当前位置:文档之家› 线性方程组解的判定与证明

线性方程组解的判定与证明

线性方程组解的判定与证明
线性方程组解的判定与证明

21.线性方程组解的判定与证明

一、基础知识

(1)线性方程组有4种表示形式: ○

1标准型 11112211

211222221122

n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b

+++=??

+++=??+++=? ○

2矩阵型 令A =''1212[],(,,

),(,,)ij m n n m A a x x x x B b b b ?==,那么上面的方程可以表述为

Ax B =

3列向量型 令11112212221212,,,n n n m m mn a a a a a a a a a a a a ??

????

?????????

???===????????????????

??

那么方程又可表述为

1122n n x a x a x a B ++

+=

4行向量型 ''''1122n n x a x a x a B +++=

(2)在方程组○

2的表述方式中,若0B =,即0Ax =,称为齐次线性方程组,若0B ≠,称为非齐次线性方程组。

(3)称0Ax =为Ax B =的导出组。

(4)方程组○

2中,称(,)A A B =为○2的增广矩阵。 (5) 方程组○2中,若0,Ax B =则称0

x 为它的一个解。 (6) 方程组○

2中,若A 为m n ?矩阵,则方程组○2的解的情况为 ◇

1秩A =秩A =n ,方程组○2有唯一解; ◇

2秩A =秩A

3秩A ≠秩A ,方程组○2无解。 (7)在齐次线性方程组0Ax =中,A 为m n ?阶矩阵,其解的情况如下:

1秩A =n ,方程组0Ax =有唯一零解; ◇

2秩A

设A 是n n ?矩阵,线性方程组Ax B =中,若0A ≠,则方程组有唯一解,且有

1212,,,n

n x x x ???=

==

??

?

,其中,i A ?=?为第i 列换为B ,其他各列与A 相同的n 阶行列式(1,2,)i n =.

二、题目

1利用矩阵的初等变换判断系数矩阵和增广矩阵的秩的关系,从而解线性方程组。 (中山大学)判断方程组

123412341

2342121255

x x x x x x x x x x x x -++=??

-+-=-??-++=? 的可行解并求其解。

1

211

11

211

11

21001

211100022000111

21

550

440

0A ---??????

??????=---→--→???

??

???????-??????

所以秩A =秩A =2<4,此方程组有无穷个解,其通解为

112

21

32421

x k k x k x k x =-??=??

=??=? 其中1k ,2k 为任意常数。

2(利用克莱默法则求解带参数的线性方程组) (华中师范大学)讨论λ取什么值时,方程组

1231232

1231)1(1)(1)x x x x x x x x x λλλλλ+++=+++=+++=( 有解,并求解。

解:系数行列式矩阵2

(3)λλ+,所以 (1)

0-3λλ≠≠且时,方程组有唯一解,且其唯一解是

23212322121,,(3)(3)(3)

x x x λλλλλλλλλλλ--+--===+++.

(2)当3λ=-时,原方程组变为

123123123212329

x x x x x x x x x -++=-+=-+-= 此时原方程组无解。

(3)

0λ=时,原方程组为

123123123100

x x x x x x x x x ++=++=++= 此时,方程组也无解。

3巧用线性方程组有解定理解选择题。 (数学三)设A 是n 阶矩阵,a 是n 维向量,若0T A

a A a ??

=

???

秩秩,则线性方程组() ()()()()0000T T

A AX a

B AX a A a x

C a y A a x

D a

y ==????

=

????

???????

= ???????

有无穷多解必有唯一解仅有零解必有非零解 答案D ,因为0T

A

a a ?? ???是+1n 阶方阵,且秩0T A a a ??

???

=秩A n ≤,所以选D . (武汉大学)设设A 是m n ?阶矩阵,AX b =为一非齐次线性方程组,则必有()

()()()()=,00A m n AX b B A m AX C A n AX b D A n AX <====如果,则有非零解如果秩则有非零解

如果有阶子式不为零,则有唯一解如果有阶子式不为零,则只有零解

答案D ,因为秩=A n =未知量的个数,所以AX=0有零解

4利用同解的充要条件解题 (南开大学)

证明(1)线性方程组x AB =0与x B =0的解相同的充要条件是秩(AB )=秩(B );

它们解空间正交的充要条件是0B ≠,(这里A,B 是n 阶方阵,x 为行向量) 证明:

(1)?:设x AB =0与x B =0同解,则=n n --?秩(AB )=秩(B )秩(AB )秩(B )

?:设12W W 与分别是x AB =0与x B =0的解空间,显然21W W ?,又

12dim dim W n n W =--秩(AB )=秩(B )=,所以12W W =,因此x AB =0与x B =0同解,

证毕. (2)

?:设x AB =0与x B =0的解空间分别为12W W 与,若12W W ⊥,由于21W W ?推得

22W W ⊥,所以20W =,即x B =0只有零解,故0B ≠

?:因为0B ≠,所以,20W =,故12W W ⊥

线性方程组有解的判别定理

非齐次线性方程组同解的讨论 摘要 本文主要讨论两个非齐次线性方程组有相同解的条件,即如何判定这两个非齐次线性方程组有相同的解. 关键词 非齐次线性方程组 同解 陪集 零空间 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题。 下面是一个非齐次线性方程组,我们用矩阵的形式写出 11121121222212n n m m mn m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++=? 令 A= 111212122212n n m m mn a a a a a a a a a ???????????? ,b= 12m b b b ???????????? 。 即非齐次线性方程组可写成Ax b =。 一 、线性方程组同解的性质 引理 1 如果非齐次线性方程组Ax b =与Bx d =同解,则矩阵[]A b 与[]B d 的秩相等. 证明 设非齐次线性方程组Ax b =的导出组的基础解系为111,,,r ξξξ ,其中1 r 为矩阵[]A b 的秩,再设非齐次线性方程组Bx=d 的导出组的基础解系为 2 12,,,r ηηη ,其中2r 为矩阵[]B d 的秩,如果*η是非齐次线性方程组Ax=b 与Bx=d 特解,由于这两个方程组同解,所以向量组1*11,,,,r ξξξη 与向量组2*12,,,,r ηηηη 等价。从而这两个线性无关的向量组所含的向量个数相等,于是有12,r r =则矩阵[]A b 与[]B d 的秩相等. 引理[1]2 设A 、B 为m n ?矩阵,则齐次线性方程组0Ax =与0Bx =同解的充

线性方程组的求解与应用开题报告

设计题目线性方程组理论及其应用 学生姓名陈彦语学号1111124123 专 业 数学与应用数 学(师范类) 一、课题的目的意义: 高等代数教材中只给出了运用克拉默法则(Cramer's Rule)和利用增广矩阵进行初等行变换求解线性方程组的方法,本文将更加系统的阐述求解线性方程组的几类方法,并进一步讨论线性方程组在许多领域中的应用。 线性代数是代数学的一个重要组成部分,广泛应用于现代科学的许多分支,其核心问题之一就是线性方程组的求解问题。线性方程组的求解是数值计算领域十分活跃的研究课题之一,大量的科学技术问题,最终往往归结为解线性方程组。因为计算机只能“线性”地求解问题,所以所有问题在计算机处理前都要线性化。可以说,线性方程组的求解在现代科学领域占有重要地位。 二、近几年来研究现状: 目前关于线性方程组的数值解法一般有两大类,一类是直接方法,另一类是迭代方法。直接方法最基本的是高斯消元法及其变形,这种方法是解低阶稠密矩阵方程组的有效方法,近十几年来直接法在求解具有较大型稀疏矩阵方程组方面取得了较大进展。迭代法就是用某种迭代过程去逐步逼近线性方程组的精确解,迭代法具有的优点是:需要计算机的存储单位较少、程序设计简单、原始系数矩阵在计算过程中始终不变,但存在收敛性和收敛速度的问题。迭代法是解大型稀疏矩阵方程组的重要方法,当前对迭代算法的研究已经较为成熟,但如何使之适合新体系模型,以获得更好的性能加速还有待进一步研究。 。三、设计方案的可行性分析和预期目标: 可行性分析:本文主要以查找资料,在现有知识水平上,对求解线性方程组的一般方法进行总结归纳,并根据对数学软件的学习,在借鉴前人对计算机编程科学性研究的基础上,给出利用matlab软件求解几类常见线性方程组的方法。通过广泛收集线性方程组应用方向的文献和书籍,并多次向导师请教,最终以具体实例来说明线性方程组在许多领域的应用,并实现线性方程组的求解过程。 预期目标:通过撰写论文,能让我从一个更高的角度来审视高等代数,对其中的线性方程组部分有一个更加深刻的理解和认识,锻炼自己的发散性思维和缜密的思考能力,培养自己利用所学知识解决实际问题的能力,从而达到对所学知识的融会贯通。

浅析线性方程组的解法及应用

目录 摘要 ........................................................................ I Abstract.................................................................... II 第一章绪论 (1) 1.1 引言 (1) 第二章行列式与线性方程组求解 (1) 2.1 标准形式的二元线性方程组 (1) 2.2 标准形式的三元线性方程组 (2) 2.3 克莱姆法则 (3) 2.3.1逆序数 (3) 2.3.2 克莱姆法则 (4) 第三章线性方程组的理论求解 (6) 3.1 高斯消元法 (6) 3.2 线性方程组解的情况 (7) 3.3 将非齐次方程组化为齐次方程组求解方法 (8) 第四章求解线性方程组的新方法 (9) 第五章线性方程组的应用 (11) 5.1 投入产出数学模型 (11) 5.2 齐次线性方程组在代数中的应用 (14) 第六章结论 (16) 参考文献 (17) 致谢 (18)

浅析线性方程组的解法及应用 学生:陈晓莉指导教师:余跃玉 摘要:线性方程组的求解方法在代数学中有着极其重要的作用.本文介绍了有关线性方程组的一些基本求解方法,由二元到三元的线性方程组,再到n姐线性方程组,其中详细介绍了克莱姆法则。然后是对于齐次方程组和非齐次线性方程组,介绍了线性方程组的理论解法,里面介绍了消元法、解的情况、将非线性化成线性方程组来求解。并且给出了相关的例题,可以加深对线性方程组求解的方法的认识。对于线性方程组还有什么解法,本文也将有探讨。介绍了这么多解线性方程组的求解,相信在今后解线性方程组会更加方便。最后还有关于线性方程组的应用,主要介绍了关于投入产出的数学模型,在经济分析与管理中会经常用到。 关键词:线性方程组; 高斯消元法;行列式

线性方程组解的判定

1 / 3 第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解. 11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++= ? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ??????=?????? 称为方程组(13-2)的系数矩阵.由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212n n m m mn m a a a b a a a b A a a a b ??????=?????? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X ;常数项组成一个m 行、1列 的矩阵(或列向量),记作b ,即12n x x X x ??????=??????,12m b b b b ??????=?????? 由矩阵运算,方程组(13—2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ????????????12n x x x ????????????=12m b b b ???????????? 即 AX=b

线性方程组的应用

线性方程组在现实中的应用 线性方程组在现实生活中的应用非常广泛的,不仅可以广泛地应用于工程学,计算机科学,物理学,数学,经济学,统计学,力学,信号与信号处理,通信,航空等学科和领域,同时也应用于理工类的后继课程,如电路、理论力学、计算机图形学、信号与系统、数字信号处理、系统动力学、自动控制原理等课程。 为了更好的运用这种理论,必须在解题过程中有意识地联系各种理论的运用条件,并根据相应的实际问题,通过适当变换所知,学会选择最有效的方法来进行解题,通过熟练地运用理论知识来解决数学得问题. 一、 线性方程组的表示 1.按照线性方程组的形式表示有三种 1)一般形式的表示 11112211 2112222211 22............n n n n n n nn n n a x a x a x b a x a x a x b a x a x a x b +++=?? +++=?? ? ?+++=? 2)向量形式: 1122...n n x x x αααβ +++= 3)矩阵形式的表示 : ,AX β=()12,,...,n A ααα=() 12,,...,T n X x x x = 特别地,当0β =时,AX β=称为齐次线性方程组,而当0 β≠时, AX β =称为非齐次线性方程组

2.按照次数分类又可分为两类 1)齐次线性方程组 2)非齐次线性方程组 二、线性方程组的应用 1.在经济平衡中的应用 假设一个经济系统由三个行业:五金化工、能源(如燃料、电力等)、机械组成,每个行业的产出在各个行业中的分配见表1-1,每一列中的元素表示占该行业总产出的比例。以第二列为例,能源行业的总产出的分配如下:80%分配到五金化工行业,10%分配到机械行业,余下的供本行业使用。因为考虑了所有的产出,所以每一列的小数加起来必须等于1。把五金化工、能源、机械行业每年总产出的价格(即货币价值)分别用1 23,,p p p 表示。 试求出使得每个行业的投入与产出都相等的平衡价格。 表1-2 经济系统的平衡 产出分配 购买者 五金化工 能源 机械 0.2 0.8 0.4 五金化工 0.3 0.1 0.4 能源 0.5 0.1 0.2 机械 解:从表1-2可以看出,沿列表示每个行业的产出分配到何处,沿行表示每个行业所需的投入。例如,第1行说明五金化工行业购买了80%的能源产出、40%的机械产出以及20%的本行业产

线性方程组在中学数学中的应用

线性方程组在中学数学中的应用 摘要 基于中学数学中的有些问题可以转化为线性方程组来解决,使得复杂的问题变得简单。线性方程组是由几个变量之间组成的相互关系,在中学数学中大多都是两个未知量或三个未知量组成的齐次线性方程组,而求解线性方程组大多进行变形,用消元法进行,一般解都具有唯一性,只有少数部分的解不唯一。本文对线性方程组在中学数学代数和几何中的应用进行了研究。 关键词:线性方程组中学数学消元法线性方程组的解

ABSTRACT Based on some mathematic problems of middle school, those problems can be transformed into linear system of equations to solve and made complex problems become more and more simple .The linear system of equations consists of several variables .In middle school mathematics .most of them are homogenous linear equations with two unknown quantities or three unknown quantities. While the solution of linear system equations is mostly used to the method of elimination .Generally. It has the only solution, only a small number of solutions are not unique. In this paper, we study the application of linear equations in algebra and geometry. Key words: system of linear questions;middle school mathematics;The elimination solution of system of linear equations

线性方程组解的情况及其判别准则

摘要:近年来,线性代数在自然科学和工程技术中的应用日益广泛,而线性方程组求解问题是线性代数的基本研究内容之一,同时它也是贯穿线性代数知识的主线。本文探究了线性方程组一般理论的发展,用向量空间和矩阵原理分析了线性方程组解的情况及其判别准则。介绍了线性方程组理论在解决解析几何问题中的作用,举例说明了线性方程组解的结构理论在判断空间几何图形间位置关系时的便利之处。 关键字:线性方程组;解空间;基础解系;矩阵的秩 Abstract:In recent years, linear algebra in science and engineering application, and wide linear equations solving problems is the basic content of linear algebra, at the same time, it is one of the main knowledge of linear algebra.This article has researched the development of system of linear equations theory,discussed the general theory of linear equations, vector space with the development and matrix theory to analyze the linear equations and the criterion of the situation. Introduces the theory of linear equations in solving the problem of analytic geometry, illustrates the role of linear equations of structure theory in judgment space relation between the geometry of the convenience of position. space geometric figure between time the position relations with theory of the system of linear equation with examples. Key words: linear equations, The solution space, Basic solution, Matrix rank

解线性方程组基思想

解线性方程组基思想

————————————————————————————————作者:————————————————————————————————日期:

四:基本方法 基本思路将在解题的过程中得到体现。 1.(求线性方程组的唯一解或特解),这类问题的求法分为两类:一类主要用于解低阶稠 密矩阵——直接法;一类是解大型稀疏矩阵——迭代法。 1.1利用矩阵除法求线性方程组的特解(或一个解) 方程:AX=b,解法:X=A\b,(注意此处’\’不是’/’) 例1-1 求方程组的解。 解: A = ; = ;b=(1,0,0,0,1)’ 由于>>rank(A)=5,rank( )=5 %求秩,此为R(A)=R()>=n的情形,有唯一解。 >>X= A\b %求解X =(2.2662, -1.7218, 1.0571,-0.5940, 0.3188)’ 或用函数rref 求解,>>sv=rref(A:b);所得sv的最后一列即为所要求的解。 1.2 利用矩阵的LU、QR和cholesky分解求方程组的解 这三种分解,在求解大型方程组时很有用。其优点是运算速度快、可以节省磁盘空间、节省内存。 I) LU分解又称Gauss消去分解,可把任意方阵分解为下三角矩阵的基本变换形式(行交换)和上三角矩阵的乘积。即A=LU,L为下三角阵,U为上三角阵。 则:A*X=b 变成L*U*X=b 所以X=U\(L\b) 这样可以大大提高运算速度。命令[L,U]=lu (A) 在matlab中可以编如下通用m 文件: 在Matlab中建立M文件如下 % exp1.m A;b; [L,U]=lu (A); X=U\(L\b) II)Cholesky分解 若A为对称正定矩阵,则Cholesky分解可将矩阵A分解成上三角矩阵和其转置的乘积,即:其中R为上三角阵。 方程A*X=b 变成所以 在Matlab中建立M文件如下 % exp2.m A;b; [R’,R]=chol(A); X=R\(R’\b) III)QR分解 对于任何长方矩阵A,都可以进行QR分解,其中Q为正交矩阵,R为上三角矩阵的初等变换形 式,即:A=QR 方程A*X=b 变形成QRX=b 所以X=R\(Q\b)

线性方程组的解法及其应用

线性方程组的解法及其应用 The solution of linear equation and its application 专业:测控技术与仪器 班级: 2010-1班 作者:刘颖 学号: 20100310110105

摘要 线性方程组是线性代数的一个重要组成部分,也在现实生产生活中有着广泛的运用,在电子工程、软件开发、人员管理、交通运输等领域都起着重要的作用。在一些学科领域的研究中,线性方程组也有着不可撼动的辅助性作用,在实验和调查后期利用线性方程组对大量的数据进行处理是很方便简捷的选择。本文主要围绕如何解线性方程组来进行讲解,对于不同类型的线性方程组的不同方法,并简述线性方程组的一些实际应用。 关键词: 齐次线性方程组,非齐次线性方程组,克莱姆法则,消元法,矩阵,矩阵的秩,特解,通解。

Abstract Linear equations linear algebra is one of the important component parts, and in real life has extensive production use,and it plays an important role in electronic engineering, software development, personnel management, transportation, etc. In some discipline study, it also has the reigns of linear equations of the auxiliary function.In experiment and survey using the linear equations of the late on the data processing is very convenient simple choice. This article, focusing on how to solve linear equations to explain, for different types of linear equations of different methods, and briefly introduces some of the practical application of linear equations. Keywords: Homogeneous linear equations, Non homogeneous linear equation,Clem’s law,Elimination method,Matrix,Rank of matrix,Special solution,General solution.

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222 22 11 22n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+ ++= ????+++=? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵11121212221 2 n n m m mn a a a a a a A a a a ? ?? ? ? ?=?? ?? ? ? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212 n n m m mn m a a a b a a a b A a a a b ?? ????=??? ??? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1 列的矩阵(或列向量),记作b ,即12n x x X x ??????=?????? ,12 m b b b b ?? ????=?????? 由矩阵运算,方程组(13-2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ? ?? ? ? ? ?? ?? ? ? 12n x x x ???????????? =12m b b b ???????????? 即 AX=b

线性代数在生活中的应用

线性代数在生活中的运用 线性代数的研究对象就是向量,向量空间(或称线性空间),线性变换与有限维的线性方程组。随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,既求解有限维的线性方程组,使各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,解线性方程组正就是解决这些问题的有力工具。本文由用初等数学解线性方程组的例子,引用线性代数中的一些基本概念,论述了线性代数与线性方程组的内在联系。 线性方程组就是各个方程关于未知量均为一次的方程组 x j表示未知量,ai j为系数,bi 为常数项。则有 ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a L L L L 22112222212111212111 若x1=c1,x2=c2,…,xn =cn 代入所给方程各式均成立,则称(c1,c 2,…,cn)为一个解。若c1,c2,…,cn不全为0,则称(c1,c2,…,cn)为非零解。若常数项均为0,则称为齐次线性方程组,它总有零解(0,0,…,0)。两个方程组,若它们的未知量个数相同且解集相等,则称为同解方程组。 线性方程组主要讨论的问题就是:①一个方程组何时有解。②有解方程组解的个数。③对有解方程组求解,并决定解的结构。 当非齐次线性方程组有解时,解唯一的充要条件就是对应的齐次线性方程组只有零解;解无穷多的充要条件就是对应齐次线性方程组有非零解。但反之当非齐次线性方程组的导出组仅有零解与有非零解时,不一定原方程组有唯一解或无穷解,事实上,此时方程组不一定有解。 克莱姆法则给出了一类特殊线性方程组解的公式。n 个未知量的任一齐次方程组的解集均构成n维空间的一个子空间。 线性方程组有广泛应用,熟知的线性规划问题即讨论对解有一定约束条件的线性方程组问题。请瞧下面一个例子。

矩阵在线性方程组中的应用

矩阵在线性方程组中的应用 摘要 矩阵和线性方程组都是高等数学的重要教学内容。在高等数学教学中利用矩阵解线性方程组的方法基本上是所知的固定几种:利用矩阵初等变换、克拉默法则、高斯—若尔当消去法。但是解一个线性方程组有时需要几种方法配合使用,有时则需要选择其中的最简单的方法。而对于一些特殊的线性方程组的解法很少有进行归类、讲解。我们希望可以通过对本课题的研究,总结和归纳用特殊矩阵解几类特殊线性方程组的解法。 关键词矩阵;线性方程组;齐次线性方程组;非齐次线性方程组

MATRICES IN THE APPLICATIONS OF THE SYSTEM OF LINEAR EQUATIONS ABSTRACT Matrices and system of linear equations are important content of advanced mathematics. We often use several fixed methods to solve system of linear equations in advanced mathematics,such as Matrix transformations;Cramer's Ruleand Gauss-Jordan elimination method. But sometimes, we need to choose one of the most simple ways,or we need to use several methods to solve system of linear equations. For some special solution method of system of linear equations, there are few classification and explanation in detail. We hope that we can research, summarizes and induces solution method of some special system of linear equations with special matrices. KEY WORDS matrices; system of linear equations; homogeneous system of linear equations; nonhomogeneoussystem of linear equations

线性方程组的公共解

线性方程组的公共解 问题:如何求解线性方程组的公共解? 线性方程组是高代学习的一个重点内容,它的一般形式为 ???????=+++=+++=+++bs asnxn x as x as b nxn a x a x a b nxn a x a x a ...2211... ,22...222121,11...212111 而线性方程组的求解也是这部分学习的重点和难点。其中求解线性方程组的公共解也是高等代数学习所必须掌握的一个知识点。 例1、证明:对于n 元齐次线性方程组(Ⅰ)AX=0与(Ⅱ)BX=0,有非零公共解的充要条件是r(B A )

???=-=+0 42031x x x x 又已知某齐次线性方程组(Ⅱ)的通解为 k1(0,1,1,0)’+k2(-1,2,2,1)’ 问(Ⅰ)与(Ⅱ)是否有非零公共解?若有,则求出所有公共解,若没有,则说明理由。(出自2005年中科院) 解:方法一:将(Ⅱ)的通解代入方程组(Ⅰ)得 ???=+=+0 21021k k k k 解得k1=-k2,故方程组(Ⅰ)与(Ⅱ)有非零公共解,所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 方法二:令方程组(Ⅰ)与(Ⅱ)的通解相同,即 k1(0,1,1,0)’+k2(-1,2,2,1)’=k3(-1,0,1,0)’+k4(0,1,0,1)’ 得到关于k1,k2,k3,k4的一个方程组 ???????=-=-+=-+=-0 420 422103221032k k k k k k k k k k 可求其通解为(k1,k2,k3,k4)’=k(-1,1,1,1)’ 将k1=-1,k2=k 代入(Ⅰ)的通解可得所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 方法三:方程组(Ⅱ)可以是 ? ??=+=+-041032x x x x 解(Ⅰ)与(Ⅱ)的联立方程组可得所有非零公共解为k (1,1,1,1)’,k ≠0为任意常数 韩梦雪 20132113429

线性方程组的数值解法及其应用

线性方程组的数值解法及其应用 一、问题描述 现实中的问题大多数是连续的,例如工程中求解结构受力后的变形,空气动力学中计算机翼周围的流场,气象预报中计算大气的流动。这些现象大多是用若干个微分方程描述。用数值方法求解微分方程(组),不论是差分方法还是有限元方法,通常都是通过对微分方程(连续的问题,未知数的维数是无限的)进行离散,得到线性方程组(离散问题,因为未知数的维数是有限的)。因此线性方程组的求解在科学与工程中的应用非常广泛。 经典的求解线性方程组的方法一般分为两类:直接法和迭代法。 二、基本要求 1)掌握用MATLAB软件求线性方程初值问题数值解的方法; 2)通过实例学习用线性方程组模型解决简化的实际问题; 3)了解用高斯赛德尔列主元消去法和雅可比迭代法解线性方程组。 三、测试数据 1) 直接法:A=[0.002 52.88;4.573 -7.290]; b=[52.90;38.44]; 2) 迭代法:A=[10 -1 -2;-1 10 -2;-1 -1 5]; b=[7.2;8.3;4.2]; 四、算法程序及结果 1) function[RA,RB,n,x]=liezy1(A,b) B=[A b];n=length(b);RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('因为RA~=RB,所以此方程组无解.') return

if RA==RB if RA==n disp('因为RA=RB=n,所以此方程组有唯一解.') x=zeros(n,1);C=zeros(1,n+1); for p=1:n-1 [Y,j]=max(abs(B(p:n,p)));C=B(p,:); B(p,:)=B(j+p-1,:);B(j+p-1,:)=C; for k=p+1:n m=B(k,p)/B(p,p); B(k,p:n+1)=B(k,p:n+1)-m*B(p,p:n+1); end end b=B(1:n,n+1);A=B(1:n,1:n);x(n)=b(n)/A(n,n); for q=n-1:-1:1 x(q)=(b(q)- sum(A(q,q+1:n)*x(q+1:n)))/A(q,q); end else disp('因为RA=RB> b=[52.90;38.44]; >> [RA,RB,n,x]=liezy1(A,b) 因为RA=RB=n,所以此方程组有唯一解. RA = 2 RB = 2

本章介绍了线性方程组有解的充要条件和求解的方法

本章介绍了线性方程组有解的充要条件和求解的方法;为了在理论上深入的研究与此有关的问题,本章还引入了向量和向量空间的基本概念,介绍了向量的线性运算,讨论向量间的线性关系,向量的内积等有关概念和性质,并在此基础上,研究线性方程组解的性质和解的结构等问题。 一、一、线性方程组 1、Cramer法则 教材p64,定理2.1 2、线性方程组有解的判别定理 教材p72,定理2.3 3、线性方程组的消元解法 步骤:(1)对线性方程组的增广矩阵施以初等行变换,将其化为阶梯型矩阵 (2)如果系数矩阵的秩与增广矩阵的秩不相等,表明方程组无解; 如果相等,则表明有解,继续对阶梯型矩阵进行初等行变换,求出 方程的解。【详见p68】 初等行变换: (1)(1)交换两方程的位置; (2)(2)用一个非零数乘某一方程; (3)(3)把一方程的若干倍加到另一方程去 4、消元法与Cramer法则的异同:在条件的限制上,Cramer法则仅适用于 方程数与未知数相等并且系数行列式不为零的情况,而消元法对此没有限制。即便是满足Cramer法则的要求,用消元法可以区分方程组无解还是有无穷多解,而Cremer法则却不能区分 二、二、向量及向量间的线性关系 (一)向量的定义 1、向量、行向量、列向量【教材p77,定义2.1】 2、零向量【教材p78,定义2.2】 3、向量的相等【教材p78,定义2.3】 4、向量的加法、减法【教材p78,定义2.3】 5、数乘向量【教材p78,定义2.5】

6、n维向量空间【教材p78,定义2.6】 7、n维向量空间的子空间【教材p78,定义2.7】 (二)向量间的线性关系 1、线性组合 (1)一个向量可表为一个向量组的线性组合,或称此向量可由此向量组线性表出【教材p80,定义2.8 (2)一个向量可表为一向量组的线性组合的充要条件:由它们做系数及常数项组成的线性方程组有解【教材p81】 (3)几个结论 a、n维零向量是任一n维向量组的线性组合 b、任一n维向量可由n 维基本单位向量组线性表示 c、向量组中的任一向量可由此向量组线性表示 2、向量组的线性相关与线性无关 (1)向量组的线性相关与线性无关的定义【教材p82:定义2.9,2.10】 (2)几个充要条件 Ⅰ向量组线性相关的充要条件由它们做系数组成的齐次线性方程组有非零解【教材p83】 Ⅱ向量组线性无关的充要条件由它们做系数组成的齐次线性方程组仅有零解【教材p83】 Ⅲ一个向量组线性相关的充要条件是由它们做系数组成的齐次线性方程组的系数行列式等于零【教材p83】 Ⅳ一个向量组线性无关的充要条件是由它们做系数组成的齐次线性方程组的系数行列式不等于零【教材p83】: Ⅴ一个向量组线性相关的充要条件是此向量组中至少有一个向量可以表为其余向量的线性组合【教材p85:定理2.6】 Ⅵ一个向量组线性无关的充要条件是此向量组中每一个向量都不能表为其余向量的线性组合【教材p86:定理2.6 的推论】 Ⅶ若一向量可由一向量组线性表出,则表示法唯一的充要条件是此向量组线性无关 三、向量组

非齐次线性方程组同解的判定和同解类

非齐次线性方程组同解的判定和同解类 摘要 本文主要讨论两个非齐次线性方程组同解的条件及当两个非齐次线性方程组的导出组的解空间相同时解集之间的关系。 关键词 非齐次线性方程组 同解 陪集 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题. 预备知识 定理1设,A B 是向量组C 两个线性无关的极大组,则存在可逆矩阵P ,使得 B PA =。 定理2设A 、B 为m n ?矩阵,且秩A =秩B ,如果存在矩阵C ,使得 CA B = 则存在m m ?可逆矩阵P ,使得 PA B = 证明 设秩A =秩B =r ,则存在可逆矩阵1P 与Q 使 011A P A A ??=????, 01B QB B ??=???? 其中0A ,0B 分别为秩数等于r 的r n ?矩阵,由于B CA =,则B 的行可由A 的行线性表出,从而B 的行可由0A 的行线性表出,进而0B 的行可由0A 的行线性表出, 于是矩阵00A B ?? ???? 的行向量组的极大线性无关组为0A 的各行,因为0B 的各行线性无 关且秩0B r =,所以0B 的各行亦构成一个线性无关组,则存在可逆矩阵r P 使得 00r B P A = 又设 110A C A =,12020r B C B C P A == 令 221 0r r n r P P C P C I -?? =? ?-?? 则1P 为可逆矩阵,且

(完整版)解线性方程组的消元法及其应用

解线性方程组的消元法及其应用 (朱立平 曲小刚) ● 教学目标与要求 通过本节的学习,使学生熟练掌握一种求解方程组的比较简便且实用的方法—高斯消元法,并能够熟练应用消元法将矩阵化为阶梯形矩阵和求矩阵的逆矩阵. ● 教学重点与难点 教学重点:解线性方程组的高斯消元法,利用消元法求逆矩阵. 教学难点:高斯消元法,利用消元法求逆矩阵. ● 教学方法与建议 先向学生说明由于运算量的庞大,克莱姆法则在实际应用中是很麻烦的,然后通过解具体的方程组,让学生自己归纳出在解方程组的时候需要做的三种变换,从而引出解高阶方程组比较简便的一种方法—高斯消元法,其三种变换的实质就是对增广矩阵的初等行变换,最后介绍利用消元法可以将矩阵化为阶梯形矩阵以及求矩阵的逆。 ● 教学过程设计 1.问题的提出 由前面第二章的知识,我们知道当方程组的解唯一的时候,可以利用克莱姆法则求出方程组的解,但随着方程组阶数的增高,需要计算的行列式的阶数和个数也增多,从而运算量也越来越大,因此在实际求解中该方法是很麻烦的. 引例 解线性方程组 ??? ??=+-=+=++132724524321 21321x x x x x x x x )3()2()1( 解 (1)???→??)2()1(?????=+-=++=+13245247 232132121x x x x x x x x )3()2()1(????→?+-?+-?) 3()2()1()2()4()1(?????-=+-=+=+133524567232 3221x x x x x x )3()2()1(

????→?+-?)3()65 ()2(??????? =--=+=+76 724567233221x x x x x )3()2()1( 用回代的方法求出解即可. 问题:观察解此方程组的过程,我们总共作了三种变换:(1)交换方程次序,(2)以不等于零的数乘某个方程,(3)一个方程加上另一个方程的k 倍.那么对于高阶方程组来说,是否也可以考虑用此方法. 2.矩阵的初等变换 定义1 阶梯形矩阵是指每一非零行第一个非零元素前的零元素个数随行序数的增加而增加的矩阵. 定义2 下面的三种变换统称为矩阵的初等行变换: i. 互换矩阵的两行(例如第i 行与第j 行,记作j i r r ?), ii. 用数0≠k 乘矩阵的某行的所有元素(例如第i 行乘k ,记作i kr ), iii. 把矩阵某行的所有元素的k 倍加到另一行的对应元素上去(例如第j 行的k 倍加到第i 行上,记作j i kr r +). 同理可以定义矩阵的初等列变换. 定义 3 如果矩阵A 经过有限次初等变换变为矩阵B ,则称矩阵A 与B 等价,记作 A ~ B . 注:任意一个矩阵总可以经过初等变换化为阶梯形矩阵. 3. 高斯消元法 对于一般的n 阶线性方程组 ?????? ?=++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ22112 22221211 1212111 )()2()1(n (3.1) 若系数行列式0det ≠A ,即方程组有唯一解,则其消元过程如下: 第一步,设方程(1)中1x 的系数01≠l a 将方程)(l 与(1)对调,使对调后的第一个方程1x 的系数不为零.作)1(11 1 a a i i - ),3,2(n i Λ=,得到同解方程组 ?? ? ????=++=++=+++)1()1(2)1(2) 1(2 )1(22)1(22)0(1)0(12)0(121)0(11n n nn n n n n n b x a x a b x a x a b x a x a x a ΛΛΛΛΛΛΛΛΛΛΛΛΛ (3.2) 第二步,设0) 1(22≠a ,保留第二个方程,消去它以下方程中的含2x 的项,得

线性方程组及其应用

线性方程组及其应用 3 2 1 余韶堃顾子兵魏鹏 摘要:本文主要将高等代数中所学线性方程组的部分重要理论应用于初等数学 中,来解决初等数学中的一些问题,例如判断平面上两条直线的位置关系和空间上三个平面的位置关系等,同时说明高等数学与初等数学之间的密切联系. 关键词:线性方程组;齐次线性方程组;系数行列式;初等数学;应用 一.内容提要 1.线性方程组的内容 ①.线性相关性 ②.向量组的基本性质 ③.矩阵的秩 ④.线性方程组的解 2.线性方程组在数学中的应用 ①.判断平面上两条直线之间的位置关系 ②.判断空间上三个平面之间的位置关系 ③.运用线性方程组的相关理论来证明几个初等数学中的结论 ④.运用线性方程组的相关理论来判断三点共线、四点共面、四点共圆和五点共 球 二.线性方程组的内容 1.线性相关性 ①.线性组合:向量α称为向量组n βββ,,,21 的一个线性组合。如果有数域P 中的数n k k k ,,,21 ,使n n k k k βββα+++= 2211。 ②.线性表出:当向量α是向量组n βββ,,,21 的一个线性组合时,我们也可以说α可已经向量组n βββ,,,21 线性表出。 ③.等价:如果向量组t ααα,,,21 中每一个向量),,2,1(t i i =α都可以经向量组

n βββ,,,21 线性表出,那么向量组t ααα,,,21 就称为可以经向量组n βββ,,,21 线性表出。如果两个向量组互相可以线性表出,它们就称为 等价。 ④.线性相关:如果向量组)2(,,,21≥s s ααα 中有一个向量可以由其余的向量线性表出,那么向量组s ααα,,,21 就称为线性相关的。如果有数域P 中不全为零的数S k k k ,,,21 ,使02211=+++S S k k k βββ ,向量组)1(,,,21≥s s ααα 称为线性相关。 ⑤.相性无关:向量)1(,,,21≥s s ααα 不线性相关,既没有不全为零的数 S k k k ,,,21 使02211=+++S S k k k βββ ,就称为线性无关;或者说,一向量组 s ααα,,,21 称为线性无关,如果由02211=+++S S k k k βββ 可以推出 021====s k k k 。 2.向量组的基本性质 ①.设r ααα,,,21 与s βββ,,,21 是两个向量组,如果向量组r ααα,,,21 可以经 s βββ,,,21 线性变出,s r 那么向量组r ααα,,,21 必线性相关。 ②.如果向量组r ααα,,,21 可以经向量组s βββ,,,21 线性表出,且r ααα,,,21 线性无关,那么s r ≤。 ③.任意1+n 个n 维向量必线性相关。 ④.两个线性无关的等价向量组必含有相同个数的向量。 ⑤.如果s ααα,,,21 的秩为r ,则s ααα,,,21 中任意r 个线性无关的向量都构成它的一个极大线性无关组。 ⑥.如果向量组(I )可以由向量组(II )线性表出那么(I )的秩不超过(II )的秩。 ⑦.若in ir ir i i ir i i i B A ααααααααα,,,,,()(),,()(12121 +===,若)(A 线性无关,则)(B 线性无关;若)(A 线性相关,则)(B 线性相关。

相关主题
文本预览
相关文档 最新文档