当前位置:文档之家› 抗高温高密度钻井液技术

抗高温高密度钻井液技术

抗高温高密度钻井液技术
抗高温高密度钻井液技术

抗高温高密度钻井液技术

抗高温高密度钻井液技术

摘要:随着油田的开发,为了提高原油采收率,SAGD(蒸汽辅助重力泄油)技术开始采用。在采用SAGD技术的区域油藏形成了温场气腔,气腔的温度达到200-245℃,气腔造成地层异常高温的同时也造成异常高压。这种温度和压力的异常给钻井施工带来的巨大困难,施工中钻遇气腔时钻井液被高温气污染,粘度切力急剧增加,严重时甚至丧失流动性,导致井下出现复杂情况,井涌、井漏、井塌、卡钻等井下安全事故风险巨大,钻井时效低,严重影响该区块的井网调整和开发。如何研制一套抗高温高密度钻井液体系迫在眉睫。

关键词:抗高温高密度流变性抗污染

一、地质及工程简况

1.地质简况

地层自下而上为:中上元古界,新生界古近系沙河街组沙四段、沙三段、沙1+2段,新近系馆陶组、明化镇组和第四系平原组。开发油藏位于沙河街组1+2段和馆陶组,油藏底界深度750m(未穿),厚度平均150米,岩性为浅灰色砂岩、砂砾岩与灰绿色泥岩互层,由于长期的注气影响,局部形成异常高温、高压。

2.工程简况

二开定向井为主,设计井深在700m-900m之间,最大井斜

10°-15°之间,设计井斜典型井深结构如下:

Φ346mm×105m/Φ273.05mm×103m+Φ241.3mm×750/Φ177.8mm×74 8m。

二、钻井液技术难点

1.钻井液抗高温问题

SAGD技术的应用改变了该区域原本始的地层温度,所钻遇的局部地层温度会达到200℃以上,地层温度高,要求钻井液的抗温能力为180-200℃。国内目前抗高温水基钻井液的抗温能力普遍认为在180℃以下,同时传统的抗高温水基钻井液处理剂难以满足200 ℃以

上钻井液的需求[1]。

2.高密度下钻井液的性能控制

SAGD技术的应用导致该地区地层压力系数的升高,为平衡局部高压,该地区要使用高密度钻井液,最高密度达到1.80g/cm3以上,高密度钻井液在高温高压下流变性难以控制[2-3]。这是因为高密度钻井液中固相含量高,自由水含量少[4],体系的流动性差;在高温作用下由于体系中粘土分散加剧、处理剂效果降低,钻井液的粘度和切力更是难以控制。

3.高压差下的润滑防卡问题

该地区本身地层压力系数低(0.8左右),但是随着注水注气影响,使地层压力出现了很大的不确定性,局部井段地层压力系数往往达到1.8以上,并且不同的地层压力处于同一裸眼井段,二开全井段处于高压差状态下钻进,加大了压差卡钻、井漏等井下复杂事故发生的几率。

4.高密度下的污水污染问题

该地区存在污水回注层,在钻遇污水回注层时由于地层或外来流体侵入钻井液中,使钻井液处理剂作用减弱,甚至彻底失去本来应有的作用,导致钻井液增稠,滤失量显著增大,润滑性变差等问题,因此,如何增强钻井液的抗污染能力,解决好污水污染问题也是施工的难点之一。

三、室内研究

1.钻井液体系优选

通过上述分析,高密度下钻井液流变性控制和高温条件下的稳定性是钻井液体系的关键。室内配制主要使用的无毒分散、有机硅分散、有机硅氟和MFC分散钻井液体系,并将其加重至1.80g/cm3测定其流变性。

实验结果是MFC钻井液体系在密度为1.80g/cm3的条件下,流动性能良好,优于其他3种钻井液体系。因此,优选MFC钻井液体系。

2.抗温能力

为了评价形成的高密度钻井液的抗温性能,将密度为1.80g/cm3的抗高温高密度钻井液在180℃下老化16h后冷却,在室内加热至

60℃,恒温条件下测试流变性能和滤失量。

测试结果表明,抗高温超高密度钻井液体系具有良好的抗高温热稳定性,在热滚之后密度没有变化,并且钻井液的流变性、滤失量没有发生明显变化,说明该钻井液抗温能力至少可达180℃。从而解决了该地区地层温度高,钻井液抗温能力不足的难点问题。

3.抗污染能力

在形成的抗高温钻井液配方中,在室内选择NaCl和Ca(OH)2为污染物,在抗高温、高密度钻井液中分别加入5%NaCl、0.5%Ca(OH)2,测试其性能。

结果显示,虽然受到不同盐的污染,但是钻井液性能没有明显变化,HTHP失水还有所降低,说明钻井液能有效抵御盐、钙侵,从而解决了该地区污水回注造成的钻井液污染的问题。

4.润滑性

高密度钻井液的固相含量高,形成的泥饼厚,磨阻、扭矩大,在大压差下容易发生粘卡,要求钻井液要有良好的润滑性,室内使用NF-2型泥饼粘滞系数测定仪测试优选钻井液经过高温老化后的泥饼摩阻系数为0.154,表现出较好的润滑性。

四、钻井液技术

1.一开

一开表层井段,地层较软、可钻性好,钻速快,井眼大,环空返速低,控制好流变性是施工关键,采用无机盐凝胶钻井液体系,使钻井液具有较高的粘切,保证携岩效率,使用FT-12调整钻井液流变性能及失水造壁性能。由于机械钻速高,保证固控设备使用率达到100%,清除无用固相。钻井液性能控制:粘度80-100s,密度1.06-1.08

g/cm3。

2.二开

二开定向段由于注水、注气层及污水回注层影响,钻井液控制重点是钻井液的抗温性能及钻井液抗污染能力,另外由于馆陶组地层胶结差,承压能力弱,提密度过程中钻井液的防漏能力也是施工难点。采用强封堵的抗温、抗盐MFC钻井液体系,注重钻井液的强抑制性,定向后加入3-5%液体润滑剂,保证钻井液具有良好的润滑性能;大

幅度提密度时,加入2%随钻堵漏剂防漏。控制膨润土含量在3-4%,较低的膨润土含量有助于钻井液各种性能的调整,加强固相控制,防止劣质固相特别是泥岩的细分散,导致的流变性能变差。钻井液性能控制:粘度65-75s,密度1.10-1.50 g/cm3,失水5-6ml,固相<18%,磨阻系数<0.1。

五、应用效果

该钻井液技术成功应用于SAGD采油区域6口调整井中,平均施工密度1.72g/cm3,平均机械钻速14.8m/h,实现了安全快速钻井。

六、结论与建议

1.MFC钻井液很好的满足了SAGD采油技术应用区域的钻井施工要求,钻井液维护处理简单,性能稳定且具有强抑制能力,井壁稳定,中完、完井电测均一次到底。

2.MFC钻井液具有良好的润滑防卡效果,在水平井施工过程中附加拉力小,起下钻顺畅,未发生卡钻等复杂情况。

3.随钻堵漏及良好封堵能力有效提高地层承压能力,能够有效预防井漏。

4.MFC钻井液抗盐、抗钙能力强,有效防止了因污水层流体侵入造成的钻井液性能恶化。

5.提高净化设备使用率,能有效地控制钻井液固相含量,保持钻井液性能稳定、具有良好的流变性,可防止阻卡的发生。

参考文献

[1]丁彤伟,鄢捷年,冯杰. 抗高温高密度水基钻井液体系的室内实验研究(J). 中国石油大学学报,2007(31):73-78

[2]RON Bland,GREG Mullen,YOHNNY Gonzales,et a1,HP/HT drilling fluids challenges[R].IADC/SPE103731,2006.

[3]鄢捷年.钻井液工艺学[M].东营:石油大学出版社,2001:345—346.

[4]蒲晓林,黄林基,罗兴树.深井高密度水基钻井液流变性、造壁性控制原理[J],天然气工业,2001,21(6):48-51.

------------最新【精品】范文

抗260℃超高温水基钻井液体系

第32卷第4期2015年 7月 V ol. 32 No.4 July 2015钻 井 液 与 完 井 液 DRILLING FLUID & COMPLETION FLUID doi: 10.3696/j.issn.1001-5620.2015.04.002 抗260 ℃超高温水基钻井液体系 张丽君, 王旭, 胡小燕, 张滨, 李彬, 王中华 (中原石油工程有限公司钻井工程技术研究院,河南濮阳) 张丽君等.抗260 ℃超高温水基钻井液体系[J].钻井液与完井液,2015,32(4):5-8. 摘要 通过引入抗高温降滤失剂MP488、高温流型调节剂CGW-6,使超高温钻井液流变性得到控制,通过采用抗盐高温高压降滤失剂HTASP-C,使超高温钻井液高温高压滤失量得到有效控制,形成了抗温达260 ℃、密度为2.35 g/cm3的淡水钻井液配方,并对其进行了抗温机理分析和性能评价。结果表明,该淡水钻井液抗NaCl污染可达饱和,页岩滚动回收率达94.1%,抗钻屑、膨润土污染能力强,具有良好的沉降稳定性,在密度为2.0~2.5 g/cm3时表现出较好的适应性,能够满足钻井液抗温260 ℃性能要求。 关键词 超高温水基钻井液;降滤失剂;流变性;高温高压滤失量 中图分类号:TE254.3 文献标识码:A 文章编号:1001-5620(2015)04-0005-04 近年来,超深井、特殊井和复杂井的数量逐渐增多,深井高温高密度钻井液的性能控制已成为制约深部地层油气勘探、开发的瓶颈难题之一[1]。前期已在室内形成了抗温达220~240 ℃的高密度钻井液体系[2-5]。通过对前期研发的处理剂、钻井液体系在260 ℃ 进行性能评价发现,部分处理剂降解严重,出现了钻井液流变性和滤失量控制难的问题。利用自主研发的抗高温降滤失剂MP488、抗盐高温高压降滤失剂HTASP-C、流型调节剂CGW-6[6-7],配合使用其他处理剂,形成了抗温达260 ℃、密度为2.35 g/cm3 的钻井液体系,并在室内对其性能进行了评价。 1 实验材料和仪器 膨润土、重晶石、NaCl、氯化钙,均取自现场;抗高温降滤失剂MP488、抗盐高温高压降滤失剂HTASP-C、高温流型调节剂CGW-6,室内开发。 高温滚动加热炉(50~300 ℃);ZNN-D6S型旋转黏度计;ZNS型失水仪;GGS-71型高温高压失水仪;变频高速搅拌机。 2 各因素对钻井液性能的影响 考察各因素对抗温260 ℃、密度为2.35 g/cm3淡水钻井液的影响,将钻井液在260 ℃老化16 h后,在60 ℃测其性能。实验用基浆配方如下。 (1%~4%)钠膨润土+(1%~7%)CGW-6+(0.3% ~2%)MP488+(1%~7%)HTASPC+1%NaOH+重晶石2.1 膨润土 膨润土对抗260 ℃高温淡水钻井液性能的影响见表1。由表1可知,随着膨润土加量的增加,钻井液的黏度、切力逐渐增加,中压滤失量变化不大,说明膨润土在钻井液中能提供较强的网架结构,但含量不能太高,避免膨润土颗粒高温分散引起的钻井液流变性、热稳定性等性能失控,控制含量在2.0%~3.0%较合适。实验引入了流型调节剂CGW-6和抑制剂,可适当降低黏度和切力。 表1 膨润土对超高温淡水钻井液性能的影响 膨润土/ % AV/ mPa d s PV/ mPa d s YP/ Pa FL/ mL Gel/ Pa/Pa pH 1.054.041.013.0 4.29.0/15.09.0 2.059.54 3.016.5 4.812.0/28.59.0 3.066.048.018.0 4.410.0/28.09.0 4.079.051.028.0 4.623.0/48.09.0 基金项目:中原石油勘探局科技攻关项目“抗温260 ℃钻井液体系研究”(2013101)部分研究成果。 第一作者简介:张丽君,工程师,1983年生,2009年毕业于郑州大学环境科学专业,现在从事钻井液技术研究工作。地址:河南省濮阳市中原路462号;邮政编码 457001;电话(0393)4899548;E-mail:bottle_0371@https://www.doczj.com/doc/fe2880655.html,。

第六章 高密度饱和盐水钻井液

第六章高密度饱和盐水钻井液技术 第一节高密度饱和盐水钻井液概述 一、饱和盐水钻井液的作用和发展概况 凡NaCl含量超过1%(质量分数,Cl-含量约为6000 mg/l)的钻井液统称为盐水钻井液。一般将其分为以下三种类型: (一)欠饱和盐水钻井液 其Cl-含量自6000 mg/l直至饱和之前均属于此类。 (二)和盐水钻井液 是指含盐量达到饱和,即常温下NaCl浓度为3.15×105 mg/l(Cl-含量为1.89×105mg/l)左右的钻井液。注意NaCl溶解度随温度变化而变化。 (三)海水钻井液 是指用海水配制而成的含盐钻井液。体系中不仅含有约3×104 mg/l的NaCl,还含有一定量的Ca2+和Mg2+。 根据含盐量的多少,在国外出版的专著中又将盐水钻井液分为以下几种类型:含盐量在1%~2%时为微咸水钻井液,在2%~4%时为海水钻井液,在4%与近饱和之间时为非饱和盐水钻井液,在含盐量达最大值31.5%时则被称为饱和盐水钻井液。 如前所述,为了防止盐膏层发生塑性变形和盐溶而造成缩径或井塌等复杂情况的发生, —154—

提高所用钻井液的密度是非常有效和必要的,这一点已被国内外盐膏层钻井的实践所证实。例如,华北油田新家4井使用油包水乳化钻井液钻3630~4518m的盐膏层井段,当钻井液密度为1.90~1.95 g/cm3时,在盐岩或含盐膏泥岩处,起下钻均会遇阻。而钻井液密度提高至2.03~2.04g/cm3时,井下情况正常,下钻仅轻微遇阻,不需划眼就可通过。因此,为保证安全顺利钻穿盐膏层,必须提高钻井液密度至能够控制盐岩蠕变和塑性变形所需范围。所需密度应根据井深、井温及盐岩蠕变规律来确定,同时还要根据已钻井实际资料和岩心实测试验数据来进行修正,钻井过程中还需根据该井段的实际情况随时进行调整,以确保钻井作业的顺利进行。钻井液密度的具体确定方法和应用图版已在第四、五章详细介绍过,在此不再赘述。 一般情况下,盐的溶解是造成盐膏层钻井过程中各种井下复杂情况的主要原因。因此,要想顺利钻穿盐膏层,就必须采取有效的措施以控制盐的溶解速率。当钻遇盐岩层、盐膏层或盐膏与泥页岩互层时,盐的溶解会使钻井液的粘度、切力上升,滤失量剧增,因此会进一步增加盐膏层钻井的难度。若在钻井液中预先加入工业食盐,可使水基钻井液具有更强的抗盐能力和抑制性。由于饱和盐水钻井液矿化度极高,因此抗污染能力强,对地层中粘土的水化膨胀和分散有极强的抑制作用。钻遇盐膏层时,由于体系中的盐已达饱和,使盐的溶解受到抑制,因此可使盐膏层中盐的溶解减至最小程度,避免大肚子井眼的形成和井塌等复杂情况的发生,从而使井眼规则,确保钻井过程的顺利进行。 在20世纪80年代中期,我国就研究成功饱和盐水钻井液体系,使其顺利钻进盐膏层,基本解决了盐膏层的盐溶、缩径、井塌及卡钻等井下复杂情况。因此,现已形成了较成熟的饱和盐水钻井液体系和针对不同地层的饱和盐水钻井液配方。如胜利油田在新东风10井使用聚合物复合钾盐饱和盐水钻井液顺利通过含盐膏的红层,钻达5344.71m;青海油田在狮20井使用新型的三磺饱和盐水钻井液钻进;中原油田使用了磺化沥青三磺盐水钻井液钻进。这些井的钻井实践表明,只要根据地层实际情况对饱和盐水钻井液的配方进行适当调整,就可以顺利钻穿盐膏层。 对于高密度饱和盐水钻井液体系,不仅能尽可能减少盐岩的溶解,而且由于其“高密度”(2.0~2.5 g/cm3),因此可以有效控制盐岩的蠕变和塑性变形,从而解决了盐膏层两大主要原因引起的复杂情况。同时由于体系中加入了抗盐、抗高温和强抑制性的处理剂,如磺化酚醛树脂、氯化钾和硅酸盐等,因此可以保证井壁稳定,并可在深井和超深井中使用。 —155—

和田1井高密度钻井液技术

和田1井高密度钻井液技术 和田1井是新疆塔里木盆地一口超深预探井,完钻井深6813.50m。该井地质条件复杂,上部地层易水化膨胀,造浆严重;下部地层有大段盐膏层和高压盐水层。在钻井施工过程中,易发生泥包钻头、缩径、井塌、井漏、卡钻等复杂情况。针对不同地层特点,分段采用了不同的钻井液体系及相应的维护处理措施。现场应用表明:该套钻井液体系具有很好的的抑制性、悬浮携带、稳定井壁、润滑防卡能力,满足了钻井施工的要求。 标签:高密度钻井液;井眼稳定;防塌;抑制性;超深井 和田1井位于新疆和田市境内,是和田河西区块的一口预探井。钻探目的是勘探石炭系、奥陶系油气藏。该地区在钻井施工过程中,因地层复杂,易发生阻卡、泥包、掉快、井塌、井漏等复杂情况,引起长井段划眼、卡钻等复杂事故。针对该井不同地层段的实际情况,分段采取了不同的钻井液体系及相应的维护措施。现场应用表明该套钻井液体系具有强的抑制性,较好的悬浮携带、稳定井壁、润 滑防卡能力,成功解决了该区块易出现的复杂情况。 1 地质工程概况 和田1井地质分层及岩性特征如下:第四系(0-50m):流砂层;第三系(50-795m):泥岩夹中细砂岩;三叠系(795-924m):褐色泥岩、紫红色砾状砂岩;二叠系(924-2614m):泥岩、粉砂岩、火成岩、褐色泥岩夹膏岩;石炭系(2614-3430m):泥岩、砂岩、灰岩不等互层;泥盆系(3430-3489m):中砾岩、砂岩与泥岩互层,石英细砂岩夹棕色泥岩;志留系(3489-3918m):粉砂岩、暗褐色泥岩;奥陶系(3918-5522m):灰岩、泥灰岩、白云岩、褐色、灰褐色灰岩、泥灰岩、白云岩;寒武系(5522-6813.50m): 灰色、深灰色白云岩、灰质云岩。 和田1井一开使用φ660.4mm钻头钻至123.12m,下入φ508mm*123.12m表层套管;二开使用φ444.5mm钻头钻至1949m,下入φ339.7mm*1948.03m技术套管;三开使用φ311.15mm的钻头钻至4155m,下入φ244.5mm*4153.81m技术套管;四开使用φ215.9mm的钻头钻至6100m,下入φ177.8mm*6097m技术套管。五开使 用φ149.2mm的钻头钻至井深6813.5m完钻。 2 钻井液技术难点 本井为五开预探井,套管程序多且地层复杂。一开、二开井径大,大段软泥岩、

高密度钻井液

新型钻井液加重材料 1 四氧化锰 贝克体斯公司使用专利加重材料---Micromax开发出了一种逆乳化钻井液。这种加重材料是四氧化锰,与重晶石颗粒相比,四氧化锰具有粒径小、颗粒呈球形的特点。由于球形颗粒的粒间摩擦很小,故钻井液的塑性粘度大幅度降低。虽然四氧化锰的密度比重晶石大得多,但其颗粒的尺寸却比重晶石小得多,这就意味着这些颗粒可以被弱结构的钻井液所支撑,同时在较低的屈服值下不会增加沉降的风险。Micromax可以改善钻井液的流变性能,同时降低加重材料发生沉降的趋势,可在高温/高压井和小井眼中使用。对于高温/高压井,减轻沉降趋势和降低塑性粘度能大幅度缩短钻井时间,减少井下漏失。连续管钻井和过油管钻井的发展也为该钻井液的使用提供了潜在市场。 从健康与安全的角度来说,由于细颗粒尺寸和粉尘所带来的问题可以通过事先将加重材料与钻井液混合来避免。压井用的钻井液被运输到井场上,其中部分钻井液被油和盐水稀释成所需的钻井液密度。这一操作安全可靠,并能极大地简化采用非标准加重材料所带来的诸多问题。 超高密度钻井液 技术难点: 由于深井并底温度高,对高密度钻井液的处理异常复杂。经常陷人“加重一增稠—降粘一加重剂沉降—密度下降一再次加重”的恶性循环.影响钻井的正常进行,甚至可能引起严重卡钻事故。而本次研究的钻井液密度高达3.0.g/cm3.体系中的固相含量极高(若用重晶石作加重剂,其体积分数将大于60%)。体系的流变性和沉降稳定性之间的矛盾十分突出。C'hiligcrian G V等认为,重晶石的加重极限可以达到2. 64 g/ cm3,超过此极限,钻井液的流变性与沉降稳定性之间的矛盾将不可调和,出现顾此失彼的困难。显然,解决好密度为3.00 g/cm3钻井液的流变性和沉降稳定性之间的矛盾是超高密度钻井液研究成功的技术关键。 重晶石粉技术指标的研究 加重剂密度越大.钻井液中固相的体积分数就越小。Gary G R和Young Jr F S认为,方铅矿可将钻井液密度提高到3.85 g/cm3。但在中国,方铅矿尚未真正开发用于钻井行业。为此着重研究了重晶石。 1.重晶石粉密度 如果选用的重晶石密度大,则其在钻井液中的体积分数就较小.从而有利于改善钻井液流变性。在研究中选用了密度为4.4 g/cm''左右的重晶石粉。 2.重晶石粉的粒度 根据斯笃克斯定律,在重晶石粉密度一定的情况下况下,影响钻井液沉降稳定性的因素主要为重晶石粉粒度分布和钻井液液相粘度。二者必须相互协调,液相粘度太高影响钻井液流动性,太低则无法满足对钻井液沉降稳定性的要求;重晶石粒度太粗则沉降速率大,增加维持钻井液良好稳定性的难度.太细则钻井液流动性能难以调节。研究中发现,虽然Chiligcrian G V'等人提出了重晶石的理沦加重极限,但观点是建立在“重晶石各项技术指标均符合AYI标准”的基础上,对有特殊密度要求的钻井液,重晶石粒度可以不符合AP1标准。Briscoe B J等人认为,随着重晶石含量的增加。钻井液中粘土与重晶石颗粒间的相互作用存在三种方式,当重晶石的体积分数大于15%时,重晶石颗粒之间相互靠近,重晶石本身可能参与形成网状结构,从而增强了体系的凝胶强度(见图1>;而在密度为3. 00 g/cm3的钻井液中.重晶石的体积分数在60%以上,它在钻井液中形成的网状结构的强度不可忽视。

饱和盐水泥浆配方

饱和盐水泥浆配方 一、四川常用饱和盐水泥浆配方 1、 组成 1.04轻浆+5%SMP-2+5%SMC+1%FCLS+1%CMS+0.5%CMC-LV+0.1~0.3%PAC(或 CMCHV)+0.1~0.2%烧碱+0.1~0.2%AS+NaCL 至饱和,视要求加重。 必要时加入0.5~1%RHS 等润滑剂加入0.1%盐结晶抑制剂(井深时必用) 3、注意事项 1)转化前对井浆进行性能调节的同时,高效率地用好固控设备循环除砂8小时,并全面掏罐一次。 2)钻进中用好振动筛和除砂清洁器(密度小于1.60g/cm 3)。 3)固控工作中防因清洗固控设备导致水进入钻井液。 二、已实践饱和盐水钻井液 1、 主要成:坂土基浆中加入聚合物和SMP 护剂,然后加NaCL 至饱和。 2、 主要材料:坂土、纯碱、烧碱、SMP 、PAC-HV 、ABS 表面活性剂(或RH-4清洁器)、 RH-3润滑剂、CMS 、消泡剂、铁铬盐、NaCL 3、 配方方法及加量: 1) 清水+10%坂土 +0.6%纯碱配成新浆予水化8小时以上备用。 2) 新浆稀释成4~5(重量)后加入5%SMP (干粉3%)、0.1~0.2%PAC-HV ,0.2~0.4%CMS, 然后加NaCL 至饱,若粘切过高加0.3~1%FCLS 调至合适,循环中加入清洁器0.2%、润滑剂0.4~0.5%,在此处理中用烧碱调节PH 值到10~11并在钻进中保持。 1)CL -保持在日常维护中的NaCL 补充。 2)失水偏大以SMP 配合CMS ,比例约3:1,配成溶液加入为好,超深井段淀粉效果差时可改用部分PAC-LV 。 3)使用中粘度大多不会偏低,若偏低可用PAC-HV 增粘。 4)补充新浆保持坂土含量,钻盐泥浆由不应补充坂土而应稀释。

高密度抗盐水泥浆体系介绍

高密度抗盐水泥浆 体系介绍 1

高密度抗盐水泥浆体系 吴达华谭文礼邹建龙宋有胜(中国石油集团工程技术研究院,天津 塘沽) 摘要:本文结合石油钻井工程需要,提出了高密度抗盐水泥浆的设计原则,并阐述了盐对水泥浆的性能和水泥添加剂的影响,阐述了提高水泥浆密度的方法和最新进展,介绍了BXF-200L抗盐降失水剂和超细锰矿加重剂BXW-1的研究成果,并对高密度抗盐水泥浆体系的配方和性能进行了研究,经过紧密堆积实现了高密度水泥浆体系的高性能。研究表明采用BXF-200L降失水剂、BXW-1加重剂,和赤铁矿粉能够配出密度高达 2.6g/cm3的高性能高密度抗盐水泥浆体系,在哈萨克斯坦肯基亚克盐下油田现场应用表明该抗盐水泥浆体系有良好的适用性。 主题词:高密度含盐水泥浆紧密堆积 286

一、前言 在中国的西部油田、中原油田、南海油田的钻探过程中都不同程度的钻遇了高压盐水层、或者大段盐膏层和水敏性地层等复杂地层;在国内各石油公司向海外拓展的钻井业务中也碰到类似的固井问题,如哈萨克斯坦、乌兹别克斯坦、印度尼西亚等海外项目。有时在海上、滩海作业中还经常试图用海水直接配制水泥浆,由于海水中的盐会对水泥外加剂性能及水泥浆水化过程产生严重影响,往往难以如愿,因此如何解决高密度水泥浆的抗盐问题一直受到国内外固井界的重视。 大家知道,一般的高密度盐水水泥浆体系在使用过程中经常会遇到这些问题: 1、体系不稳定,引起水泥和加重材料的沉降; 2、稠度过高,常温下流动性差,施工密度难以达到设计要求; 3、降失水剂、分散剂和缓凝剂由于盐的影响而失去作用,有时甚 至出现闪凝现象,失水控制困难; 4、盐水水泥浆过渡缓凝,体系的防窜性能较差; 5、由于密度的提高,水泥浆中的有效水泥质材料相对较少,强度 发展缓慢,特别是水泥环的顶部经常出现不凝固,不能满足长 封固段固井作业的要求; 6、由于钻井液密度过高,切力又很大,顶替效率难以保证,会对水 泥浆性能产生不良影响。 287

高温(220℃)高密度(2.3 g-cm3)水基钻井液技术研究

第24卷第5期2007年9月 钻井液与完井液 DRILLINGFLUID&COMPLETIONFLUID VoI.24No.5 Sept.2007 文章编号:1001—5620(2007)05—0015—05 高温(220℃)高密度(2.3g/cm3)水基钻井液技术研究 杨泽星孙金声 (中国石油集面钻井工程技术研究院,北京) 摘要针对钻井工程莆求,评价优选出了抗高温钻井渍用高温保护捌、降蒋失剂、封堵剂辱钻井液处理剂,井进一步优选出了抗高温(220℃)高密度(1.80~2.30g/cm3)水基钻井液配方。室内评价结果表明;谈体系具有魁好的抑制性和抗钻肩污染性能,抗钻周格污荣达10%;具有一定的抗电解质能力,抗盐达2%,抗氯也钙选0.5%,具有盘好的润滑性能l容易配制和维护。 关键词高密度钻井液高温钻井液钻井液配方钻井液露加剂 中圈分类号:TE254.3文献标识码:A 近年来,随着超深井、特殊井和复杂井数量的增多,钻井作业对钻井液处理剂的抗温性要求越来越高[1]。中国目前的水基钻井液体系最高使用温度在180℃以内.但海洋钻井所钻遇的地层温度最高达200℃,所使用的钻井液密度最高达2.33g/onl3。这些高密度钻井液由外国公司承包,所使用的主要处理剂也由外国公司提供o]。基于以上情况,在调研国外资料的基础上,经过大量的室内试验研究,成功地研制出了抗高温(220℃)高密度(1.80~z.30g/cm3)水基钻井液体系。用不大,在井壁上能形成低渗透、柔韧、薄而致密的泥饼,与其它处理剂的配伍性好。 1.3防塌封墙剂GFD 防塌封堵剂GFD具有良好的抑制页岩水化膨胀的作用,高温下能有效封堵井壁地层裂缝,有利于深井防塌和储层的保护,同时它可以有效地填充于泥饼中,改善泥饼质量,降低泥饼的渗透性、摩阻系数和高温高压滤失量。 2抗高温高密度水基钻井液的性能 1处理剂的优选与评价2.11.1高温保护剂GBH 高温保护剂GBH是一种磺化多元共聚物,具 有以下功能:①抗温性能好,在膨润土颗粒表面吸附 能力强,高温下具有护胶作用;②在钻井液中具有协 同增效的作用,与其它处理剂作用可形成络合物,有 效地提高其它处理剂的抗温性能,因而提高了钻井 液体系的抗温能力;③在高密度水基钻井液中具有 高温稀释作用,能改善钻井液的流变性能和高温高 压滤失性能{④具有一定的抑制页岩水化膨胀的作 用,可稳定井眼。 1.2降滤失剂GJ?I、GJ-Ⅱ 降滤失剂GJ—I、GJ一Ⅱ均为磺化树脂型降滤失 荆,抗温性能好,降滤失能力强,对钻井液的增黏作 配方的确定 通过室内系列配方的优选实验,最终确定新型 高温高密度钻井液的基本配方为: 2%夏子街土+2%GBH+6%GJ—II+4%GJ—I +4%封堵剂GFD+重晶石 2.2抗温性能 按照配方,在低速搅拌下依次加人各种处理剂 后,高速搅拌20rain,装人瓶中密封养护24h。把 养护好的钻井液移人高搅杯中,高速搅拌10rain, 测其流变性能和API滤失量.然后装入老化罐中 在不同的温度下老化16h,冷却至室温.移人高搅 杯中高速搅拌5min。测其流变性能、中压滤失量 和高温高压滤失量。不同密度的钻井液在不同温度 老化后的流变性能及滤失性能见表1。 第一作者简介:杨泽星,现在中国石油集团钻井工程技术研究院钻井寝所工作。从事抗高温水基钻井戚技术方面的研究。地址t北京市学院路20。中国石j卣集团钻井工程技术研究皖;邮破编码100083,电话(010)62097412。  万方数据 万方数据

饱和盐水钻井液

饱和盐水钻井液 saturated saltwater drilling fluids 用氯化钠配制的饱和盐水溶液。它的冻结温度低(在摄氏零度以下),用以钻进永冻层;在岩盐层钻进时,已饱和的盐水溶液可以防止对井壁和岩心的进一步溶解。在钻进其他盐层,如光卤石(钾、镁的氯化物)层时,要用饱和钾盐溶液;钻进石膏层时,用饱和的石膏(Cas04)溶液;钻进芒硝层时,则用Na2So4溶液;其他亦用相应的饱和溶液进行钻进。含有一种或多种可溶性盐的饱和溶液。 它主要用于钻大段岩盐层,也可在钻开储层时配制成清洁盐水钻井液使用。由于其矿化度极高,因此抗污染能力强,对底层中粘土的水化膨胀和分散有很强的抑制作用。钻遇岩层时可以将盐的溶解减小到最小程序。 利97井是胜利油田布署的一口钻探盐下油气藏的重点探井,共钻遇3套盐膏层,盐膏层总厚度达600m,其井段岩性主要为盐膏岩、膏泥岩、纯盐岩及红色、灰色泥岩。根据该井地质特点和施工要求,配制复合盐饱和盐水钻井液体系,并进行热稳定性和抗污染性实验,在该井三开井段(2850~3915m)应用,取得良好效果。有效抑制了泥岩段地层黏土矿物的水化膨胀,钻井过程中无掉块,起下钻顺利;盐膏层钻井过程中,用Na2SO4控制钻井液中Ca2+含量,很好地控制了钻井液流变性和滤失量,减少了采用纯碱控制Ca2+含量对钻井液流变性造成的不利影响;用饱和盐水钻井液控制Cl-的浓度,使其一直处于饱和状态,钻井液未对井壁溶蚀,电测解释井眼相对规则;三开钻进、电测、完井及

取心都非常顺利(盐膏层取心2次),表明复合盐饱和盐水钻井液体饱和盐水钻井液体系在永冻层的钻进功效,钻井液是永冻层钻井的关键技术之一,它直接影响钻井作业的成败。研究出一套以护胶降滤失水为主剂的适应于永冻层钻井的饱和盐水钻井液,并对其进行了配方优选,成功解决了永冻层冻结钻杆、钻具造成的困难,缩短钻井周期。 欠饱和盐水聚合物钻井液技术。该体系具有较强的抑制性强,抗污染效果较好,具有一定的防卡、防塌能力,保证了该井顺利钻探。基本满足了钻井的要求,但盐膏层的井径扩大率等不尽如意。 如果使用淡水抗盐钻井液体系或欠饱和盐水钻井液钻井,则在十多层甚至几十层盐膏层处会使盐膏大量溶解,形成“大肚子”井眼,而在泥岩层又会使其吸水膨胀、剥落掉块,结果给钻井工作带来很大的问题,也会导致固井质量不合格。 使用饱和盐水钻井液则可完全避免上述问题 由于钻井液滤液中NaCl或Cl-含量达到饱和,钻遇盐膏层时阻止其溶解,不会形成“大肚子”。另外由于饱和盐水钻井液具有很强的抑制性,当钻遇泥岩段时能够抑制其膨胀、分散,保证井径规则,井径扩大率小,起下钻畅通、钻井速度提高、水平段井眼轨迹易于控制并能保证固井质量合格。 在钻井过程中,当钻到较厚岩层的地层后,为保证井壁稳定常采用饱和盐水钻井泥浆。在钻井现场发现,使用饱和盐水泥浆时,钻井过程中钻具发生较严重腐蚀,同时还发现取出的钻具在

抗高温高密钻井液的研究及效果评价

龙源期刊网 https://www.doczj.com/doc/fe2880655.html, 抗高温高密钻井液的研究及效果评价 作者:戴毅程鹏至 来源:《中国石油和化工标准与质量》2013年第01期 【摘要】在高温深井钻井过程中,要求钻井液在高温高密度下能有效满足钻井工程及地质录井的要求。因此,就要求使用各种性能优良的抗高温高密度钻井液。本文着重研究抗高温高密度的水基钻井液配方及其性能。该配方的建立采用单因素法确定降粘剂、降失水剂、高温防塌抑制剂、高温稳定剂等几种主要处理剂的加量,进行钻井液的优组优配,形成一套老化前后流变性能及失水造壁性能较好的抗高温高密度水基钻井液。 【关键词】高温高密度水基钻井液配方储层保护 1 抗高温高密度水基钻井液配方1.1 降粘剂XS加量优选 取降滤失剂GYJ加量5%,防塌抑制剂FY加量3%,提粘剂TN加量0.5%,加重剂加量530g,为0‰、3‰、5‰、7‰、10‰。钻井液总体积取420ml,密度为2.0 g/cm3。通过钻井液在160℃热滚16小时前后的流变性能和滤失量实验, 在其它组分加量一定的情况下,钻井液的塑性粘度PV在老化前后随降粘剂XS加量的增大虽有些变化但都整体呈现出较稳定的值。而动切力YP在老化前,随XS加量的增大在整体上表现为减小的趋势,这符合XS的降粘作用机理。但在老化后,却随XS加量的增大而在整体上呈增大的趋势。这可能是在加重钻井液中常温作用下XS能很好的起到降粘作用,但在160℃高温下热滚后,某些分子链发生了断裂而不能起降粘作用,所以导致了动切力的升高。老化前钻井液的API失水随着降粘剂XS加量的增大先增大后减小,在5‰加量处出现最大值;老化后,其API失水随XS加量的增大而在整体上呈减小的趋势,在5‰加量处有一个失水量较小的点,而10‰加量处为失水最小点。老化前的API失水都满足要求,而老化后失水量却全部增大。取整体性能较好的5‰XS加量的泥浆做160℃、3.5Mpa、滤板+滤纸的HTHP 失水实验,失水量为20ml,比较理想。因此,确定XS加量为5‰,并直接把钻井液密度直接升到2.35 g/cm3,做GYJ加量变化实验。

钻井液常用计算公式

钻井液常用计算公式 1、钻井液配制与加重的计算 (1)配制低密度钻井液所需粘土量 水 土水 泥土泥土 )(ρ-ρρ-ρρ=V W 式中: 土W ---所需粘土重量,吨(t ); 土ρ -- 粘土密度,克/厘米3(g/cm3) 水ρ -- 水的密度,克/厘米3(g/cm3) 泥ρ -- 欲配制的钻井液的密度,克/厘米3(g/cm3) 泥 V 欲配制的钻井液的体积,米3(m3) (2)配制低密度钻井液所需水量 土 土泥水ρ-=W V V 式中: 水V ---所需水量,米3(m3); 土ρ -- 所用粘土密度,克/厘米3(g/cm3) 土 W -- 所用粘土的重量,吨(t ) 泥V -- 欲配制的钻井液的体积,米3(m3) (3)配制加重钻井液的计算 ①对现有体积的钻井液加重所需加重剂的重量

重 加原 重加原加 ) (ρ-ρρ-ρρ=V W 式中: 加W ---所需加重剂的重量,吨(t ); 原ρ -- 原有钻井液的密度,克/厘米3(g/cm3) 重ρ -- 钻井液欲加重的密度,克/厘米3(g/cm3) 加ρ -- 加重剂的密度,克/厘米3(g/cm3) 原 V -- 原有钻井液的体积,米3(m3) ②配制预定体积的加重钻井液所需加重剂的重量 原 加原 重加重加 ) (ρ-ρρ-ρρ=V W 式中: 加W ---所需加重剂的重量,吨(t ); 原ρ -- 原有钻井液的密度,克/厘米3(g/cm3) 重ρ -- 钻井液欲加重的密度,克/厘米3(g/cm3) 加ρ -- 加重剂的密度,克/厘米3(g/cm3) 重 V -- 加重后钻井液的体积,米3(m3) ③用重晶石加重钻井液时体积增加 2 1 224100(v ρ-ρ-ρ=.) 式中: v ---每100m3原有钻井液加重后体积增加量,米3(m3);

抗高温高密度钻井液技术

抗高温高密度钻井液技术 抗高温高密度钻井液技术 摘要:随着油田的开发,为了提高原油采收率,SAGD(蒸汽辅助重力泄油)技术开始采用。在采用SAGD技术的区域油藏形成了温场气腔,气腔的温度达到200-245℃,气腔造成地层异常高温的同时也造成异常高压。这种温度和压力的异常给钻井施工带来的巨大困难,施工中钻遇气腔时钻井液被高温气污染,粘度切力急剧增加,严重时甚至丧失流动性,导致井下出现复杂情况,井涌、井漏、井塌、卡钻等井下安全事故风险巨大,钻井时效低,严重影响该区块的井网调整和开发。如何研制一套抗高温高密度钻井液体系迫在眉睫。 关键词:抗高温高密度流变性抗污染 一、地质及工程简况 1.地质简况 地层自下而上为:中上元古界,新生界古近系沙河街组沙四段、沙三段、沙1+2段,新近系馆陶组、明化镇组和第四系平原组。开发油藏位于沙河街组1+2段和馆陶组,油藏底界深度750m(未穿),厚度平均150米,岩性为浅灰色砂岩、砂砾岩与灰绿色泥岩互层,由于长期的注气影响,局部形成异常高温、高压。 2.工程简况 二开定向井为主,设计井深在700m-900m之间,最大井斜 10°-15°之间,设计井斜典型井深结构如下: Φ346mm×105m/Φ273.05mm×103m+Φ241.3mm×750/Φ177.8mm×74 8m。 二、钻井液技术难点 1.钻井液抗高温问题 SAGD技术的应用改变了该区域原本始的地层温度,所钻遇的局部地层温度会达到200℃以上,地层温度高,要求钻井液的抗温能力为180-200℃。国内目前抗高温水基钻井液的抗温能力普遍认为在180℃以下,同时传统的抗高温水基钻井液处理剂难以满足200 ℃以

相关主题
文本预览
相关文档 最新文档