当前位置:文档之家› 计算方法报告(一)三点高斯公式

计算方法报告(一)三点高斯公式

计算方法报告(一)三点高斯公式
计算方法报告(一)三点高斯公式

计算方法报告(一)

学号:916113370209 姓名:毛晨曦

一、题目

写出一个如下的计算 f x dx b

a 的子程序:先将区间[a,b]细分成n 个相等的子区间,然后,使用经过修改适用于n 个不同子区间的三点高斯公式,并用下面的题目测试你所编的程序.

(1) x 5dx ,n =1,2,10b

a . (2) sin x

b a dx ,n =1,2,3,4. 二、算法设计

首先对三点高斯公式进行推导

设三点高斯公式 f x dx ≈A 0f x 0 +A 1f (x 1)1

?1+A 2f (x 2),其中x 0≠x 1≠x 2.则它应具有5次代数精度(n=2),故对f x =1,x ,x 2,x 3,x 4,x 5能分别精确成立,于是

1dx =2=A 0+A 1+A 2

1

?1 xdx =0=A 0x 0+A 1x 1+A 2x 21?1 x 2dx =2=A 0x 0

2+A 1x 12+A 2x 22

1?1 x 3dx =0=A 0x 03+A 1x 13+A 2x 23

1

?1 x 4dx =2=A 0x 04+A 1x 14+A 2x 24

1

?1 x 5dx =0=A 0x 05+A 1x 15+A 2x 2

5

1

?1

并且做区间变换x =a +b 2

+

b?a 2

t ,t ∈[?1,1].

得到 f x dx =

b ?a 2 89f a +b 2 +59f a +b 2?b ?a 2 155 +59f a +b 2+b ?a 2 15

5

b

a 由于区间分为n 等分,a k +1=

b k ,b k +1=b k +b?a n

,a 0=a ,b 0=a +

b?a n

.以此作为每个

子区间的上下限a ,b 并将子区间的值求和.

数据流向:

符号引用:

三、源程序

#include

#include

using namespace std;

double fx5(double x)

{

double y;

y = x * x*x*x*x;//需要积分的函数

return y;

}

double fsin(double x)

{

double y;

y = sin(x);

return y;

}

double msin(double x, double y)//三点高斯公式计算子区间积分

{

double e, w, q, p, a, r;

e = (x + y) / 2;

w = (y - x) / 2;

q = fsin(e - sqrt(0.6)*w);

p = fsin(e);

a = fsin(e + sqrt(0.6)*w);

r = w * (0.5555555*q + 0.8888888*p + 0.5555555*a);

return r;

}

double mx5(double x, double y)

{

double e, w, q, p, a, r;

e = (x + y) / 2;

w = (y - x) / 2;

q = fx5(e - sqrt(0.6)*w);//三个高斯点

p = fx5(e);

a = fx5(e + sqrt(0.6)*w);

r = w * (0.5555556*q + 0.8888889*p + 0.5555556*a);

return r;

}

double jx5(int n, double a, double b)

{

int i = 1;

double c, v, t;

for (c = a, v = a + (b - a) / n, t = 0; i <= n; i++)//循环把所有区间积分值相加{

t += mx5(c, v);//积分相加

c += (b - a) / n;//上下限改变

v += (b - a) / n;

}

return t;

}

double jsin(int n, double a, double b)

{

int i = 1;

double c, v, t;

for (c = a, v = a + (b - a) / n, t = 0; i <= n; i++)

{

t += msin(c, v);

c += (b - a) / n;

v += (b - a) / n;

}

return t;

}

int main()

{

int n, c;

double a, b;

cout << "输入1选择f(x)=x^5;输入2选择f(x)=sinx" << endl;

cin >> c;

switch (c)

{

case 1:

while (1) {

cout << "输入n的值" << endl;

cin >> n;

cout << "输入区间下限" << endl;

cin >> a;

cout << "输入区间上限" << endl; cin >> b; cout << "积分的值为:" << jx5(n, a, b) << endl; } break; case 2: while (1) { cout << "输入n 的值" << endl; cin >> n;

cout << "输入区间下限" << endl;

cin >> a;

cout << "输入区间上限" << endl; cin >> b; cout << "积分的值为:" << jsin(n, a, b) << endl; } break; }

cout << "这是毛晨曦的"; return 0;

}

四、实验结果及分析

计算 f (x )1

0=x 5dx ,准确值为1

6

,分别取n 为1,5,10计算,在精度范围内所得值良好。

计算 f (x )1

0=sin x dx ,准确值为0.4596977,分别取n 为1,2,3,4进行计算,在精度范围内所得值良好。

以上结果表明三点高斯公式精度可以满足需求,如果需要更高精度可以继续提高n 的数目划分更多的子区间,或者采用更高级的高斯公式。

《计算方法》课内实验报告

《计算方法》实验报告 姓名: 班级: 学号: 实验日期: 2011年10月26日

一、实验题目: 数值积分 二、实验目的: 1.熟悉matlab 编写及运行数值计算程序的方法。 2.进一步理解数值积分的基础理论。 3.进一步掌握应用不同的数值积分方法求解给定的积分并给出数据结果及误差分析。 三、实验内容: 1.分别用复合梯形求积公式及复合辛普森求积公式计算积分xdx x ln 10 ? , 要求计算精度达到410-,给出计算结果并比较两种方法的计算节点数. 2.用龙贝格求积方法计算积分dx x x ?+3 021,使误差不超过510-. 3.用3=n 的高斯-勒让德公式计算积分?3 1 sin x e x ,给出计算结果. 4.用辛普森公式(取2==M N ) 计算二重积分.5 .00 5 .00 dydx e x y ? ? - 四、实验结果: 1.(1)复合梯形法: 将区间[a,b]划分为n 等份,分点n k n a b h kh a x k ,2,1,0,,=-=+=在每个区间[1,+k k x x ](k=0,1,2,···n-1)上采用梯形公式,则得 )()]()([2)()(1 11 1 f R x f x f h dx x f dx x f I n n k k k b a n k x x k k ++===∑?∑? -=+-=+ 故)]()(2)([21 1 b f x f a f h T n k k n ++=∑-=称为复合梯形公式 计算步长和划分的区间 Eps=1E-4 h1=sqrt(Eps/abs(-(1-0)/12*1/(2+1))) h1 =0.0600 N1=ceil(1/h1) N1 =17 用复合梯形需要计算17个结点。 复合梯形: function T=trap(f,a,b,n) h=(b-a)/n;

高斯投影坐标正反算VB程序

高斯投影坐标正反算 V B程序 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

高斯投影坐标正反算 学院: 班级: 学号: 姓名: 课程名称: 指导老师:

实验目的: 1.了解高斯投影坐标正反算的基本思想; 2.学会编写高斯正反算程序,加深了解。 实验原理: 高斯投影正算公式中应满足的三个条件: 1. 中央子午线投影后为直线; 2. 中央子午线投影后长度不变; 3. 投影具有正形性质,即正形投影条件。 高斯投影反算公式中应满足的三个条件: 1. x坐标轴投影成中央子午线,是投影的对称轴; 2. x轴上的长度投影保持不变; 3. 正形投影条件,即高斯面上的角度投影到椭球面上后角度没有 变形,仍然相等。 操作工具: 计算机中的 代码: Dim a As Double, b As Double, x As Double, y As Double, y_#

Dim l_ As Double, b_ As Double, a0#, a2#, a4#, a6#, a8#, m2#, m4#, m6#, m8#, m0#, l0#, e#, e1# Dim deg1 As Double, min1 As Double, sec1 As Double, deg2 As Double, min2 As Double, sec2 As Double Private Sub Command1_Click() Dim x_ As Double, t#, eta#, N#, W#, k1#, k2#, ik1%, ik2%, dh% deg1 = Val min1 = Val sec1 = Val deg2 = Val min2 = Val sec2 = Val l_ = (deg1 * 3600 + min1 * 60 + sec1) / 206265 b_ = (deg2 * 3600 + min2 * 60 + sec2) / 206265 dh = Val k1 = ((l_ * 180 / + 3) / 6) k2 = (l_ * 180 / / 3) ik1 = Round(k1, 0) ik2 = Round(k2, 0) If dh = 6 Then l0 = 6 * ik1 - 3 Else

太原理工大学数值计算方法实验报告

本科实验报告 课程名称:计算机数值方法 实验项目:方程求根、线性方程组的直接解 法、线性方程组的迭代解法、代数插值和最 小二乘拟合多项式 实验地点:行勉楼 专业班级: ******** 学号: ********* 学生姓名: ******** 指导教师:李誌,崔冬华 2016年 4 月 8 日

y = x*x*x + 4 * x*x - 10; return y; } float Calculate(float a,float b) { c = (a + b) / 2; n++; if (GetY(c) == 0 || ((b - a) / 2) < 0.000005) { cout << c <<"为方程的解"<< endl; return 0; } if (GetY(a)*GetY(c) < 0) { return Calculate(a,c); } if (GetY(c)*GetY(b)< 0) { return Calculate(c,b); } } }; int main() { cout << "方程组为:f(x)=x^3+4x^2-10=0" << endl; float a, b; Text text; text.Getab(); a = text.a; b = text.b; text.Calculate(a, b); return 0; } 2.割线法: // 方程求根(割线法).cpp : 定义控制台应用程序的入口点。// #include "stdafx.h" #include"iostream"

心得体会 使用不同的方法,可以不同程度的求得方程的解,通过二分法计算的程序实现更加了解二分法的特点,二分法过程简单,程序容易实现,但该方法收敛比较慢一般用于求根的初始近似值,不同的方法速度不同。面对一个复杂的问题,要学会简化处理步骤,分步骤一点一点的循序处理,只有这样,才能高效的解决一个复杂问题。

高斯投影正反算公式 新

高斯投影坐标正反算 一、相关概念 大地坐标系由大地基准面和地图投影确定,由地图投影到特定椭圆柱面后在南北两极剪开展开而成,是对地球表面的逼近,各国或地区有各自的大地基准面,我国目前主要采用的基准面为:基准面,为GPS基准面,17届国际大地测量协会上推荐,椭圆柱长半轴a=6378137m,短半轴b=; 2.西安80坐标系,1975年国际大地测量协会上推荐,椭圆柱长半轴a=6378140m,短半轴b=; 3.北京54坐标系,参照前苏联克拉索夫斯基椭球体建立,椭圆柱长半轴a=6378245m, 短半轴b=; 通常所说的高斯投影有三种,即投影后: a)角度不变(正角投影),投影后经线和纬线仍然垂直; b)长度不变; c)面积不变; 大地坐标一般采用高斯正角投影,即在地球球心放一点光源,地图投影到过与中央经线相切的椭圆柱面上而成;可分带投影,按中央经线经度值分带,有每6度一带或每3度一带两种(起始带中央经线经度为均为3度,即:6度带1带位置0-6度,3度带1带位置度),即所谓的高斯-克吕格投影。

图表11高斯投影和分带 地球某点经度(L)为过该点和地球自转轴的半圆与子午线所在半圆夹角,东半球为东经,西半球为西经;地球某点纬度(B)为所在水平面法线与赤道圆面的线面角。 正算是已知大地坐标(L,B),求解高斯平面坐标(X,Y),为确保Y值为正,Y增加500公里;反算则是由高斯平面坐标(X,Y)求解大地坐标(L,B)。 二、计算模型: 地球椭球面由椭圆绕地球自转轴旋转180度而成。 图表 1 椭圆 椭圆长半轴a,椭圆短半轴b, 椭圆方程:

(1) 图表2椭球面 椭球面方程: y2 a2+ x2 b2 + z2 a2 =1 /*************************************** 与网上充斥的将函数关系先展开为泰勒级数,再依据投影规则确定各参数不同,本文直接依据空间立体三角函数关系得出结果。 *****/ (一)正算 由图表1,

高斯投影坐标正反算编程报告

高斯投影坐标正反算编程报告 1. 编程思想 进行高斯投影坐标正反算的编程需要牵涉到大量的公式,为了使程序条理更清楚,各块的数据复用性更强,这里采取了结构化的编程思想。 程序由四大块组成。 GeodesyHomework 、cpp 文件用于存放main()函数,就是整个程序的入口。通过结构化的编程尽力使main()函数变得简单。 MyFunction 、h 与MyFunction 、cpp 用于存放计算过程中进行角度弧度换算时所要用到的一些自定的转换函数。 Zhengsuan 、h 与Zhengsuan 、cpp 用于存放Zhengsuan 类,在Zhengsuan 类中声明了高斯投影坐标正算所要用到的所有变量,在类的构造函数中进行成员变量的初始化及正算计算。通过get 函数获得相应的正算结果。 Fansuan 、h 与Fansuan 、cpp 用于存放Fansuan 类,类似于Zhengsuan 类,Fansuan 类中声明了高斯投影坐标反算所要用到的所有变量,在类的构造函数中进行成员变量的初始化及反算计算。通过get 函数获得相应的反算结果。 2. 计算模型 高斯投影正算公式 6 4256 4 42234 22)5861(cos sin 720)495(cos 24cos sin 2l t t B B N l t B simB N l B B N X x ''+-''+ ''++-''+''?''+=ρηηρρ 5 2224255 3 2233 )5814185(cos 120)1(cos 6cos l t t t B N l t B N l B N y ''-++-''+ ''+-''+''?''=ηηρηρρ 高斯投影反算公式 () () ()( ) 2 22425 52 23 36 4254 222232 8624285cos 12021cos 6cos 459061720935242f f f f f f f f f f f f f f f f f f f f f f f f f f f f f t t t B N y t B N y B N y l y t t y N M t y t t N M t y N M t B B ηηηηη+++++++-=++- -+++ -= 3. 程序框图

c 计算器实验报告

简单计算器 姓名: 周吉祥 实验目的:模仿日常生活中所用的计算器,自行设计一个简单的计算器程序,实现简单的计算功能。 实验内容: (1)体系设计: 程序是一个简单的计算器,能正确输入数据,能实现加、减、乘、除等算术运算,运算结果能正确显示,可以清楚数据等。 (2)设计思路: 1)先在Visual C++ 6.0中建立一个MFC工程文件,名为 calculator. 2)在对话框中添加适当的编辑框、按钮、静态文件、复选框和单 选框 3)设计按钮,并修改其相应的ID与Caption. 4)选择和设置各控件的单击鼠标事件。 5)为编辑框添加double类型的关联变量m_edit1. 6)在calculatorDlg.h中添加math.h头文件,然后添加public成 员。 7)打开calculatorDlg.cpp文件,在构造函数中,进行成员初始 化和完善各控件的响应函数代码。 (3)程序清单:

●添加的public成员: double tempvalue; //存储中间变量 double result; //存储显示结果的值 int sort; //判断后面是何种运算:1.加法2.减法3. 乘法 4.除法 int append; //判断后面是否添加数字 ●成员初始化: CCalculatorDlg::CCalculatorDlg(CWnd* pParent /*=NULL*/) : CDialog(CCalculatorDlg::IDD, pParent) { //{{AFX_DATA_INIT(CCalculatorDlg) m_edit1 = 0.0; //}}AFX_DATA_INIT // Note that LoadIcon does not require a subsequent DestroyIcon in Win32 m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME); tempvalue=0; result=0; sort=0; append=0; }

高斯投影坐标正反算VB程序

高斯投影坐标正反算 学院: 班级: 学号: 姓名: 课程名称: 指导老师:

实验目的: 1.了解高斯投影坐标正反算的基本思想; 2.学会编写高斯正反算程序,加深了解。 实验原理: 高斯投影正算公式中应满足的三个条件: 1. 中央子午线投影后为直线; 2. 中央子午线投影后长度不变; 3. 投影具有正形性质,即正形投影条件。 高斯投影反算公式中应满足的三个条件: 1. x坐标轴投影成中央子午线,是投影的对称轴; 2. x轴上的长度投影保持不变; 3. 正形投影条件,即高斯面上的角度投影到椭球面上后角度没 有变形,仍然相等。 操作工具: 计算机中的VB6.0 代码: Dim a As Double, b As Double, x As Double, y As Double, y_# Dim l_ As Double, b_ As Double, a0#, a2#, a4#, a6#, a8#, m2#, m4#,

m6#, m8#, m0#, l0#, e#, e1# Dim deg1 As Double, min1 As Double, sec1 As Double, deg2 As Double, min2 As Double, sec2 As Double Private Sub Command1_Click() Dim x_ As Double, t#, eta#, N#, W#, k1#, k2#, ik1%, ik2%, dh% deg1 = Val(Text1.Text) min1 = Val(Text2.Text) sec1 = Val(Text3.Text) deg2 = Val(Text4.Text) min2 = Val(Text5.Text) sec2 = Val(Text6.Text) l_ = (deg1 * 3600 + min1 * 60 + sec1) / 206265 b_ = (deg2 * 3600 + min2 * 60 + sec2) / 206265 dh = Val(Text9.Text) k1 = ((l_ * 180 / 3.14159 + 3) / 6) k2 = (l_ * 180 / 3.14159 / 3) ik1 = Round(k1, 0) ik2 = Round(k2, 0) If dh = 6 Then l0 = 6 * ik1 - 3 Else If dh = 3 Then

高斯投影正反算

class Gauss { #region 高斯投影正反算 ///

/// 从大地坐标到平面坐标的高斯正算 /// /// 默认的是使用假定坐标的六度带投影 /// /// 大地纬度 /// 大地经度 /// 平面纵轴 /// 平面横轴 /// 参考椭球长半轴 /// 参考椭球扁率倒数 public static void BL_xy(double B, double L, out double x, out double y, double a, double f) { BL_xy(B, L, out x, out y, a, f, 6, true); } /// /// 从大地坐标到平面坐标的高斯正算 /// /// 默认的是使用假定坐标 /// /// 大地纬度 /// 大地经度 /// 平面纵轴 /// 平面横轴 /// 参考椭球长半轴 /// 参考椭球扁率倒数 /// 投影分带的带宽 public static void BL_xy(double B, double L, out double x, out double y, double a, double f, int beltWidth) { BL_xy(B, L, out x, out y, a, f, beltWidth, true); } /// /// 从大地坐标到平面坐标的高斯正算 /// /// 默认的是六度带投影 /// /// 大地纬度 /// 大地经度 /// 平面纵轴

计算方法实验报告格式

计算方法实验报告格式 小组名称: 组长姓名(班号): 小组成员姓名(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一个完整的实验,应包括数据准备、理论基础、实验内容及方法,最终对实验结果进行分析,以达到对理论知识的感性认识,进一步加深对相关算法的理解,数值实验以实验报告形式完成,实验报告格式如下: 一、实验名称 实验者可根据报告形式需要适当写出. 二、实验目的及要求 首先要求做实验者明确,为什么要做某个实验,实验目的是什么,做完该实验应达到什么结果,在实验过程中的注意事项,实验方法对结果的影响也可以以实验目的的形式列出. 三、算法描述(实验原理与基础理论) 数值实验本身就是为了加深对基础理论及方法的理解而设置的,所以要求将实验涉及到的理论基础,算法原理详尽列出. 四、实验内容 实验内容主要包括实验的实施方案、步骤、实验数据准备、实验的算法以及可能用到的仪器设备. 五、程序流程图 画出程序实现过程的流程图,以便更好的对程序执行的过程有清楚的认识,在程序调试过程中更容易发现问题. 六、实验结果 实验结果应包括实验的原始数据、中间结果及实验的最终结果,复杂的结果可以用表格

形式列出,较为简单的结果可以与实验结果分析合并出现. 七、实验结果分析 实验结果分析包括对对算法的理解与分析、改进与建议. 数值实验报告范例 为了更好地做好数值实验并写出规范的数值实验报告,下面给出一简单范例供读者参考. 数值实验报告 小组名称: 小组成员(班号): 按贡献排序情况: 指导教师评语: 小组所得分数: 一、实验名称 误差传播与算法稳定性. 二、实验目的 1.理解数值计算稳定性的概念. 2.了解数值计算方法的必要性. 3.体会数值计算的收敛性与收敛速度. 三、实验内容 计算dx x x I n n ? += 1 10 ,1,2,,10n = . 四、算法描述 由 dx x x I n n ? += 1 10 ,知 dx x x I n n ?+=--101110,则

高斯投影正反算编程(可编辑修改word版)

高斯投影正反算编程一.高斯投影正反算基本公式(1)高斯正算基本公式 (2)高斯反算基本公式

以上主要通过大地测量学基础课程得到,这不进行详细的推导,只是列出基本公式指导编程的进行。 二.编程的基本方法和流程图 (1)编程的基本方法 高斯投影正反算基本上运用了所有的编程基本语句,本文中是利用C++语言进行基本的设计。高斯正算中对椭球参数和带宽的选择主要运用了选择语句。而高斯反算中除了选择语句的应用,在利用迭代算法求底点纬度还应用了循环语句。编程中还应特别注意相关的度分秒和弧度之间的相互转换,这是极其重要的。 (2)相关流程图 1)正算

选择带宽 3/6 度带 计算带号 输入大地坐标 B ,L 和经差 L0 6 度带 3 度带 选择椭球参数 计算带号 计算弧长 计算平面坐标 x,y 打印 x,y 开始 计算平面坐标 x,y 计算弧长 打印 x,y

开始 输入自然值坐标x,y 和经差L0 选择椭球参数 利用迭代算法 求解底点纬度 利用公式计算B 和L 打印B 和L 2)反算

三.编程的相关代码(1)正算 # include "stdio.h" # include "stdlib.h" # include "math.h" # include "assert.h" #define pi (4*atan(1.0)) int i; struct jin { double B; double L; double L0; }; struct jin g[100]; main(int argc, double *argv[]) { FILE *r=fopen("a.txt","r"); assert(r!=NULL); FILE *w=fopen("b.txt","w"); assert(r!=NULL); int i=0;

高斯投影计算的实用公式

§8.4高斯投影计算的实用公式 1子午线弧长计算公式 改写并扩充(7-65)(7-64)两式 )8sin()6sin()4sin()2sin(86420B a B a B a B a B a X ++++= )16384 17640512525646043)(1(21864222e e e e e a a +++--= )16384 88205122106415)(1(4186424e e e e a a ++-= )16384 252051235)(1(618626e e e a a +--= )16384 315)(1(81828e e a a -= 2正算公式(8-67)(8-81) 00/cos ρBl p = 2/)12/)30/))58(61())49(5((1(22222222p p p t t t Nt X x -++++-++=ηηp p p t t t N y )6/)20/)14)5818(5()1((1(22222222ηηη+--+++-+= )3/)5/)2())23(1((1(sin 22222 00p p t Bl r -++++=ηη 式中: B t tan = 22)cos (B e '=η 221η+=V V c N /= 0000L L l -= 21a/e c -= 3 底点纬度公式 00Xq B = (单位:弧度) ))) sin (sin (sin )(2sin(028*********B q q B q B q B B B f ++++=(单位:弧度) 式中: )16384110255123506445431)(1(864220e e e e e a a ++++-=

计算方法实验报告 拟合

南京信息工程大学实验(实习)报告 一、实验目的: 用最小二乘法将给定的十个点拟合成三次多项式。 二、实验步骤: 用matlab编制以函数为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi=1) x -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 y -2.30 -1 -0.14 -0.25 0.61 1.03 1.75 2.75 4.42 6.94 给定直线方程为:y=1/4*x3+1/2*x2+x+1 三、实验结论: 最小二乘法:通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。 一般地。当测量数据的散布图无明显的规律时,习惯上取n次代数多项式。 程序运行结果为: a = 0.9731 1.1023 0.4862 0.2238 即拟合的三次方程为:y=0.9731+1.1023x+0.4862*x2+0.2238*x3

-2.5 -2-1.5-1-0.5 00.51 1.52 2.5 -4-20246 81012 x 轴 y 轴 拟合图 离散点 y=a(1)+a(2)*x+a(3)*x.2+a(4)*x.3 结论: 一般情况下,拟合函数使得所有的残差为零是不可能的。由图形可以看出最小二乘解决了残差的正负相互抵消的问题,使得拟合函数更加密合实验数据。 优点:曲线拟合是使拟合函数和一系列的离散点与观测值的偏差平方和达到最小。 缺点:由于计算方法简单,若要保证数据的精确度,需要大量的数据代入计算。

高斯投影坐标正算公式

高斯投影坐标正算公式 高斯投影坐标正反算公式 2.2.2. 1高斯投影坐标正算公式: B, x,y 高斯投影必须满足以下三个条件: ⑴中央子午线投影后为直线;⑵中央子午线投影后长度不变;⑶投影具有正形性质,即正形投影条件。 由第一条件知中央子午线东西两侧的投影必然对称于中央子午线,即 式中,x为的偶函数,y为的奇函数;,即, 如展开为的级数,收敛。 (2-10) 式中是待定系数,它们都是纬度B的函数。 由第三个条件知: 分别对和q求偏导数并代入上式 (2-11) 上两式两边相等,其必要充分条件是同次幂前的系数应相等,即

(2-12) (2-12)是一种递推公式,只要确定了就可依次确定其余各系数。 由第二条件知:位于中央子午线上的点,投影后的纵坐标x应等于投影前从赤道量至该点的子午线弧长X,即(2-10)式第一式中,当时有: (2-13) 顾及(对于中央子午线) 得: (2-14,15) (2-16) 依次求得并代入(2-10)式,得到高斯投影正算公式

(2-17) 2.2.2. 2高斯投影坐标反算公式 x,y B, 投影方程: (2-18) 高斯投影坐标反算公式推导要复杂些。 ⑴由x求底点纬度(垂足纬度),对应的有底点处的等量纬度,求x,y与 的关系式,仿照式有, 由于y和椭球半径相比较小(1/16.37),可将展开为y的幂级数;又由于是对称投影,q必是y的偶函数,必是y的奇函数。 (2-19) 是待定系数,它们都是x的函数. 由第三条件知: ,

, (2-20) (2-19)式分别对x和y求偏导数并代入上式 上式相等必要充分条件,是同次幂y前的系数相等, 第二条件,当y=0时,点在中央子午线上,即x=X,对应的点称为底点,其纬度为底点纬度,也就是x=X时的子午线弧长所对应的纬度,设所对应的等量纬度为。也就是在底点展开为y的幂级数。 由(2-19)1式 依次求得其它各系数 (2-21) (2-21)1 ………… 将代入(2-19)1式得

计算方法上机实验报告——拉格朗日插值问题

计算方法上机实验报告——拉格朗日插值问题 一、方法原理 n次拉格朗日插值多项式为:Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0) n=2时,称为二次插值或抛物线插值,精度相对高些 L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x 2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1) 二、主要思路 使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。 对节点xi(i=0,1,…,n)中任一点xk(0<=k<=n)作一n次多项式lk(xk),使它在该点上取值为1,而在其余点xi(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为Ln(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+ynln(x) 上式表明:n个点xi(i=0,1,…,k-1,k+1,…,n)都是lk(x)的零点。可求得lk 三.计算方法及过程:1.输入节点的个数n 2.输入各个节点的横纵坐标 3.输入插值点 4.调用函数,返回z 函数语句与形参说明 程序源代码如下: 形参与函数类型 参数意义 intn 节点的个数 doublex[n](double*x) 存放n个节点的值 doubley[n](double*y) 存放n个节点相对应的函数值 doublep 指定插值点的值 doublefun() 函数返回一个双精度实型函数值,即插值点p处的近似函数值 #include #include usingnamespacestd; #defineN100 doublefun(double*x,double*y,intn,doublep); voidmain() {inti,n; cout<<"输入节点的个数n:"; cin>>n;

计算方法实验报告

中北大学信息商务学院计算方法实验报告 学生姓名:刘昊文学号: 30 学院:中北大学信息商务学院 专业:电气工程及其自动化 指导教师:薛晓健 2017 年 04 月 19 日

实验一:非线性方程的近似解法 1.实验目的 1.掌握二分法和牛顿迭代法的原理 2.根据实验内容编写二分法和牛顿迭代法的算法实现 注:(可以用C语言或者matlab语言) 2.实验设备 matlab 3.实验内容及步骤 解方程f(x)=x5-3x3-2x2+2=0 4.实验结果及分析 二分法: 数据: f =x^5-3*x^3-2*x^2+2 [ n xa xb xc fc ]

1 -3 3 0 2 0

牛顿迭代法 > syms x; f=(x^5-3*x^3-2*x^2+2) [x,k]=Newtondd(f,0,1e-12) f = x^5 - 3*x^3 - 2*x^2 + 2 x = NaN k =2 实验二:解线性方程组的迭代法 1.实验目的 1.掌握雅克比迭代法和高斯-塞德尔迭代法的原理 2.根据实验内容编写雅克比迭代法和高斯-塞德尔迭代法的算法实现 注:(可以用C语言或者matlab语言) 2.实验设备 Matlab

3.实验内容及步骤 1、分别用雅克比迭代法和高斯-塞德尔迭代法解方程Ax=b 其中A=[4 -1 0 -1 0 0 -1 4 -1 0 -1 0 0 -1 4 -1 0 -1 -1 0 -1 4 -1 0 0 -1 0 -1 4 -1 0 0 -1 0 -1 4] b=[0 ;5;-2;5;-2;6] 4.实验结果及分析 (雅克比迭代法) a=[4 -1 0 -1 0 0;-1 4 -1 0 -1 0;0 -1 4 -1 0 -1;-1 0 -1 4 -1 0;0 -1 0 -1 4 -1;0 0 -1 0 -1 4] b=[0;5;-2;5;-2;6] x=agui_jacobi(a,b) a = 4 -1 0 -1 0 0 -1 4 -1 0 -1 0 0 -1 4 -1 0 -1 -1 0 -1 4 -1 0 0 -1 0 -1 4 -1 0 0 -1 0 -1 4 b = 0 5 -2 5 -2 6

高斯投影坐标正反算VB程序

高斯投影坐标正反算V B 程序 Jenny was compiled in January 2021

高斯投影坐标正反算 学院: 班级: 学号: 姓名: 课程名称: 指导老师:

实验目的: 1.了解高斯投影坐标正反算的基本思想; 2.学会编写高斯正反算程序,加深了解。 实验原理: 高斯投影正算公式中应满足的三个条件: 1. 中央子午线投影后为直线; 2. 中央子午线投影后长度不变; 3. 投影具有正形性质,即正形投影条件。 高斯投影反算公式中应满足的三个条件: 1. x坐标轴投影成中央子午线,是投影的对称轴; 2. x轴上的长度投影保持不变; 3. 正形投影条件,即高斯面上的角度投影到椭球面上后角度没有 变形,仍然相等。 操作工具: 计算机中的 代码: Dim a As Double, b As Double, x As Double, y As Double, y_#

Dim l_ As Double, b_ As Double, a0#, a2#, a4#, a6#, a8#, m2#, m4#, m6#, m8#, m0#, l0#, e#, e1# Dim deg1 As Double, min1 As Double, sec1 As Double, deg2 As Double, min2 As Double, sec2 As Double Private Sub Command1_Click() Dim x_ As Double, t#, eta#, N#, W#, k1#, k2#, ik1%, ik2%, dh% deg1 = Val min1 = Val sec1 = Val deg2 = Val min2 = Val sec2 = Val l_ = (deg1 * 3600 + min1 * 60 + sec1) / 206265 b_ = (deg2 * 3600 + min2 * 60 + sec2) / 206265 dh = Val k1 = ((l_ * 180 / + 3) / 6) k2 = (l_ * 180 / / 3) ik1 = Round(k1, 0) ik2 = Round(k2, 0) If dh = 6 Then l0 = 6 * ik1 - 3 Else

计算方法实验报告 插值

实验名称:插值计算 1引言 在生产和科研中出现的函数是多种多样的。常常会遇到这样的情况:在某个实际问题中,虽然可以断定所考虑的函数f(x)在区间[a,b]上存在且连续,但却难以找到它的解析表达式,只能通过实验和观测得到在有限个点上的函数值。用这张函数表来直接求出其他点的函数值是非常困难的,在有些情况下,虽然可以写出f(x)的解析表达式,但由于结构十分复杂,使用起来很不方便。面对这些情况,构造函数P(x)作为f(x)的近似,插值法是解决此类问题比较古老却目前常用的方法,不仅直接广泛地应用与生产实际和科学研究中,而且是进一步学习数值计算方法的基础。 设函数y=f(x)在区间[a,b]上连续,且在n+1个不同的点a≤x0,x1……,xn≤b上分别取值y0,y1……,yn. 插值的目的就是要在一个性质优良、便于计算的函数φ中,求一简单函数P(x),使P(xi)=yi(i=0,1…,n)而在其他点x≠xi上,作为f(x)的近似。 通常,称区间[a,b]为插值区间,称点x0,x1,…,xn为插值节点,上式为插值条件,称函数类φ为插值函数类,称P(x)为函数f(x)在节点x0,x1,…,xn处的插值函数,求插值函数P(x)的方法称为插值法。 2实验目的和要求 用matlab定义分段线性插值函数、分段二次插值函数、拉格朗日插值函数,输入所给函 数表,并利用计算机选择在插值计算中所需的节点,计算f(0.15),f(0.31),f(0.47)的近似值。

3算法描述 1.分段线性插值流程图

2.分段二次插值流程图

3.拉格朗日插值流程图

4程序代码及注释 1.分段线性插值

高斯投影坐标正反算公式及适合电算的高斯投影公式

§8.3高斯投影坐标正反算公式 任何一种投影①坐标对应关系是最主要的;②如果是正形投影,除了满足正形投影的条件外(C-R 偏微分方程),还有它本身的特殊条件。 8.3.1高斯投影坐标正算公式: B,l ? x,y 高斯投影必须满足以下三个条件: ①中央子午线投影后为直线;②中央子午线投影后长度不变;③投影具有正形性质,即正形投影条件。 由第一条件知中央子午线东西两侧的投影必然对称于中央子午线,即 (8-10)式中,x 为l 的偶函数,y 为l 的奇函数;0330 '≤l ,即20/1/≈''''ρl , 如展开为l 的级数,收敛。 +++=++++=553316644220l m l m l m y l m l m l m m x (8-33) 式中 ,,10m m 是待定系数,它们都是纬度B 的函数。 由第三个条件知: q y l x l y q x ??-=????=??, (8-33)式分别对l 和q 求偏导数并代入上式 ----=++++++=+++553315 63424 42204 52 3164253l dq dm l dq dm l dq dm l m l m l m l dq dm l dq dm dq dm l m l m m (8-34) 上两式两边相等,其必要充分条件是同次幂l 前的系数应相等,即

dq dm m dq dm m dq dm m 231 20 13121? =? -== (8-35) (8-35)是一种递推公式,只要确定了 0m 就可依次确定其余各系数。 由第二条件知:位于中央子午线上的点,投影后的纵坐标x 应等于投影前从赤道量至该点的子午线弧长X ,即(8-33)式第一式中,当0=l 时有: 0m X x == (8-36) 顾及(对于中央子午线) B V M r M B N dq dB M dB dX cos cos 2 ==== 得: B V c B N r dq dB dB dX dq dX dq dm m cos cos 01===?===(8-37,38) B B N dq dB dB dm dq dm m cos sin 2 2121112=?-=?-= (8-39) 依次求得6543,,,m m m m 并代入(8-33)式,得到高斯投影正 算公式

东南大学计算方法实验报告

计算方法与实习实验报告 学院:电气工程学院 指导老师:李翠平 班级:160093 姓名:黄芃菲 学号:16009330

实习题一 实验1 拉格朗日插值法 一、方法原理 n次拉格朗日插值多项式为:L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x) n=1时,称为线性插值,L1(x)=y0(x-x1)/(x0-x1)+ y1(x-x0)/(x1-x0)=y0+(y1-x0)(x-x0)/(x1-x0) n=2时,称为二次插值或抛物线插值,精度相对高些 L2(x)=y0(x-x1)(x-x2)/(x0-x1)/(x0-x2)+y1(x-x0)(x-x2)/(x1-x0)/(x1-x2)+y2(x-x0)(x-x1)/(x2-x0)/(x2-x1) 二、主要思路 使用线性方程组求系数构造插值公式相对复杂,可改用构造方法来插值。 对节点x i(i=0,1,…,n)中任一点x k(0<=k<=n)作一n 次多项式l k(x k),使它在该点上取值为1,而在其余点x i(i=0,1,…,k-1,k+1,…,n)上为0,则插值多项式为L n(x)=y0l0(x)+y1l1(x)+y2l2(x)+…+y n l n(x) 上式表明:n 个点x i(i=0,1,…,k-1,k+1,…,n)都是l k(x)的零点。可求得l k 三.计算方法及过程:1.输入节点的个数n 2.输入各个节点的横纵坐标 3.输入插值点 4.调用函数,返回z 函数语句与形参说明 程序源代码如下: 形参与函数类型参数意义 int n 节点的个数 double x[n](double *x)存放n个节点的值 double y[n](double *y)存放n个节点相对应的函数值 double p 指定插值点的值 double fun() 函数返回一个双精度实型函数值,即插值点p 处的近似函数值 #include #include using namespace std; #define N 100 double fun(double *x,double *y, int n,double p); void main() {int i,n; cout<<"输入节点的个数n:"; cin>>n; double x[N], y[N],p; cout<<"please input xiangliang x= "<>x[i]; cout<<"please input xiangliang y= "<>y[i]; cout<<"please input LagelangrichazhiJieDian p= "<>p;

大地测量-高斯投影正反算

大地测量高斯投影正反算程序代码 课程:大地测量学基础 姓名:林江伟 学号:2008301610045 班级: 0804

界面如下: 输入数据计算:

using System; using System.Collections.Generic; using https://www.doczj.com/doc/fb5093039.html,ponentModel; using System.Data; using System.Drawing; using System.Text; using System.Windows.Forms; namespace大地 { public partial class Form1 : Form { double B, L; double x, y; double X, Y; int N; double L0, l1; double p=206264.80625; public Form1() {

InitializeComponent(); } private void Form1_Load(object sender, EventArgs e) { //自动化控件显示初始值 radioButton2.Checked=true; radioButton3.Checked = true; textBox1.Focus(); textBox1.Text = textBox2.Text = textBox3.Text = textBox4.Text = textBox5.Text = textBox6.Text = "0"; this.richTextBox2.Text = "说明:输入的坐标需为按6°带投影且采用克氏椭球参数所得的国家统一坐标"; } private void button1_Click(object sender, EventArgs e) { //获取输入数据 double bb1=Convert.ToDouble(this.textBox1.Text); double bb2=Convert.ToDouble(this.textBox2.Text); double bb3=Convert.ToDouble(this.textBox3.Text); double ll1=Convert.ToDouble(this.textBox4.Text); double ll2=Convert.ToDouble(this.textBox5.Text); double ll3=Convert.ToDouble(this.textBox6.Text); //检查输入格式的正确性 if (bb1 >= 0 && bb1 <90 && bb2 >= 0 && bb2 < 60 && bb3 >= 0 && bb3 < 60) { B = bb1 * 3600 + bb2 * 60 + bb3; } else { MessageBox.Show("纬度输入格式不正确!", "警告"); return; } if (ll1 >= 0 && ll1<360 && ll2 >= 0 && ll2 < 60 && ll3 >= 0 && ll3 < 60) { L = ll1 * 3600 + ll2 * 60 + ll3; } else { MessageBox.Show("经度输入格式不正确!", "警告"); return; }

相关主题
文本预览
相关文档 最新文档