当前位置:文档之家› 托勒密定理圆的其它定理

托勒密定理圆的其它定理

托勒密定理圆的其它定理
托勒密定理圆的其它定理

托勒密定理

定理图

定理的内容托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。原文:圆的内接四边形中,两对角线所包矩形的面积等

于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.

定理提出

定理的内容。

摘出并完善后的托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对

边乘积的和等于两条对角线的乘积。

定理表述:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。

从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质.

定理内容

指圆内接两对对边乘积的和等于两条对角线的乘积。

证明

一、(以下是推论的证明,托勒密定理可视作特殊情况。)

在ABCD中(如右图),作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD,连接DE.

则△ABE∽△ACD

所以 BE/CD=AB/AC,即BE·AC=AB·CD (1)

由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD,

所以△ABC∽△AED.

BC/ED=AC/AD,即ED·AC=BC·AD (2)

(1)+(2),得

AC(BE+ED)=AB·CD+AD·BC

又因为BE+ED≥BD

(仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”)

复数证明

用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。首先注意到: (a?b)(c?d) + (a?d)(b?c) = (a?c)(b?d) ,两边取,运用得。等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。四点不限于同一。平面上,托勒密不等式是三角不等式的形式。

二、

设ABCD是。在BC上,∠BAC = ∠BDC,而在AB上,∠ADB = ∠ACB。在AC上取一点K,使得∠ABK = ∠CBD;因为∠ABK + ∠CBK = ∠ABC = ∠CBD + ∠ABD,所以∠CBK = ∠ABD。因此△ABK与△DBC,同理也有△ABD ~ △KBC。因此AK/AB = CD/BD,且CK/BC = DA/BD;因此AK·BD = AB·CD,且CK·BD = BC·DA;两式相加,得(AK+CK)·BD = AB·CD + BC·DA;但AK+CK = AC,因此AC·BD = AB·CD + BC·DA。证毕。

三、

托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和).已知:圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:如图1,过C作CP交BD于P,使∠1=∠2,又∠3=∠4,

∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC ①。又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.得AC:CD=AB:DP,AC·DP=AB·CD ②。①+②得AC(BP+DP)=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.

四、广义托勒密定理:设四边形ABCD四边长分别为a,b,c,d,两条对角线长分别为m,n,则有:

m^2*n^2=a^2*c^2+b^2*d^2-2abcd*cos(A+C)

推论

1.任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD 时取等号。

2.托勒密定理的同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆、

推广

托勒密不等式:凸四边形的两组对边乘积和不小于其对角线的乘积,取等号当且仅当共圆或共线。

简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模,

得不等式AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD

运用要点

1.等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、

C、D四点共圆等价。

2.四点不限于同一平面。

:在一条线段上AD上,顺次标有B、C两点,则AD·BC+AB·CD=AC·BD

弦切角定理

弦切角定义

顶点在圆上,一边和圆相交,另

图示

一边和圆相切的角叫做。(弦切角就是与弦所夹的角)

如右图所示,直线PT切圆O于点C,BC、AC为圆O的弦,∠TCB,∠TCA,∠PCA,∠PCB都为弦切角。

弦切角定理

弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. 弦切角定理证明:

证明一:设圆心为O,连接OC,OB,。

∵∠TCB=90-∠OCB

∵∠BOC=180-2∠OCB

∴,∠BOC=2∠TCB(定理:弦切角的度数等于它所夹的弧所对的圆心角的度数的一半)

∵∠BOC=2∠CAB(圆心角等于圆周角的两倍)

∴∠TCB=∠CAB(定理:弦切角的度数等于它所夹的弧的圆周角)

证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC 所夹的弧.

求证:(弦切角定理)

证明:分三种情况:

(1)圆心O在∠BAC的一边AC上

∵AC为直径,AB切⊙O于A,

∴弧CmA=弧CA

∵为半圆,

∴∠CAB=90=弦CA所对的圆周角

B点应在A点左侧

(2)圆心O在∠BAC的内部.

过A作直径AD交⊙O于D,

若在优弧m所对的劣弧上有一点E

那么,连接EC、ED、EA

则有:∠CED=∠CAD、∠DEA=∠DAB

∴∠CEA=∠CAB

∴(弦切角定理)

(3)圆心O在∠BAC的外部,

过A作直径AD交⊙O于D

那么∠CDA+∠CAD=∠CAB+∠CAD=90 ∴∠CDA=∠CAB

∴(弦切角定理)

弦切角推论

推论内容

若两弦切角所夹的弧相等,则这两个弦切角也相等

应用举例

例1:如图,在Rt△ABC中,∠C=90,以AB为弦的⊙O与AC相切于点A,∠CBA=60° , AB=a 求BC长.

解:连结OA,OB.

∵在Rt△ABC中, ∠C=90

∴∠BAC=30°

∴BC=1/2a(RT△中30°角所对边等于斜边的一半)

例2:如图,AD是ΔABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB,AC分别相交于E,F.

求证:EF∥BC.

证明:连DF.

AD是∠BAC的平分线∠BAD=∠DAC

∠EFD=∠BAD

∠EFD=∠DAC

⊙O切BC于D ∠FDC=∠DAC

∠EFD=∠FDC

EF∥BC

例3:如图,ΔABC内接于⊙O,AB是⊙O直径,CD⊥AB于D,MN切⊙O于C,

求证:AC平分∠MCD,BC平分∠NCD.

证明:∵AB是⊙O直径

∴∠ACB=90

∵CD⊥AB

∴∠ACD=∠B,

∵MN切⊙O于C

∴∠MCA=∠B,

∴∠MCA=∠ACD,

即AC平分∠MCD,

同理:BC平分∠NCD.

相交弦定理

概念

相交弦定理

圆内的两条相交弦,被交点分成的两条线段长的积相等。(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)

相交弦说明

几何语言:

若弦AB、CD交于点P

则PA·PB=PC·PD(相交弦定理)

推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的

几何语言:

若AB是直径,CD垂直AB于点P,

则PC^2=PA·PB(相交弦定理推论)

如何证明

证明:连结AC,BD,由的推论,得∠A=∠D,∠C=∠B。(推论2: 同(等)弧所对圆周角相等.)∴△PAC∽△PDB,∴PA∶PD=PC∶PB,PA·PB=PC·PD 注:其可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性。

其逆定理也可用于证明四点共圆。

比较

相交弦定理、及(切割线定理推论)以及他们的推论统称为。一般用于求线段长度。切割线定理

定理

切割线定理:从圆外一点引圆的和,切线长是这点到割线与圆交点的两条线段长的。是的一种。

切割线定理示意图

几何语言:

∵PT切⊙O于点T,PBA是⊙O的割线

∴PT的平方=PA·PB(切割线定理)推论:

从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

几何语言:

∵PBA,PDC是⊙O的割线

∴PD·PC=PA·PB(切割线定理推论)()

由上可知:PT的平方=PA·PB=PC·PD

证明

切割线定理证明:

设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则

PT^2=PA·PB

证明:连接AT, BT

∵∠PTB=∠PAT()

切割线定理的证明

∠P=∠P(公共角)

∴△PBT∽△PTA(两角对应相等,两三角形相似)

则PB:PT=PT:AP

即:PT^2=PB·PA

比较

相交弦定理、及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。一般用于求直线段长度。

圆幂定理

百科名片

圆幂定理

圆幂定理是对、及(切割线定理推论)以及它们推论统一归纳的结果。

定义

=PO^2-R^2(该结论为)

所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

切定理:从圆外一点引圆的和割线,是这点到割线与圆交点的两条线段长的。

割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD。

统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。

证明

圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统一归纳为圆幂定理)

问题1

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等。

证明:连结AC,BD,由的推论,得∠A=∠D,∠C=∠B。

∴△PAC∽△PDB

∴PA/PD=PC/PB

∴PA·PB=PC·PD

问题2

割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有PA·PB=PC·PD,当PA=PB,即直线AB重合,即PA切线时得到切线定理PA^2=PC·PD 证明:(令A在P、B之间,C在P、D之间)

∵ABCD为

∴∠CAB+∠CDB=180°

又∠CAB+∠PAC=180°

∴∠PAC=∠CDB

∵∠APC公共

∴△APC∽△DPB

∴PA/PD=PC/PB

∴PA·PB=PC·PD

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项

几何语言:∵PT切⊙O于点T,PBA是⊙O的割线

∴PT^2=PA·PB(切割线定理)

推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等

几何语言:∵PBA、PDC是⊙O的割线

∴PD·PC=PA·PB(切割线定理推论)

问题3

过点P任作直线交定圆于两点A、B,证明PA·PB为定值(圆幂定理)。

证:以P为原点,设圆的方程为

(x-xO)^2+(y-yO)^2=a①

过P的直线为

x=k1t

y=k2t

则A、B的横坐标是方程

(k1t-xO)^2+(k2t-yO)^2=r^2

各种圆定理总结(包括托勒密定理、塞瓦定理、西姆松定理、梅涅劳斯定理、圆幂定理和四点共圆)

托勒密定理 定理图 定理的内容托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组 对边所包矩形的面积之和。从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式, 托勒密定理实质上是关于共圆性的基本性质. 定理的提出 一般几何教科书中的托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的 书中摘出。 证明 一、(以下是推论的证明,托勒密定理可视作特殊情况。) 在任意四边形ABCD 中,作△ ABE使/ BAE= / CAD / ABE= / ACD 因为△ ABE ACD 所以BE/CD=AB/AC, 即BE-AC=AB CD (1) 而/ BAC= / DAE ,,/ ACB= / ADE 所以△ ABC AED 相似. BC/ED=AC/AD 即ED- AC=BC AD (2) ⑴+⑵,得 AC(BE+ED)=AB CD+AD BC 又因为BE+EI> BD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即托勒密定理”) 所以命题得证 复数证明 用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、 BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。首先注意到复数恒等式:(a -b)(c - d) + (a - d)(b - c) = (a - c)(b - d),两边取模,运用三角不等式得。等 号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。四点不限于同一平面。平面上,托勒密不等式是三角不等式的反演形式。 二、设ABCD是圆内接四边形。在弦BC上,圆周角/ BAC = / BDC,而在AB上, / ADB = / ACB。在AC 上取一点K,使得/ ABK = / CBD ; 因为/ ABK + / CBK = / ABC = / CBD + / ABD,

2013高中数学奥数培训资料之托勒密定理试题

《托勒密定理及其应用》 托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即:;内接于圆,则有: 设四边形BD AC BC AD CD AB ABCD ?=?+? ;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BD AC BC AD CD AB ABCD ?≥?+? 一、直接应用托勒密定理 例1 如图2,P 是正△ABC 外接圆的劣弧上任一点(不与B 、C 重合), 求证:PA=PB +PC . 四点共圆时成立; 、、、上时成立,即当且仅当在且等号当且仅当相似 和且又相似 和则:,,使内取点证:在四边形D C B A BD E BD AC BC AD CD AB ED BE AC BC AD CD AB ED AC BC AD AD ED AC BC AED ABC EAD BAC AD AE AC AB BE AC CD AB CD BE AC AB ACD ABE ACD ABE CAD BAE E ABCD ?≥?+?∴+?=?+?∴? =??=∴??∴∠=∠=?=??=∴??∠=∠∠=∠)(

二、完善图形借助托勒密定理 例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.

四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B. 五、巧变形妙引线借肋托勒密定理 例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,

圆中的基本概念及定理(一) (含答案)

学生做题前请先回答以下问题 问题1:圆中相关的定理以及推论: 垂径定理:____________________________________________________; 推论:________________________________________________________; 总结:知二推三①___________________________________, ②_______________________,③______________________, ④_______________________,⑤______________________. 问题2:四组量关系定理:在_____________________中,如果_______________、______________、_______________、_______________中有一组量相等,那么它们所对应的其余各组量都分别相等. 问题3:圆周角定理:_______________________________________; 推论1:______________________________________; 推论2:____________________________;________________________________. 推论3:______________________________________. 问题4:三点定圆定理:_____________________________________. 问题5:圆中处理问题的思路: ①_______________________________________; ②_______________________________________; ③_______________________________________; ④_______________________________________. 圆中的基本概念及定理(一) 一、单选题(共10道,每道10分) 1.如图,CD是⊙O直径,弦AB⊥CD,垂足为点F,连接BC,BD,则下列结论不一定正确的是( ) A. B.AF=BF C.OF=CF D.∠DBC=90°

托勒密定理

托勒密定理Last revision on 21 December 2020

托 勒密定理 【定理内容】 圆内接四边形中,两条对角线的乘积等于两组对边乘积之和. 即:若四边形ABCD 内接于圆, 则有BD AC BC AD CD AB ?=?+?. [评]等价叙述:四边形的两组对边之积的和 等于两对角线 之积的充要条件是四顶点共圆。 【证法欣赏】 证明:如图,过C 作CP 交BD 于P ,使21∠=∠, ∵43∠=∠,∴ACD ?∽BCP ?, ∴ BP AD BC AC = ,即AD BC BP AC ?=? ① 又DCP ACB ∠=∠,65∠=∠,∴ACB ?∽DCP ?, ∴ DP AB DC AC = ,即DC AB DP AC ?=? ② ∴①+②得:DC AB AD BC DP BP AC ?+?=+?)( 即BD AC BC AD CD AB ?=?+? 【定理推广】 托勒密定理的推广: 在四边形ABCD 中,有BD AC BC AD CD AB ?≥?+?;当且仅当四边形ABCD 内接于圆时,等式成立。 [证] 在四边形ABCD 内取点E ,使CAD BAE ∠=∠,ACD ABE ∠=∠ 则ABE ?∽ACD ? ∴ AD AE CD BE AC AB ==, ∴BE AC CD AB ?=?; ∵ AD AE AC AB =,且EAD BAC ∠=∠ C D A B E B C D

∴ABC ?∽AED ? ∴ AD ED AC BC = ,即ED AC BC AD ?=?; ∴)(ED BE AC BC AD CD AB +?=?+? ∴BD AC BC AD CD AB ?≥?+? 当且仅当E 在BD 上时“=”成立, 即四点共圆时成立;、、、当且仅当D C B A 【定理推广】 托勒密定理的推论: 等腰梯形一条对角线的平方等于一腰的平方加上两底之积. 即:若四边形ABCD 是等腰梯形,且BC AD //, 则BC AD AB AC ?+=22. 分析:因为等腰梯形必内接于圆,符合托勒密定理的条件,其对角线相等,两腰相等,结论显然成立。 【定理应用】 【例1】 如图,P 是正ABC ?外接圆的劣弧BC 上任一点(不与B 、C 重合), 求证:PC PB PA +=. 证明:由托勒密定理得: ∵CA BC AB == ∴PC PB PA +=. [注]此例证法甚多,如“截长”、“补短”等,详情参看《初中 数学一 题多解欣赏》. 【定理应用】 【例2】 证明“勾股定理”: 已知:在ABC Rt ?中,?=∠90B , 求证:222BC AB AC +=。 证明:如图,以ABC Rt ?的斜边AC 为对角 B C

托勒密定理

托勒密定理 托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质. 证明 一、(以下是推论的证明,托勒密定理是其中一种特殊情况) 在任意凸四边形ABCD中,作△ABE使∠BAE=∠CAD ∠ABE=∠ACD,连接DE. 则△ABE∽△ACD 所以BE/CD=AB/AC,即BE·AC=AB·CD (1) 由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD, 所以△ABC∽△AED. BC/ED=AC/AD,即ED·AC=BC·AD (2) (1)+(2),得 AC(BE+ED)=AB·CD+AD·BC 又因为BE+ED≥BD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”) 二.复数证明 用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。首先注意到复数恒等式:(a? b)(c? d) + (a? d)(b? c) = (a? c)(b? d) ,两边取模,运用三角不等式得。等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。四点不限于同一平面。平面上,托勒密不等式是三角不等式的反演形式。

1.任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号。 2.托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆、 托勒密不等式:凸四边形的两组对边乘积和不小于其对角线的乘积,取等号当且仅当共圆或共线。 简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模,得不等式AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD 广义托勒密定理:设四边形ABCD四边长分别为a,b,c,d,两条对角线长分别为m,n,则有: m^2*n^2=a^2*c^2+b^2*d^2-2abcd*cos(A+C) 1.等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。 2.四点不限于同一平面。 欧拉定理:在一条线段上AD上,顺次标有B、C两点,则AD·BC+AB·CD=AC·BD

山西省太原市初中数学奥林匹克中的几何问题 第3章 托勒密定理及应用(含答案)

第三章 托勒密定理及应用 【基础知识】 托勒密定理 圆内接四边形的两组对边乘积之和等于两对角线的乘积. 证明 如图3-1,四边形ABCD 内接于O ,在BD 上取点P ,使P A B C A D =∠∠,则△ABP ∽△ACD , 于是 A 图3-1 AB BP AB CD AC BP AC CD =??=?. 又ABC △∽△APD ,有BC AD AC PD ?=?. 上述两乘积式相加,得 AB CD BC AD AC BP PD AC BD ?+?=+=?(). ① 注 此定理有多种证法,例如也可这样证:作AE BD ∥交o 于E ,连EB ,ED ,则知BDAE 为等腰梯形,有EB AD =,ED AB =,ABD BDE θ==∠∠,且180E B C E D C +=?∠∠,令BAC ?=∠,AC 与 BD 交于G ,则 111 sin sin()sin 222 ABCD S AC BD AGD AC BD AC BD EDC θ?=??=??+=??∠∠, 11 sin sin 22 EBCD EBC ECD S S S EB BC EBC ED DC EDC =+=??+??△△∠∠ ()()11 sin sin 22 EB BC ED DC EDC AD BC AB DC EDC =?+??=?+??∠∠. 易知 A B C D E B C S S =,从而有AB DC BC AD AC BD ?+?=?. 推论1(三弦定理) 如果A 是圆上任意一点,AB ,AC ,AD 是该圆上顺次的三条弦,则 sin sin sin AC BAD AB CAD AD CAB ?=?+?∠∠∠. ② 事实上,由①式,应用正弦定理将BD ,DC ,BC 换掉即得②式. 推论2(四角定理) 四边形ABCD 内接于O ,则sin sin sin sin ADC BAD ABD BDC ?=?∠∠∠∠ sin sin ADB DBC +?∠∠. ③ 事实上,由①式,应用正弦定理将六条线段都换掉即得③式. 直线上的托勒密定理(或欧拉定理) 若A ,B ,C ,D 为一直线上依次排列的四点,则AB CD BC AD AC BD ?+?=?. 注 由直线上的托勒密定理有如下推论:若A ,B ,C ,D 是一条直线上顺次四点,点P 是直线AD 外一点,则 sin sin sin sin sin sin APB CPD APD BPC APC BPD ?+?=?∠∠∠∠∠∠. 事实上,如图3-2,设点P 到直线AD 的距离为h ,

圆周角定理及其推论.pdf

通海路中学九年级数学教案课题:圆周角及其推论(1) 教学目标1、掌握圆周角定理,并会熟练运用这些知识进行有关的计算; 2、培养观察、分析及解决问题的能力及逻辑推理能力; 3、培养添加辅助线的能力和思维的广阔性 教学重点:圆周角定理及其推论的应用. 教学难点:熟练应用圆周角定理及其推论以及辅助线的添加. 个性设计一、自主学习 1、学习内容:教材p49--52页. 2、自学时间:5--10分钟. 3、自学检测:自学中遇到的问题做标记,完成教材p52页练习. 二、合作交流 1、知识点一:圆周角的定义 定义:顶点在______,并且两边都和圆______的角叫圆周角. 2、知识点二:圆周角定理 圆周角定理: 几何语言: 练习: 1.如图,已知A,B,C三点都在⊙O上,∠AOB=60°,则∠ACB=_______. 2.如图,点A,B,C在⊙O上,∠ACB=30°,则cos∠ABO的值是_______. 3.如图,A,B,C是半径为6的⊙O上三个点,若∠BAC=45°,则弦BC=_______. 3、知识点三:圆周角定理的推论(1) 在同圆(或等圆)中,同弧或等弧所对的圆周角____,相等的圆周角所对的弧也____练习: 4.如图,A、B、C三点在⊙O上,且△ABC是等边三角形,动点P在圆周的劣弧AB上,且不与A、B重合,则∠BPC等于() A、30° B、60° C、90° D、45° 5.如图,在⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B=____. 6.如图,A、B、C、D是⊙O上的四个点,AB=BC,BD交AC于点E,连接CD、AD,若∠BAC=25°,则∠ADC=______.

梅涅劳斯定理及应用

梅涅劳斯定理 梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。 展开 定理的证明 证明:当直线交△ABC的AB、BC、CA的反向延长线于点D、E、F时, (AD/DB)*(BE/EC )*(CF/FA)=1 逆定理证明: 证明:X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 证明一 过点A作AG∥BC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG 三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1 证明二 过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF 所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1 证明三 连结BF。 (AD:DB)·(BE:EC)·(CF:FA) =(S△ADF:S△BDF)·(S△BEF:S△CEF)·(S△BCF:S△BAF) =(S△ADF:S△BDF)·(S△BDF:S△CDF)·(S△CDF:S△ADF) =1 证明四 过三顶点作直线DEF的垂线,AA‘,BB',CC' 有AD:DB=AA’:BB' 另外两个类似,三式相乘得1 得证。如百科名片中图。 充分性证明: △ABC中,BC,CA,AB上的分点分别为D,E,F。 连接DF交CA于E',则由充分性可得,(AF/FB)×(BD/DC)×(CE'/E'A)=1

圆中的基本概念及定理(讲义及答案)

圆中的基本概念及定理(讲义) ?课前预习 在小学的时候,我们知道“一中同长”表示的是圆,中心称为,固定的线段长称为,还知道半径为r 的圆的周长为,面积为. 在七年级我们学习了圆的另外一种说法:平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O 称为圆心,线段OA 称为半径. 一条弧AB 和经过这条弧的两条半径OA,OB 所组成的图形叫做扇形. 顶点在圆心的角叫做圆心角.

1

?知识点睛 1.在一个平面内,线段OA 绕它固定的一个端点O 旋转一周, 另一个端点A 所形成的图形叫做.其固定的端点O 叫做,线段OA 叫做.以点O 为圆心的圆,记作,读作“圆O”. 2.圆中概念: 弧:,弧包括和; 弦:; 圆周角:; 圆心角:; 弦心距:; 等圆:; 等弧:. 3.圆的对称性: 圆是轴对称图形,其对称轴是; 圆是中心对称图形,其对称中心为.4.圆中基本定理: *(1)垂径定理: .推论: .(2)四组量关系定理:在中,如果 、、、 中有一组量相等,那么它们所对应的其余各组量都分别相等. (3)圆周角定理: .推论1:. 推论2:, .推论3: .注:如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.圆中处理问题的思路: ①找圆心,连半径,转移边; ②遇弦,作垂线,垂径定理配合勾股定理建等式; ③遇直径,找直角,由直角,找直径; ④由弧找角,由角看弧.

2

? 精讲精练 1. 如图,AB 是⊙O 的直径,弦 CD ⊥AB ,垂足为 M ,下列结论不一定成立的是( ) ︵ ︵ A .CM =DM B . CB = B D C .∠AC D =∠ADC D .OM =MB 第 1 题图 第 2 题图 2. 如图,⊙O 的弦 AB 垂直平分半径 OC ,若 AB = 的半径为 . ,则⊙O 3. 工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是 10 mm ,测得钢珠顶端离零件表面的距离为 8 mm ,如图所示,则这个小圆孔的宽口 AB 的长度为 mm . 第 3 题图 第 4 题图 4. 如图,圆拱桥桥拱的跨度 AB =12 m ,桥拱高 CD =4 m ,则拱桥的直径为 . 5. 如图,在⊙O 中,直径 CD 垂直于弦 AB ,垂足为 E ,连接 OB , CB .已知⊙O 的半径为 2,AB = 2 ,则∠BCD = . 6 3

圆周角定理及推论

一、圆周角定理:一条弧所对圆周角等于它所对圆心角的一半已知在⊙O中,∠BOC与圆周角∠BAC对同弧BC,求证:∠BOC=2∠BAC。 以下分五种情况证明 【证明】情况1:当圆心O在∠BAC的内部时: 图1 连接AO,并延长AO交⊙O于D 解:OA=OB=OC(OA、OB、OC是半径) ∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等) ∴∠BOD=∠BAD+∠ABO=2∠BAD ∠COD=∠CAD+∠ACO=2∠CAD (∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角 和) ∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC 【证明】情况2:当圆心O在∠BAC的外部时: 图2 连接AO,并延长AO交⊙O于D,连接OB、OC。解:OA=OB=OC(OA、OB、OC是半径) ∴∠BAD=∠ABO,∠CAD=∠ACO(等腰三角形底角相等) ∴∠BOD=∠BAD+∠ABO=2∠BAD ∠COD=∠CAD+∠ACO=2∠CAD (∠BOD、∠COD分别是△AOB、△AOC的外角,而三角形的一个外角等于与它不相邻的两个内角 和)

∴∠BOC=∠COD-∠BOD=2(∠CAD-∠BAD)=2∠BAC 【证明】情况3:当圆心O在∠BAC的一边上时,即A、O、B在同一直线上时: 图3 ∵OA、OC是半径 解:∴OA=OC ∴∠BAC=∠OCA() ∴∠BOC=∠BAC+∠OCA=2∠BAC (三角形的一个外角等于与它不相邻的两个内角和,由AB为平角180°、三角形△AOC内角和为180°得到。) 【证明】情况4:圆心角等于180°: 圆心角∠AOB=180°,圆周角是∠ACB,∵∠OCA=∠OAC= 2 1∠BOC(BC弧) ∠OCB=∠OBC= 2 1 ∠AOC(AC弧) ∴∠OCA+∠OCB=(∠BOC+∠AOC)/2=90度∴∠AO B2=∠ACB 【证明】情况5:圆心角大于180°: 图5 圆心角是(360°-∠AOB),圆周角是∠ACB,延长CO交园于点E, ∠CAE=∠CBE=90°(圆心角等于180°) ∴∠ACB+∠AEB=180°,即∠ACB=180°-∠AEB ∵∠AOB=2∠AEB ∴360°-∠AOB=2(180°-∠AEB)=2∠ACB 二、圆周角定理的推论: 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。其他推论? ①圆周角度数定理,圆周角的度数等于它所对的弧的度数的一半?。 E

第三讲 托勒密定理及其应用

第三讲 托勒密定理及其应用 托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即:;内接于圆,则有: 设四边形BD AC BC AD CD AB ABCD ?=?+? ;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BD AC BC AD CD AB ABCD ?≥?+? 一、直接应用托勒密定理 例1 如图2,P 是正△ABC 外接圆的劣弧上任一点 (不与B 、C 重合), 求证:PA=PB +PC . 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗. 若借助托勒密定理论证,则有PA ·BC=PB ·AC +PC ·AB , ∵AB=BC=AC . ∴PA=PB+PC . 二、完善图形 借助托勒密定理 例2 证明“勾股定理”: 在Rt △ABC 中,∠B=90°,求证:AC 2=AB 2+BC 2 四点共圆时成立; 、、、上时成立,即当且仅当在且等号当且仅当相似 和且又 相似 和则:,,使内取点证:在四边形D C B A BD E BD AC BC AD CD AB ED BE AC BC AD CD AB ED AC BC AD AD ED AC BC AED ABC EAD BAC AD AE AC AB BE AC CD AB CD BE AC AB ACD ABE ACD ABE CAD BAE E ABCD ?≥?+?∴+?=?+?∴?=??=∴??∴∠=∠=?= ??=∴??∠=∠∠=∠)(

证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有 AC·BD=AB·CD+AD·BC.① 又∵ABCD是矩形, ∴AB=CD,AD=BC,AC=BD.② 把②代人①,得AC2=AB2+BC2. 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理, 有AD·BC=AB·CD+AC·BD. ∵∠1=∠2,∴BD=CD. 故AD·BC=AB·BD+AC·BD=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1. 求证:ax+by≤1. 证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB, 使AC=a,BC=b,BD=x,AD=y. 由勾股定理知a、b、x、y是满足题设条件的. 据托勒密定理,有AC·BD+BC·AD=AB·CD. ∵CD≤AB=1,∴ax+by≤1. 四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B. 分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c. 证明:如图,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,

托勒密定理、婆氏定理——圆中基本模型专题(二)(1)

托勒密定理、婆氏定理——圆中基本模型专题(二) 【教学重难点】 1.圆中托勒密定理;对角互补模型:旋转视角、托勒密视角 2.婆罗摩笈多定理 3.例题探究 【模块一圆中托勒密定理】 古希腊最伟大的天文学家,数学家、天文学家伊巴谷(约公元前190年-公元前125年),最早提出了,圆内接四边形两对对边乘积的和等于两条对角线的乘积,后称托勒密定理.古罗马著名的天文学家、光学家克罗狄斯·托勒密(约90年-168年),从伊巴谷的书中将其摘出并完善.托勒密定理实质上是关于共圆性的基本性质,故从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式. 1.基本图形与结论:如图1,当A、B、C、D四点共圆,则AC×BD=AB×DC+AD×BC. 2.简单证明: 在线段BD上取一点E,连AE,使∠AEB=∠ADC, 易得△AEB∽△ADC, AC CD =??=?① AC BE AB CD AB BE 旋转一拖二得△ABC∽△AED, AC BC =??=?② AC DE BC AD AD DE 由①+②得:AC×(BE+DE)=AC×BD=AB×DC+AD×BC. 3.模型识别: 具体情境中出现四点共圆,且四点构成的四边形边长、对角线长信 息较多,可以尝试用托勒密定理进行计算. ※4.广义托勒密定理:对于任意凸四边形ABCD,则有AC×BD ≤AB×DC+AD×BC.证明从略···【模块二对角互补模型→旋转视角】 1.基本图形与模型识别:如图2,对角互补且一组邻边相等 ...........的四边形, 可通过旋转变换将四边形转化为等腰三角形(等腰思旋转). 2.四类常见对角互补模型: ①模型一:等边60°对120°型 条件:如图3,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120° 结论:(1)CA平分∠BCD;(2)BC+CD=AC. 证明:证明:如图,将△ACD绕点A逆时针旋转60°至△AMB,使AD, AB重合, 则△ACD≌△AMB, ∴∠ADC=∠ABM,AC=AM,CD=BM,∠ACD=∠M, ∵∠BAD=60°,∠BCD=120°, ∴∠ABC+∠ADC=180°,

圆中三大切线定理

14 初三秋季·第2讲·尖子班·学生版 围田地 漫画释义 满分晋级阶梯 圆7级 期末复习之圆中的 重要结论及应用 圆6级 期末复习之圆的综合 圆5级 圆中三大切线定理 2 圆中三大切线定理

中考内容与要求 中考考点分析 圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考 15

16 初三秋季·第2讲·尖子班·学生版 查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。 要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。 年份 2011年 2012年 2013年 题号 20,25 8,20,25 8,20,25 分值 13分 17分 17分 考点 圆的有关证明,计算(圆周角定理、切线、等腰三角形、相似、解直角三角形);直线与圆的位置关系 圆的基本性质,圆的切线证明,圆同相似和三角函数的结合;直线与圆的位置关系 圆中的动点函数图像,圆的基本性质(垂径定理、圆周角定理),圆同相似和三角函数的结合;直线与圆的位置关系 知识互联网 题型一:切线的性质定理

17 题目中已知圆的切线,可以“连半径,标直角”,然后在直角三角形中利用勾股、相似或锐角三角函数解决问题。 【例1】 如图,在△ABC 中,BC AB =,以AC 为直径的⊙0与BC 边 交于点D ,过点D 作⊙O 的切线DE ,交AB 于点E ,若 DE ⊥AB .求证:BE AE 3=. 判定切线共有三种方法:定义法、距离法和定理法,其中常用的是距离法和定理法,可以总结为六字口诀,定理法是“连半径,证垂直”,距离法是“作垂直,证半径”,定理法的使用频率最高,必须熟练掌握。 【例2】 如图,C 是以AB 为直径的⊙O 上一点,过O 作OE ⊥AC 于点E ,过点A 作⊙O 的切线 交OE 的延长线于点F , 典题精练 思路导航 典题精练 思路导航 题型二:切线的判定定理 E O D C B A

圆概念公式定理

1.圆的周长C=2πr=πd 2.圆的面积S=πr2 3.扇形弧长l=nπr/180 4.扇形面积S=nπr2/360=rl/2 5.圆锥侧面积S=πrl 〖圆的定义〗 几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。 轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。 集合说:到定点的距离等于定长的点的集合叫做圆。 〖圆的相关量〗 圆周率:圆周长度与圆的直径长度的比叫做圆周率, 值是 3.141592653589793238462643383279502884197169399375105820974944 5923078164062862089986280348253421170679..., 通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。 圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。 圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。 〖圆和圆的相关量字母表示方法〗 圆—⊙半径—r 弧—⌒直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S 〖圆和其他图形的位置关系〗 圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

九年级数学上册 圆中三大基本定理(第2.1-2.4节复习)同步练习 苏科版

圆中三大基本定理(第2.1~2.4节复习) 1.A 如图,C D是⊙O的直径,弦AB⊥CD于点E,连接AC,BC,下列结论中不一定正确的是( ). A.AE=BE B.弧AD=弧BD C.OE = DE D.AC=BC 2.B 已知在以点O为圆心的两个同心圆,大圆的弦AB交小圆于点C,D. (1)求证:AC=BD; (2)若大圆的半径R =10,小圆的半径r =8,且圆O到直线AB的距离为6,求AC的长. 3.B 我们在园林游玩时,常见到如图所示的圆弧形的门.圆弧所在圆与地面BC的位置如 下图所示,四边形ABCD是一个矩形,已知AB 23 米,BC=1米. (1)求圆弧形门最高点到地面的距离;

(2)求弧AED的长 . 4.A 如图在平台上用直径为100mm的两根圆钢棒嵌在大型工件的两侧,测量大的圆形工件的直径D,测得两根圆钢棒与地面的两个接触点之间的距离为400mm,则工件直径D(mm)用科学计数法可表示为( ) A.4 ? 0.410 ? B.5 410 C.20000 D.2 410 ? 5.A 如图,△ABC是⊙O的内接三角形,点D是弧BC的中点,已知∠AOB=98°,∠COB=120°,则∠AB D的度数是 . 6.B 如图,A是半径为6cm的⊙O上的定点,动点P从A出发,以πcm/s的速度沿圆周按顺时针方向运动,当点P 回到A时立即停止运动,设点P 的运动时间为t (s). (1)当t = 6s时,∠POA的度数是; (2)当t为多少时,∠P OA=120°;

(3)如果点B是OA延长线上的一点,且AB=AO,问t为多少时,△POB为直角三角形?请 说明理由. 7.C 如图所示,⊙O半径为2,弦BD=23,A为弧BD的中点,E为弦AC的中点,且在BD上,求四边形ABCD的面积. 8.A 如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=20°,则∠AOD等于( ) A.160° B.150° C.140° D.120°

圆周角定理及推论

1 / 6 24.1.4圆周角 第1课时圆周角定理及推论 教学内容 1.圆周角的概念. 2.圆周角定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弦所对的圆心角的一半. 推论: 半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径及其它们的应用. 教学目标 1.了解圆周角的概念. 2.理解圆周角的定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弧所对的圆心角的一半. 3.理解圆周角定理的推论: 半圆(或直径)所对的圆周角是直角,90?°的圆周角所对的弦是直径. 4.熟练掌握圆周角的定理及其推理的灵活运用. 设置情景,给出圆周角概念,探究这些圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证

明定理推论的正确性,最后运用定理及其推导解决一些实际问题.重难点、关键 2 / 6 1.重点: 圆周角的定理、圆周角的定理的推导及运用它们解题. 2.难点: 运用数学分类思想证明圆周角的定理. 3.关键: 探究圆周角的定理的存在. 教学过程 一、复习引入 (学生活动)请同学们口答下面两个问题. 1.什么叫圆心角? 2.圆心角、弦、弧之间有什么内在联系呢? 老师点评: (1)我们把顶点在圆心的角叫圆心角. (2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有 一组量相等,?那么它们所对的其余各组量都分别相等. 刚才讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探索新知

问题: 如图所示的⊙O,我们在射门游戏中,设 E、F是球门,?设球员们只能在所在的⊙O其它位置射门,如图所示的 3 / 6 A、B、C点.通过观察,我们可以发现像∠ EAF、∠ EBF、∠ECF这样的角,它们的顶点在圆上,?并且两边都与圆相交的角叫做圆周角. 现在通过圆周角的概念和度量的方法回答下面的问题. 1.一个弧上所对的圆周角的个数有多少个? 2.同弧所对的圆周角的度数是否发生变化? 3.同弧上的圆周角与圆心角有什么关系? (学生分组讨论)提问二、三位同学代表发言. 老师点评: 1.一个弧上所对的圆周角的个数有无数多个. 2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的.3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,?并且它的度数恰好等于这条弧所对的圆心角的度数的一半.” (1)设圆周角∠ABC的一边BC是⊙O的直径,如图所示

第4章 斯特瓦尔特定理及应用(含答案)

第四章 特瓦尔特定理及应用 【基础知识】 斯特瓦尔特定理 设P 为ABC △的BC 边上任一点(P B ≠,P C ≠),则有 222AB PC AC BP AP BC BP PC BC ?+?=?+?? ① 或 2222P C B P B P P C A P A B A C B C B C B C B C B C =? +?-??. ② 证明 如图4-1,不失一般性,不妨设90APC

托勒密定理塞瓦定理梅涅劳斯定理西姆松定理

托勒密定理 内容:指圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。 证明: 在任意凸四边形ABCD中(如右图),作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD,连接DE. 则△ABE∽△ACD ∴BE/CD=AB/AC,即B E·AC=AB·CD (1) 由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD, ∴△ABC∽△AED. BC/ED=AC/AD,即ED·AC=BC·AD (2) (1)+(2),得 AC(BE+ED)=AB·CD+AD·BC 又∵BE+ED≥BD ∴AB×CD+AD×BC≥AC×BD 塞瓦定理 在△ABC内任取一点O, 直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 因为(AD:DB)*(BE:EC)*(CF:FA)=1所以CD、AE、BF交于一点

用同一法证 点D,E,F分别为三角形ABC三边BC,AC,AB上的点,若AF/BF*BD/DC*CE/AE=1,则AD,BE,CF 三点共线 逆命题证明 证明:设BE,CF交与点O,AO交BC于点P。 则由赛瓦定理可知,AF/BF*BP/PC*CE/AE=1。 由已知AF/BF*BD/DC*CE/AE=1知,AF/BF*BP/PC*CE/AE=1=AF/BF*BD/DC*CE/AE。 推出BP/PC=BD/DC,所以BD/BC=BP/BC,故BD=BP。 所以D点与P点重合。则AD,BE,CF三点共线,命题得证。 梅涅劳斯定理 如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/Y A)=1 。 西姆松定理 (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。

各种圆定理总结.

费尔巴赫定理 费尔巴赫定理三角形的九点圆与内切圆内切,而与旁切圆外切。 此定理由德国数学家费尔巴赫(K·W·Feuerbach,1800—1834)于1822年提出。 费尔巴赫定理的证明 在不等边△ABC中,设O,H,I,Q,Ia分别表示△ABC的外心,垂心,内心,九点圆心和∠A所对的旁切圆圆心.s,R,r,ra分别表示△ABC的半周长,外接圆半径,内切圆半径和∠A 所对的旁切圆半径,BC=a,CA=b,AB=c. 易得∠HAO=|B-C|,∠HAI=∠OAI=|B-C|/2; AH=2R*cosA,AO=R,AI=√[(s-a)bc/s],AIa=√[sbc/(s-a)] 在△AHI中,由余弦定理可求得: HI^2=4R^2+4Rr+3r^2-s^2; 在△AHO中,由余弦定理可求得: HO^2=9R^2+8Rr+2r^2-2s^2; 在△AIO中,由余弦定理可求得: OI^2=R(R-2r). ∵九点圆心在线段HO的中点, ∴在△HIO中,由中线公式可求得. 4IQ^2=2(4R^2+4Rr+3r^2-s^2)+ 2(R^2-2Rr)-(9R^2+8Rr+2r^2-2s^2) =(R-2r)^2 故IQ=(R-2r)/2. 又△ABC的九点圆半径为R/2, 所以九点圆与内切圆的圆心距为 d=R/2-r=(R-2r)/2=IQ. 因此三角形的九点圆与内切圆内切。 在△AHIa中,由余弦定理可求得: IaH^2=4R^2+4Rr+r^2-s^2+2(ra)^2; 在△AOIa中,由余弦定理可求得: IaO^2=R(R+2ra). 在△HIaO中,由中线公式可求得. 4IaQ^2=2(4R^2+4Rr+r^2-s^2+2ra^2)+2(R^2+2Rra)-(9R^2+8Rr+2r^2-2s^2)=(R+2ra) ^2 故IaQ=(R+2ra)/2.

相关主题
文本预览
相关文档 最新文档