当前位置:文档之家› 复变函数第三讲

复变函数第三讲

第三章 复变函数得积分(答案)

复变函数练习题第三章复变函数得积分 系专业班姓名学号 §1 复变函数积分得概念§4原函数与不定积分 一.选择题 1.设为从原点沿至得弧段,则[ ] (A) (B) (C) (D) 2、设就是,从1到2得线段,则[ ] (A) (B) (C) (D) 3.设就是从到得直线段,则[ ] (A) (B)(C)(D) 4.设在复平面处处解析且,则积分[ ] (A) (B) (C) (D)不能确定 二.填空题 1.设为沿原点到点得直线段,则 2 。 2.设为正向圆周,则 三.解答题 1.计算下列积分。 (1) (2) (3) (4) 2.计算积分得值,其中为正向圆周: (1) (2) 3.分别沿与算出积分得值。 解:(1)沿y=x得积分曲线方程为 则原积分 (2)沿得积分曲线方程为 则原积分

1 20 1 1 3224300 [()](12)3112 [32(1)][()]2.2233I i t it it dt t t i t dt t t i t t i =--+=--+-=--+-=-+?? 4.计算下列积分 (1) ,C:从到得直线段; C 得方程: 则原积分 (2) ,C:上沿正向从1到。 C 得方程: 则原积分 复变函数练习题 第三章 复变函数得积分 系 专业 班 姓名 学号 §2 柯西-古萨基本定理 §3 基本定理得推广-复合闭路定理 一、选择题 1. 设在单连通区域内解析,为内任一闭路,则必有 [ ] (A) (B) (C) (D ) 2.设为正向圆周,则 [ ] (A) (B ) (C) (D) 3.设在单连通域内处处解析且不为零,为内任何一条简单闭曲线,则积分 [ ] (A) (B) (C ) (D)不能确定 二、填空题 1.设为正向圆周,则 2.闭曲线取正方向,则积分 0 。 三、解答题 利用柯西积分公式求复积分 (1)判断被积函数具有几个奇点; (2)找出奇点中含在积分曲线内部得, 若全都在积分曲线外部,则由柯西积分定理可得积分等零; 若只有一个含在积分曲线内部,则直接利用柯西积分公式; 若有多个含在积分曲线内部,则先利用复合闭路定理,再利用柯西积分公式、 1.计算下列积分 (1) 、

(完整版)复变函数知识点梳理解读

第一章:复数与复变函数 这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。 一、复数及其表示法 介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。 二、复数的运算 高中知识,加减乘除,乘方开方等。主要是用新的表示方法来解释了运算的几何意义。 三、复数形式的代数方程和平面几何图形 就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。 四、复数域的几何模型——复球面 将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。 五、复变函数 不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。 六、复变函数的极限和连续性 与实变函数的极限、连续性相同。 第二章:解析函数

这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。 一、解析函数的概念 介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。 所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。二、解析函数和调和函数的关系 出现了新的概念:调和函数。就是对同一个未知数的二阶偏导数互为相反数的实变函数。而解析函数的实部函数和虚部函数都是调和函数。而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。 三、初等函数 和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。 第三章:复变函数的积分 这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。但是很多知识都和实变函数的知识是类似的。可以理解为实变函数积分问题的一个兄弟。 一、复积分的概念 复积分就是复变函数的积分,实质是两个实二型线积分。所以应该具有相应的实二型线积分的性质。复积分存在的充分条件是实部函数和虚部函数都连续。 二、柯西积分定理

第三章 复变函数的积分习题与解答

第三章 复变函数的积分习题与解答 3.1 如果函数()f z 是在【1】单连通区域;【2】复通区域中的解析函数,问其积分值与路径有无关系? 【答案 单连通 无关,复连通 有关】 3.2 计算积分 ||z ? 【答案 0】 3.3 计算积分 22d L z z a -? :其中0a >.设 L 分别为 (1)(1)||/2; ||; (3)||z a z a a z a a =-=+= 【答案 (1)0;(2)πi a ; (3)πi a -】 3.4 计算积分 Im d C z z ?,其中积分曲线C 为 (1)从原点到2i +的直线段; (2)上半圆周 ||1z =,起点为1,终点为1-; (3)圆周|| (0)z a R R -=>的正方向(逆时针方向) 【答案 2(1)1i /2;(2)π/2;(3)πR +--】 3.5 计算积分 d ||C z z z ? 的值, (1)||2; (2)||4;z z == 【答案(1)4πi;(2)8πi 】 3.6 计算积分的值 π2i 0 cos d 2z z +? 【答案 1/e e +】 3.7计算下列积分的值 (1) ||1d cos z z z =? ;(2)2||2d z ze z =? 21||1||12i d d (3); (4)24()(2)z z z z z z z z ==++++?? 【答案(1)0;(2) 0;(3) 0;(4) 4πi 4i +】 3.8 计算 2||2||232|i|1||1522||1|i|2(1)d ; (2)d ;3(1)(21)cos (3)d ; (4)d (i)(2)d (5)d ; (6)(4)z z z z z z z z z e z z z z z z z e z z z z z e z z z z z ==-===-=--+--+?????? 【答案 (1)0;(2)0;(3)πicosi -;(4)3πi 2-;(5)πi 12(6)π8-】 3.9 计算积分 (1)π61i i 000(1)sin d ; (2)ch3d ; (3)(1)d z z z z z z z e z --??? 【答案 13(1)s i n 1c o s 1; (2)i ; (3)1c o s 1i [s i n (1)1]- -+-】

复变函数与积分变换试题及答案(10)

复变函数与积分变换试题与答案 一、填空(每题2分) 1.z=i 的三角表示式是: 。指数表示式是 。 2.|z -1|=4在复平面上表示的曲线是一个 。 3.38的全部单根是: , , 。 4.函数在f (z )=|z |2在z 平面上是否解析 。 5.设C 是正向圆周|z |=1,积分?c z dz 2 = 。 6.函数2 2 1 )1()(z e z f -=的弧立奇点是 和 ,其中 是极点, 是本性奇点。 7.级数 +++++n z z z 21在|z |<1时的和函数是 。 8.分式线性映射具有 , , 。 二、判断题(每题2分,请在题后括号里打“√”或“×”)。 1.零的辐角是零。 ( ) 2.i <2i . ( ) 3.如果f (z )在z 0连续,那么)(0z f '存在。 ( ) 4.如果)(0z f '存在,那f (z )在z 0解析。 ( ) 5.z e e -=2 ( ) 6.解析函数的导函数仍为解析函数 ( ) 7.幂级数的和函数在其收敛圆内解析。 ( ) 8.孤立奇点的留数在该奇点为无穷远点时其值为1--β

9.单位脉冲函数)(t δ与常数1构成一个傅氏变换对。 ( ) 10.共形映射具有保角性和伸缩率的不变性。 ( ) 三、计算题(每题6分) 1.dz z z c ?3sin (其中C 为正向圆周|z|=1) 2.?=?? ? ??-++4||3211z dz z z (积分沿正向圆周进行) 3.dz z ze z z ?=-2||21 (积分沿正向圆周进行) 4.求函数) 2()(1 )(10-+= z i z z f 在无穷远点处的留数 四、求解题(每题6分) 1. 求函数22),(y x y x u -=的共扼调和函数),(y x v 和由它们构成的解析函数 )(z f ,使f (0)=0。 2. 求函数2 ) 1(1 )(z z z f -= 在1|1|0<-

第三章复变函数的积分(答案)

复变函数练习题 第三章 复变函数的积分 系 专业 班 姓名 学号 §1 复变函数积分的概念 §4 原函数与不定积分 一.选择题 1.设C 为从原点沿2 y x =至1i +的弧段,则2()C x iy dz +=? [ ] (A ) 1566i - (B )1566i -+ (C )1566i -- (D )15 66 i + 2. 设C 是(1)z i t =+,t 从1到2的线段,则arg C zdz =? [ ] (A ) 4 π (B )4i π (C )(1)4i π+ (D )1i + 3.设C 是从0到12 i π+的直线段,则z C ze dz =? [ ] (A )12e π- (B )12e π-- (C )12ei π+ (D )12 ei π - 4.设()f z 在复平面处处解析且 ()2i i f z dz i ππ π-=?,则积分()i i f z dz ππ--=? [ ] (A )2i π (B )2i π- (C )0 (D )不能确定 二.填空题 1. 设C 为沿原点0z =到点1z i =+的直线段,则 2C zdz =? 2 。 2. 设C 为正向圆周|4|1z -=,则22 32 (4) C z z dz z -+=-? 10.i π 三.解答题 1.计算下列积分。 (1) 323262121 ()02i z i i z i i i e dz e e e ππππππ---= =-=?

(2) 2 2222sin 1cos2sin 222 4sin 2.244i i i i i i zdz z z z dz i e e e e i i i i ππππππππππ ππππ------?? ==- ????? --=-=-=+ ?? ? ?? (3) 1 1 0sin (sin cos )sin1cos1. z zdz z z z =-=-? (4) 20 222 cos sin 1sin sin().2 22 i i z z dz z i ππππ= =?=-? 2.计算积分 ||C z dz z ?的值,其中C 为正向圆周: (1)

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分? +i dz z 30 2 。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 () ()()?? +=??????+=+= +1 3 1 332 3 30 2 3313313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 33 2 3 2 33131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t i d t dz = () ()()33 1 31 2 33 2 3313313313-+=??????+=+= ?? +i it idt it dz z i ()()()33 3 3 1 02 30 2 30 2 33 13 3 133 133 13i i idt it dt t dz z i += - ++ = ++ = ∴ ?? ? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t i d t dz = ()()31 31 20 2 3131i it idt it dz z i =??? ???== ? ? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = () ()()33 1 31 2 32 3113131i i i t dt i t dz z i i -+=??????+=+= ?? + ()()33 3 3 32 2 30 2 13 13 113 13 1i i i i dz z dz z dz z i i i i += - ++ = + = ∴ ? ? ? ++ 2. 分别沿x y =与2 x y =算出积分()? ++i dz iy x 10 2 的值。 解:x y = ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=? ???? ???? ??++=++=+∴ ? ?+i i x i x i dx ix x i dz iy x i 213112131111 0231 210 2 2 x y = ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 0432 10 2 2131142311211i i x i x i dx x i x i dz iy x i 而()i i i i i 6 5 6121213131213 11+-=-++=??? ??+ +

复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉 (1)提到复变函数,首先需要了解复数的基本性质和四则运算规则。怎么样计算复数的平方根,极坐标与 xy 坐标的转换,复数的模之类的。这些在高中的时候基本上都会学过。 (2)复变函数自然是在复平面上来研究问题,此时数学分析里面的求导数之类的运算就会很自然的引入到 复平面里面,从而引出解析函数的定义。那么研究解析函数的性质就是关键所在。最关键的地方就是所谓 的Cauchy—Riemann 公式,这个是判断一个函数是否是解析函数的关键所在。 (3)明白解析函数的定义以及性质之后,就会把数学分析里面的曲线积分的概念引入复分析中,定义几乎 是一致的。在引入了闭曲线和曲线积分之后,就会有出现复分析中的重要的定理:Cauchy 积分公式。这 个是复分析的第一个重要定理。 (4)既然是解析函数,那么函数的定义域就是一个关键的问题。可以从整个定义域去考虑这个函数,也可 以从局部来研究这个函数。这个时候研究解析函数的奇点就是关键所在,奇点根据性质分成可去奇点,极 点,本性奇点三类,围绕这三类奇点,会有各自奇妙的定理。(5)复变函数中,留数定理是一个重要的定理,反映了曲线积分和

零点极点的性质。与之类似的幅角定理 也展示了类似的关系。 (6)除了积分,导数也是解析函数的一个研究方向。导数加上收敛的概念就可以引出Taylor 级数和 Laurent 级数的概念。除此之外,正规族里面有一个非常重要的定理,那就是Arzela 定理。 (7)以上都是从分析的角度来研究复分析,如果从几何的角度来说,最重要的定理莫过于Riemann 映照 定理。这个时候一般会介绍线性变换,就是Mobius 变换,把各种各样的区域映射成单位圆。研究 Mobius 变换的保角和交比之类的性质。 (8)椭圆函数,经典的双周期函数。这里有Weierstrass 理论,是研究Weierstrass 函数的,有经典的 微分方程,以及该函数的性质。 以上就是复分析或者复变函数的一些课程介绍,如果有遗漏或者疏忽的地方请大家指教。

复变函数习题答案第3章习题详解

第三章习题详解 1. 沿下列路线计算积分 ? +i dz z 30 2。 1) 自原点至i +3的直线段; 解:连接自原点至i +3的直线段的参数方程为:()t i z +=3 10≤≤t ()dt i dz +=3 ()()()?? +=??????+=+=+1 3 1 0332330 233 13313i t i dt t i dz z i 2) 自原点沿实轴至3,再由3铅直向上至i +3; 解:连接自原点沿实轴至3的参数方程为:t z = 10≤≤t dt dz = 33 033 2 3 2 33 131=??? ???== ? ? t dt t dz z 连接自3铅直向上至i +3的参数方程为:it z +=3 10≤≤t idt dz = ()()()33 1 031 02 33 233133 13313-+=??????+=+=?? +i it idt it dz z i ()()()3 3331 02 3 0230233 133********i i idt it dt t dz z i +=-++= ++= ∴??? + 3) 自原点沿虚轴至i ,再由i 沿水平方向向右至i +3。 解:连接自原点沿虚轴至i 的参数方程为:it z = 10≤≤t idt dz = ()()31 031 2 02 3 131i it idt it dz z i =??????==?? 连接自i 沿水平方向向右至i +3的参数方程为:i t z += 10≤≤t dt dz = ()()()33 1 031 02323113 131i i i t dt i t dz z i i -+=??????+=+=?? + ()()3 333320 230 213 13113131i i i i dz z dz z dz z i i i i +=-++= += ∴? ? ? ++ 2. 分别沿x y =与2 x y =算出积分 ()?++i dz iy x 10 2 的值。 解:x y =Θ ix x iy x +=+∴2 2 ()dx i dz +=∴1 ()()()()()??? ??++=????? ???? ??++=++=+∴ ?? +i i x i x i dx ix x i dz iy x i 213112131111 0231 0210 2 2 x y =Θ ()2 2 2 2 1x i ix x iy x +=+=+∴ ()dx x i dz 21+=∴ ()()()()()? ???? ??++=????? ???? ??++=++=+∴ +1 1 043210 2 2131142311211i i x i x i dx x i x i dz iy x i 而()i i i i i 656121213 1 3121311+-=-++=??? ??++

复变函数基本定义(2020年10月整理).pdf

定义 邻域-定义1.1点的邻域指: 聚点、内点、孤立点-定义1.2给定点集,及点。称为的聚点或极限点指:的任一邻域内都有的无穷多个点。若,但非的聚点,则称为的孤立点; 若,又非的聚点,则称为的外点。若有一邻域全含于内,则称为的内点。若的任一邻域内,同时有属于和不属于的点,则称为的边界点。边界点的全体称为的边界。记作。 开集、闭集-定义1.3若点集的每个聚点都属于,则称为闭集;若点集的点皆为内点,则称为开集。 有界性-定义1.4点集称为有界集,若使有。 区域-定义1.5非空开集称为区域,若是连通的,即:中任意两点可用全在中的折线连接。 闭域-定义1.6区域加上它的边界称为闭域,记为:。 约当曲线-定义1.7设是实变数的两个实函数,在闭区间上连续,则由方程 所决定的点集,称为复平面上的一条连续曲线。上式称为的参数方程分别称为的起点和终点。

单连通区域-定义1.8设为复平面上的区域,若在内无论怎样划简单闭曲线,其内部仍全含于,则称为单连通区域;非单连通区域称为多连通区域。 复变函数-定义1.9设为一复数集,若对内每一复数,有唯一确定的复数与之对应,则称在上确定了一个单值函数。若对内每一复数,有几个或无穷多个与之对应,则称在上确定了一个多值函数。 复变函数的极限-定义1.10设,为的聚点。若存在一复数,使,,只要,就有 则称沿于有极限,并记为。 连续函数-定义1.11设子点集上有定义,为的聚点,且。若 即对任给的,,只要,,就有 则称沿于连续。 复球面复平面加上点后称为扩充复平面,与它对应的就是整个球面,称为复球面。 无穷远点考虑平面上一个以原点为心的圆周,在球面上对应的也是一个圆周。当圆周的半径越大时,圆周就越趋北极。北极可以看成是与平面上的一个模为无穷大的假想点相对应,这个假想点称为无穷远点,并记为。 主要定理 约当定理-定理 1.1任一简单闭曲线将平面唯一地划分成三个点集且满足

复变函数(第四版)课后习题答案

习题一解答 1.求下列复数的实部与虚部、共轭复数、模与辐角。 (3)(3+ 4i )(2 5i ) ; (4)i 8 4i 21 + i 1 3+ 2i 1 3i 1 i (1) ; (2) ; i 2i 3+ 2i = (3+ 2i )(3 2i ) = 1 (3 2i ) 1 3 2i 13 解 (1) 所以 ? 1 ?3+ 2i ↑ 13 ? = ← 3, Im ?? ←= 2 1 ? Re ? , 13 ?3+ 2i ↑ 2 2 1 3+ 2i = 1 1 3+ 2i = ?? 3 ? +?? 3 ? 13 (3+ 2i ), , 13 13 ? 13 ? = 13 Arg ? 1 3+ 2i ? ? = arg ? 1 3+ 2i ? ? + 2k π 2 = arctan + 2k ,k = 0,±1,±2," 3 1 3i i 3i (1+ i ) = i 1 ( 3+ 3i )= 3 5 (2) 1 i = i ( i ) (1 i )(1+ i) i, i 2 2 2 所以 ?1 3i ? 3 , Re ? ?i 1 i ↑←= 2 ?1 3i ? ←= 5 Im ? ?i 1 i ↑ 2 2 2 1 3i = + i 5, 3 1 3i 1 i = ? ? +? ? = 34, 3 5 i 1 i ? 1 3i 2 2 i 2 2 2 1 3i ? + 2k π Arg = arg i 1 i ? i 1 i ? = arctan 5 + 2k π, k = 0,±1,±2,". 3 (3) (3+ 4i )(2 5i ) = (3+ 4i )(2 5i )( 2i ) = (26 7i )( 2i ) 2i (2i )( 2i ) 4 = 7 26i = 7 13i 2 2 所以 ?(3+ 4i )(2 5i )? Re ? ←= 7 , ? 2i ↑ 2 ?(3+ 4i )(2 5i )? Im ? ←↑= 13, ? 2i

复变函数习题解答(第4章)

p178第四章习题(一)[ 3, 4, 6, 7(4), 10, 12, 13, 14 ] 3. 如果lim n (c n + 1/c n )存在( ),试证下列三个幂级数有相同的收敛半径: (1) n 0 c n z n ;(2) n 0 (c n /(n + 1)) z n + 1;(3) n 0 (n c n ) z n – 1. 【解】事实上,我们只要证明下面的命题: 若 n 0 c n z n 的收敛半径为R ,则 n 0 (n c n ) z n – 1的收敛半径也为R . 从这个命题,就可以得到幂级数(1)的收敛半径与幂级数(2)的收敛半径相同,幂级数(3)的收敛半径与幂级数(1)的收敛半径相同. step 1. 当R 是正实数或+时.若| z | < R ,则存在r 使得| z | < r < R . 因 n 0 c n z n 的收敛半径为R ,根据收敛半径定义及Abel 定理, 知 n 0 | c n r n |收敛. 因| (n c n ) z n – 1 | = ( | n /r | · ( | z | /r )n – 1 ) · | c n r n |; 而lim n ( | n /r | · ( | z | /r )n – 1 ) = 0,故M > 0使得0 | n /r | · ( | z | /r )n – 1 M . 所以| (n c n ) z n – 1 | M · | c n r n |. 由Weierstrass 判别法知 n 0 | (n c n ) z n – 1 |收敛,所以 n 0 (n c n ) z n – 1收敛. 因此 n 0 (n c n ) z n – 1的收敛半径R 1 R . 特别地,若 n 0 c n z n 的收敛半径为+,则 n 0 (n c n ) z n – 1的收敛半径也为 +. step 2. 当R 是非负实数时.对任意的满足R < r < | z |的实数r , 根据收敛半径定义, n 0 c n r n 发散.从而 n 0 | c n r n |发散. 当n > r + 1时,| c n r n | = | r /n | · | (n c n ) r n – 1 | | (n c n ) r n – 1 |; 因此, n 0 | (n c n ) r n – 1 |发散. 由Abel 定理, n 0 (n c n ) z n – 1的收敛半径R 1 r . 由r 的任意性,得R 1 R . 特别地,若 n 0 c n z n 的收敛半径为0,则 n 0 (n c n ) z n – 1的收敛半径也为0. step 3. 综合step 1和step 2的结论,当R 为正实数时,也有R 1 = R . 即若 n 0 c n z n 的收敛半径为R ,则 n 0 (n c n ) z n – 1的收敛半径也为R . [这个证明中,我们没有用到条件lim n (c n + 1/c n )存在( ),说明该条件是 可以去掉的.因为一般的幂级数并不一定满足这个条件,因此去掉这个条件来证明结论是有意义的.] 4. 设 n 0 c n z n 的收敛半径为R (0 < R < +),并且在收敛圆周上一点绝对收 敛,试证明这个级数对所有的点z : | z | R 为绝对收敛且一致收敛. 【解】设z 0在收敛圆周上,且 n 0 | c n z 0 n |绝对收敛. 那么对于点z : | z | R ,都有| z | | z 0 |. 因此级数 n 0 | c n z n |收敛,即 n 0 c n z n 绝对收敛. 而由Weierstrass 判别法知知级数 n 0 c n z n 对所有的在闭圆| z | R 上一致收 敛. 6. 写出e z ln(1 + z )的幂级数展式至含z 5项为止,其中ln(1 + z )|z = 0 = 0. 【解】在割去射线L = { z | Im(z ) = 0,Re(z ) 1}的z 平面上,能分出 Ln(1 + z )的无穷多个单值解析分支(Ln(1 + z ))k = ln| (1 + z ) | + i arg(1 + z ) + 2k i ,k .

复变函数习题解答(第3章)

p141第三章习题(一)[ 5, 7, 13, 14, 15, 17, 18 ] 5. 由积分?C1/(z + 2) dz之值证明?[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = 0,其中C取单位圆周| z | = 1. 【解】因为1/(z + 2)在圆| z | < 3/2内解析,故?C1/(z + 2) dz = 0. 设C : z(θ)= e iθ,θ∈[0, 2π]. 则?C1/(z + 2) dz = ?C1/(z + 2) dz = ?[0, 2π] i e iθ/(e iθ + 2) dθ = ?[0, 2π] i (cosθ + i sinθ)/(cosθ + i sinθ + 2) dθ = ?[0, 2π] (- 2 sinθ + i (1 + 2cosθ ))/(5 + 4cosθ) dθ = ?[0, 2π] (- 2 sinθ)/(5 + 4cosθ) dθ+ i ?[0, 2π] (1 + 2cosθ )/(5 + 4cosθ) dθ. 所以?[0, 2π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0. 因(1 + 2cosθ ))/(5 + 4cosθ)以2π为周期,故?[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0;因(1 + 2cosθ ))/(5 + 4cosθ)为偶函数,故 ?[0, π] (1 + 2 cosθ)/(5 + 4cosθ) dθ = (1/2) ?[-π, π] (1 + 2cosθ )/(5 + 4cosθ) dθ= 0. 7. (分部积分法)设函数f(z), g(z)在单连通区域D内解析,α, β是D内两点,试证 ?[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -?[α, β] g(z) f’(z)dz. 【解】因f(z), g(z)区域D内解析,故f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’都在D 内解析.因区域D是单连通的,所以f(z)g’(z),g(z) f’(z),以及( f(z)g(z))’的积分都与路径无关. ?[α, β] f(z)g’(z)dz + ?[α, β] g(z) f’(z)dz = ?[α, β] ( f(z)g’(z)dz + g(z) f’(z))dz = ?[α, β] ( f(z)g(z))’dz. 而f(z)g(z)是( f(z)g(z))’在单连通区域D内的一个原函数,所以 ?[α, β] ( f(z)g(z))’dz = f(β)g(β) -f(α)g(α) = ( f(z)g(z))|[α, β]. 因此有?[α, β] f(z)g’(z)dz + ?[α, β] g(z) f’(z)dz = ( f(z)g(z))|[α, β], 即?[α, β] f(z)g’(z)dz = ( f(z)g(z))|[α, β] -?[α, β] g(z) f’(z)dz. 13. 设C : z = z(t) (α≤t≤β)为区域D内的光滑曲线,f(z)于区域D内单叶解析且f’(z) ≠ 0,w = f(z)将曲线C映成曲线Γ,求证Γ亦为光滑曲线. 【解】分两种情况讨论. (1) 当z(α) ≠z(β)时,C不是闭曲线.此时z(t)是[α, β]到D内的单射,z(t)∈C1[α, β],且在[α, β]上,| z’(t) |≠ 0. 因Γ是曲线C在映射f下的象,所以Γ可表示为w = f(z(t)) (α≤t≤β). ?t∈[α, β],z(t)∈D.因f于区域D内解析,故f在z(t)处解析, 因此f(z(t))在t处可导,且导数为f’(z(t))z’(t). 显然,f’(z(t))z’(t)在[α, β]上是连续的,所以f(z(t))∈C1[α, β]. 因为f(z)于区域D内是单叶的,即f(z)是区域D到 的单射,而z(t)是[α, β]到D 内的单射,故f(z(t))是[α, β]到 内的单射. 因在D内有f’(z) ≠ 0,故在[α, β]上,| f’(z(t))z’(t) |= | f’(z(t)) | · |z’(t) |≠ 0. 所以,Γ是光滑曲线. (2) 当z(α) = z(β)时,C是闭曲线.此时z(t)∈C1[α, β];在[α, β]上,有| z’(t) |≠ 0;z’(α) = z’(β);?t1∈[α, β],?t2∈(α, β),若t1 ≠t2,则z(t1) ≠z(t2).

复变函数考试试卷10

10 一、 填空(每题2分,共20分) ⒈函数f(z)在z=z 0处解析是指 。 ⒉开集要在满足条件 下才能称为区域。 ⒊4 π - =z 为函数 z z cos sin 1 +奇点中的_____________。 ⒋Ln )2(-=______________________________________。 ⒌方程2z 4 +z 3 +z 2+30=0在单位圆内有_________个根。 ⒍ ?==-22)1(1 z dz z _____________。 7. 0=z 为2 1 )(-= z z f 的 阶零点。 8. 在点z 不满足柯西黎曼条件的复变函数一定在z 。 9. )(2121z z z z z z ≠-=-表示的图形________________________________。 10. 分式线性变换i z i z w +-= 可以把实轴变为 __________________________。 二、选择题(每题3分,共15分) ⒈z=z 0是集E 的聚点是指_____。 A :Z 0的任意邻域中均有集E 的无穷多点 B :Z 0的某个邻域中有集E 的无穷多点 C :Z 0的任意邻域至少有集E 中的一点 ⒉Z=Z 0是集E 的内点是指______。 A :Z 0的某个邻域中全是E 的点 B :Z 0的某个邻域中有E 中的无穷多点 C :Z 0的任意邻域中全是E 的点 ⒊E 的聚点_______E 的内点。 A :一定是 B : 一定不是 C : 不一定是 ⒋E 的内点_______E 的聚点。 A :一定是 B : 一定不是 C : 不一定是 ⒌区域 D 的边界点_______区域。 A :属于 B :不属于 C :不一定属于 三、计算下列积分(每题6分,共30分) ⒈? +c i y )(dz , 其中C 为从0到1+i 的直线段。 ⒉?c z e z z sin 4 dz, 其中C 为1-z =1。 ⒊? c z 34dz, 其中C 为i 到3+i 的直线段。 ⒋ ? -c z z ) 1(3 sin dz, 其中C 为1-z =1。 5.计算 z z d z z ?=+2cos sin 1 π 四、按要求完成下列各题(每题5分,共20分)

复变函数论 第四章 复级数

第四章 复级数 §1.级数的基本性质 教学目的与要求:了解复数项级数收敛、发散及绝对收敛一致收敛等概念,掌握解析函数项级数的性质. 重点: 解析函数项级数. 难点:一致收敛的函数项级数;解析函数项级数. 课时:2学时 1.复数项级数 定义4.1 复数项级数就是 其中为复数 定义4.2 对于复数项级数,设 若存在,则称级数收敛,否则为发散. 据此定义,我们立即推出:若级数收敛,则 其次,由复数的性质易于推得 定理4.1 设 其中均为实数,则级数收敛的充要条件为基数与均收敛,复数项级数具有与实数项级数完全相同的性质,不再一一给出. 定理4.2(柯西收敛准则)级数收敛的充要条件是,使及,均有定义4.3 若级数收敛,则称级数为绝对收敛. 由关系式及 及定理4.1即可推得. 定理4.3 级数绝对收敛的充要条件为:级数及绝对收敛. 再由定理4.2可知:绝对收敛级数必为.收敛级数. 例1.对于级数当时,由于 , 而当时,,于是 因此级数收敛且有, 显然,当时,级数亦为绝对收敛的级数. 2.复函数项级数 定义4.4设函数在复平面点集上有定义,则称级数 为定义在上的复函数项级数. 定义4.5 设函数在上有定义,如果,级数均收敛于,则称级数收敛于,

或者说级数和函数记作 定义4.6 如果,使得当时,对任一,均有 则称级数在一致收敛于. 与定理4.2类似地我们有 定理4.4 级数在上一致收敛的充要条件是: ,使当时,对任一及均有 由此我们即得一种常用的一致收敛的判别法: 定理4.5 魏尔斯特拉斯-判别法设在点集上有定义 为一收敛正项级数,若在上成立则级数 在上一致收敛于,则在上一致收敛. 与实数项级数一样,不难证明以下定理: 定理4.6 设在复平面点集上连续,级数在上一致收敛于,则在上连续. 定理4.7 设在简单曲线上连续,级数在上一致收敛于,则. 对于复函数项级数的逐项求导问题,我们考虑解析函数项级数,首先,引入一个新概念. 定义4.7 设函数在区域内解析,如果级数在内任一有界闭区域上一致收敛于函数,则称级数在内闭一致收敛于. 由此,我们有下列重要的魏尔斯特拉斯定理. 定理设函数在区域内解析,级数在内中闭一致收敛于函数,则在内解析,且在内成立 证明: ,取,使得.在内任作一条简单闭曲线,根据定理及柯西定理推得.因而由莫勒拉定理知在内解析,再由的任意性即得在内解析. 其次,设的边界,由已知条件得在上一致收敛于,从而 在上一致收敛于,根据定理,我们有 即 于是定理结论成立. 作业:第178页 1. §2幂级数 教学目的与要求:了解幂级数收敛圆的概念,掌握简单的幂级数收敛半径的求法.掌握幂级数在收敛圆内一些基本性质及幂级数在收敛圆周上的性质. 重点: 幂级数收敛半径的求法; 幂级数在收敛圆内一些基本性质. 难点:幂级数在收敛圆周上的性质.

《复变函数论》第四章-22页文档资料

第四章 解析函数的幂级数表示方法 第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是: 111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数, ,Im ,Re n n n n b z a z ==一般简单记为}{n z 。按照|}{|n z 是有界或无界序列, 我们也称}{n z 为有界或无界序列。 设0z 是一个复常数。如果任给0ε>,可以找到一个正数N ,使得当 n>N 时 ε<-||0z z n , 那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作 0lim z z n n =+∞ →。 如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。 令0z a ib =+,其中a 和b 是实数。由不等式 0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及 容易看出,0lim z z n n =+∞ →等价于下列两极限式: ,lim ,lim b b a a n n n n ==+∞ →+∞ → 因此,有下面的注解: 注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。 注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于 0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个

邻域,相应地可以找到一个正整数N ,使得当n N >时,n z 在这个邻域内。 注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。 定义4.1复数项级数就是 12......n z z z ++++ 或记为1 n n z +∞ =∑,或n z ∑,其中n z 是复数。定义其部分和序列为: 12...n n z z z σ=+++ 如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是 σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作 1 n n z σ+∞ ==∑, 如果序列{}n σ发散,那么我们说级数n z ∑发散。 注1、对于一个复数序列{}n z ,我们可以作一个复数项级数如下 121321()()...()...n n z z z z z z z -+-+-++-+ 则序列{}n z 的敛散性和此级数的敛散性相同。 注2级数 n z ∑收敛于σ的N ε-定义可以叙述为: 0,0,,N n N ε?>?>>使得当时有 1 ||n k k z σε=-<∑, 注3如果级数n z ∑收敛,那么

复变函数论文完整版

摘要:在自动控制原理中,应用比较多的一种数学模型是频率特性,频率特性是系统频率响应与正弦输入信号之间的关系,频率特性虽然是一种稳态特性,但它不仅反映系统稳态性能,而且还可以用来研究系统稳态性和暂态性能。在实际应用中,求解正弦信号稳态响应时,用解析方法求解往往十分复杂,对于高阶系统就更加困难,因此常常在频域分析中把输出的稳态响应和输入的正弦信号用复数表示,可化为实频和虚频特性并且利用图解分析法,从复数的角度更容易理解和计算。 关键词:复数,时域,频域,频率特性,自动控制,实频,虚频,稳态特性

在自动控制中,分析系统首先要建立数学模型,然后采用各种方法对系统进行分析,由于多数控制系统是以时间作为独立变量,所以往往用时间域的分析方法,即用解析方法求解系统的稳态响应,虽然用解析的方法不难求出线性定常量一、二阶系统的稳态响应,但是如果遇到高阶系统用求解的方法就会十分复杂。 随着科学和技术的发展,复数理论已越来越显示出它的作用,它不仅对于数学本身的发展有着极其重要的意义,而且在解决系统分析中,系统常常通过从实域变换到频域中研究频率特性起到重要作用。在复变函数中,复数是指能写成如下形式的数a+bi,这里a和b是实数,i是虚数单位,复数有多种表示方法,诸如向量表示,三角表示,指数表示等,欧拉在1748年发现了关系式后,并且第一次用i来表示-1的平方根,首创了用符号i作为虚数的单位,虚数实际上不是想象出来的,而它是确实存在的,德国数学家在1806年公布了虚数的图象表示法,即所有实数都能用一条数轴表示,同样虚数也能用一个平面上的点来表示,这就是复数的复平面特性,在直角坐标系中,横轴上取对应实数a的点A,纵轴上取对应实数b的点B,并且这两点引平行于坐标轴的直线,它们的交点c就表示复数a+bi ,复数z=a+bi(a,b=R)与有序实数对(a,b)是一一对应的关系,这是因为对于任何一个复数z=a+bi由复数相等定义可知,可以有一个有序实数对(a,b)唯一确定,如z=3+2i可以由有序实数对(3,2)确定,又如z=-2+i可以由有序实数对(-2,1)来确定,又因为有序实

《复变函数》考试试题与答案(十)

《复变函数》考试试题(十) 一、判断题(40分): 1、若函数()f z 在0z 解析,则()f z 在0z 的某个邻域内可导.( ) 2、如果0z 是()f z 的本性奇点,则0 lim ()z z f z →一定不存在.( ) 3、若函数()(,)(,)f z u x y iv x y =+在D 内连续,则(,)u x y 与(,)v x y 都在D 内连续.( ) 4、cos z 与sin z 在复平面内有界.( ) 5、若0z 是()f z 的m 阶零点,则0z 是1/()f z 的m 阶极点.( ) 6、若()f z 在0z 处满足柯西-黎曼条件,则()f z 在0z 解析.( ) 7、若0 lim ()z z f z →存在且有限,则0z 是函数的可去奇点.( ) 8、若()f z 在单连通区域D 内解析,则对D 内任一简单闭曲线C 都有()0C f x dz =?.( ) 9、若函数()f z 是单连通区域D 内的解析函数,则它在D 内有任意阶导数.( ) 10、若函数()f z 在区域D 内解析,且在D 内某个圆内恒为常数,则在区域D 内恒等于常数.( ) 二、填空题(20分): 1、函数z e 的周期为_________________. 2、幂级数0n n nz +∞=∑的和函数为_________________. 3、设21()1 f z z =+,则()f z 的定义域为_________________. 4、0n n nz +∞=∑的收敛半径为_________________. 5、Re (,0)z n e s z =_________________. 三、计算题(40分): 1、2.(9)() z z dz z z i -+? 2、求2 Re (,).1iz e s i z -+

相关主题
文本预览
相关文档 最新文档