业的一门科学。 细胞工程的定义 : 是利用细胞生物学和分子生物学技术,通过类似于工程学的步骤,在细胞整体水平或细胞器水平上,按照人们的意愿改变细胞内的遗传物质已获得新型生物或特定细胞产品的一门综合性科学技术。 蛋白质工程的定义 :

对生物技术的看法及展望 说到“生物技术”,乍一听像是一门新兴学科,其实不然。之前自己对生物技术的理解也是片面的,通过学习后对其有了更科学的认识。下面我就结合自己的食品科学与工程专业谈谈对生物技术的看法及展望。 一、对生物技术的认识 生物技术包括传统生物技术和现代生物技术两部分。传统生物技术指的是旧有的制造酱油、酿醋、酒、面包、奶酪以及其他食品的传统工艺,现代生物技术则是指20世纪中后期发展起来的,以现代生物学研究为基础,以基因工程为核心的新兴学科。当前所称的生物技术基本都是指现代生物技术。生物技术是指人们以现代生命科学为基础,结合其他基础科学的科学原理,采用新进的工程技术手段,按照预先的设计改造生物体或加工生物原料,为人类生产所需产品或达到某种目的。生物技术包括以下几个方面:基因工程、细胞工程、酶工程、蛋白质工程、发酵工程。 食品生物技术是指生物技术在食品工业中的应用,是以基因工程技术为核心手段,包括细胞工程、酶工程、发酵工程、蛋白质工程等技术,贯穿食品制造的全过程(上游过程和下游过程)。 二、对食品生物技术的看法 随着现代生物技术的发展,食品生物技术研究的内容涉及食品工业的方方面面,特别市基因工程技术、酶工程技术、发酵工程技术等现代生物技术。从原料到加工,无处不存在食品生物技术的痕迹。人类获取优质食物和制造优质食品的方法越来越科学。动物、植物和微生物是食品工业的基本原料,原料品种的改良可为食品工业发展提供先决条件。 人们利用基因工程技术实现动植物、微生物等基因转移、重组,定向改造生物种的成功,开辟了一条改造和创造新品种的有效途径。这些食品不再是传统意义上的食品,因为这些食品可以是具有免疫功能的食品,可以是增加人所需维生素、微量元素的食品,可以是增加人体免疫力的功能性食品,可以是满足时尚的休闲食品等。基因工程还可以为发酵工程提供更优良的工程菌株,促进食品发酵工业的发展。可以肯定的是,基因工程将处在21世纪食品工业发展的核心位置。人们利用细胞工程生产各种保健食品的有效成分、新型食品和食品添加剂等。植物细胞培养在食品工业中的应用主要体现在利用该技术生产各种食用色素、香料、酶制剂、天然食品、具有生物活性的功能因子,通过动物细胞大规模培养后获得大量的满足人类需求的生物制品。利用酶工程实现食品生产过程中物质的转化,如应用于改进啤酒生产工艺,提高啤酒质量,改进果酒、果汁饮料的生产工艺,食品保鲜,利用固定化酶生产高果糖浆,酶法生产新型低聚糖等。利用发酵工程使经优选的细胞进行放大培养,获得工业化预定的食品或食品的功能成分等。生物工程下游技术史高新技术在食品生物工程中的应用,是与食品加工工艺密切相关的技术,特别是在生产功能性食品中。 由上可见,食品生物技术已经渗透到食品工业许多方面,它将在21世纪的食品工业中充当重要角色。可以说,21世纪的食品工业,将是建立在现代食品生物技术和现代食品工程技术两大支柱上的一个全新的朝阳产业。 三、对生物技术的展望 作为一项极富潜力和发展空间的新兴技术,生物技术在食品工业中的发展将会呈现出以下趋势。 1、大力开发食品添加剂新品种 目前,国际上对食品添加剂品质要求是:使食品更加天然、新鲜;追求食品的低脂肪、低胆固醇、低热量;增强食品贮藏过程中品质的稳定性;不用或少用化学合成的添加剂。因此,今后要从两个方面加大开发的力度,一是用生物法代替化学合成的食品添加剂,迫切需

相关主题
文本预览
相关文档 最新文档