当前位置:文档之家› 托勒密定理以及一个与它类似的定理

托勒密定理以及一个与它类似的定理

托勒密定理以及一个与它类似的定理
托勒密定理以及一个与它类似的定理

托勒密定理以及一个与它类似的定理

浙江宁波鄞州区钟公庙中学童文虎

定理1(托勒密定理):在四边形

ABCD 中,如果180C A ,那么BD AC AD BC CD

AB 与它类似的定理是

定理2:在四边形ABCD 中,如果

90C A ,那么222BD

AC AD BC CD AB 关于托勒密定理的证明,有许多方法.本文介绍一种构造相似三角形的方法,且仅

用相似三角形知识对上述二个定理进行简明统一的证明.图1(凸四边形)图2(四边形)

在四边形ABCD 外作

ECB ,使DAB E C B ,DBA EBC ,连结DE (如图1或图2).则

DAB ∽ECB ∴BE

BD BC AB CE AD

即CE AB AD BC ,

BE BC BD AB ∵

DBE DBC EBC DBC DBA ABC ∴

ABC ∽DBE ∴DE AC BD AB

,即DE

BD

AC AB ∴对于任意正整数n 恒有

n n n n n n n CE CD AB CE AB CD

AB AD

BC CD AB n n n n DE CE CD BD

AC ,(※)∵BCD DAB BCD ECB ECD

各种圆定理总结(包括托勒密定理、塞瓦定理、西姆松定理、梅涅劳斯定理、圆幂定理和四点共圆)

托勒密定理 定理图 定理的内容托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组 对边所包矩形的面积之和。从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式, 托勒密定理实质上是关于共圆性的基本性质. 定理的提出 一般几何教科书中的托勒密定理”,实出自依巴谷(Hipparchus)之手,托勒密只是从他的 书中摘出。 证明 一、(以下是推论的证明,托勒密定理可视作特殊情况。) 在任意四边形ABCD 中,作△ ABE使/ BAE= / CAD / ABE= / ACD 因为△ ABE ACD 所以BE/CD=AB/AC, 即BE-AC=AB CD (1) 而/ BAC= / DAE ,,/ ACB= / ADE 所以△ ABC AED 相似. BC/ED=AC/AD 即ED- AC=BC AD (2) ⑴+⑵,得 AC(BE+ED)=AB CD+AD BC 又因为BE+EI> BD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即托勒密定理”) 所以命题得证 复数证明 用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、 BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。首先注意到复数恒等式:(a -b)(c - d) + (a - d)(b - c) = (a - c)(b - d),两边取模,运用三角不等式得。等 号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。四点不限于同一平面。平面上,托勒密不等式是三角不等式的反演形式。 二、设ABCD是圆内接四边形。在弦BC上,圆周角/ BAC = / BDC,而在AB上, / ADB = / ACB。在AC 上取一点K,使得/ ABK = / CBD ; 因为/ ABK + / CBK = / ABC = / CBD + / ABD,

2013高中数学奥数培训资料之托勒密定理试题

《托勒密定理及其应用》 托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即:;内接于圆,则有: 设四边形BD AC BC AD CD AB ABCD ?=?+? ;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BD AC BC AD CD AB ABCD ?≥?+? 一、直接应用托勒密定理 例1 如图2,P 是正△ABC 外接圆的劣弧上任一点(不与B 、C 重合), 求证:PA=PB +PC . 四点共圆时成立; 、、、上时成立,即当且仅当在且等号当且仅当相似 和且又相似 和则:,,使内取点证:在四边形D C B A BD E BD AC BC AD CD AB ED BE AC BC AD CD AB ED AC BC AD AD ED AC BC AED ABC EAD BAC AD AE AC AB BE AC CD AB CD BE AC AB ACD ABE ACD ABE CAD BAE E ABCD ?≥?+?∴+?=?+?∴? =??=∴??∴∠=∠=?=??=∴??∠=∠∠=∠)(

二、完善图形借助托勒密定理 例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1.

四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B. 五、巧变形妙引线借肋托勒密定理 例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4,

圆中的基本概念及定理(一) (含答案)

学生做题前请先回答以下问题 问题1:圆中相关的定理以及推论: 垂径定理:____________________________________________________; 推论:________________________________________________________; 总结:知二推三①___________________________________, ②_______________________,③______________________, ④_______________________,⑤______________________. 问题2:四组量关系定理:在_____________________中,如果_______________、______________、_______________、_______________中有一组量相等,那么它们所对应的其余各组量都分别相等. 问题3:圆周角定理:_______________________________________; 推论1:______________________________________; 推论2:____________________________;________________________________. 推论3:______________________________________. 问题4:三点定圆定理:_____________________________________. 问题5:圆中处理问题的思路: ①_______________________________________; ②_______________________________________; ③_______________________________________; ④_______________________________________. 圆中的基本概念及定理(一) 一、单选题(共10道,每道10分) 1.如图,CD是⊙O直径,弦AB⊥CD,垂足为点F,连接BC,BD,则下列结论不一定正确的是( ) A. B.AF=BF C.OF=CF D.∠DBC=90°

托勒密定理

托勒密定理Last revision on 21 December 2020

托 勒密定理 【定理内容】 圆内接四边形中,两条对角线的乘积等于两组对边乘积之和. 即:若四边形ABCD 内接于圆, 则有BD AC BC AD CD AB ?=?+?. [评]等价叙述:四边形的两组对边之积的和 等于两对角线 之积的充要条件是四顶点共圆。 【证法欣赏】 证明:如图,过C 作CP 交BD 于P ,使21∠=∠, ∵43∠=∠,∴ACD ?∽BCP ?, ∴ BP AD BC AC = ,即AD BC BP AC ?=? ① 又DCP ACB ∠=∠,65∠=∠,∴ACB ?∽DCP ?, ∴ DP AB DC AC = ,即DC AB DP AC ?=? ② ∴①+②得:DC AB AD BC DP BP AC ?+?=+?)( 即BD AC BC AD CD AB ?=?+? 【定理推广】 托勒密定理的推广: 在四边形ABCD 中,有BD AC BC AD CD AB ?≥?+?;当且仅当四边形ABCD 内接于圆时,等式成立。 [证] 在四边形ABCD 内取点E ,使CAD BAE ∠=∠,ACD ABE ∠=∠ 则ABE ?∽ACD ? ∴ AD AE CD BE AC AB ==, ∴BE AC CD AB ?=?; ∵ AD AE AC AB =,且EAD BAC ∠=∠ C D A B E B C D

∴ABC ?∽AED ? ∴ AD ED AC BC = ,即ED AC BC AD ?=?; ∴)(ED BE AC BC AD CD AB +?=?+? ∴BD AC BC AD CD AB ?≥?+? 当且仅当E 在BD 上时“=”成立, 即四点共圆时成立;、、、当且仅当D C B A 【定理推广】 托勒密定理的推论: 等腰梯形一条对角线的平方等于一腰的平方加上两底之积. 即:若四边形ABCD 是等腰梯形,且BC AD //, 则BC AD AB AC ?+=22. 分析:因为等腰梯形必内接于圆,符合托勒密定理的条件,其对角线相等,两腰相等,结论显然成立。 【定理应用】 【例1】 如图,P 是正ABC ?外接圆的劣弧BC 上任一点(不与B 、C 重合), 求证:PC PB PA +=. 证明:由托勒密定理得: ∵CA BC AB == ∴PC PB PA +=. [注]此例证法甚多,如“截长”、“补短”等,详情参看《初中 数学一 题多解欣赏》. 【定理应用】 【例2】 证明“勾股定理”: 已知:在ABC Rt ?中,?=∠90B , 求证:222BC AB AC +=。 证明:如图,以ABC Rt ?的斜边AC 为对角 B C

托勒密定理

托勒密定理 托勒密(Ptolemy)定理指出,圆的内接凸四边形两对对边乘积的和等于两条对角线的乘积。原文:圆的内接四边形中,两对角线所包矩形的面积等于一组对边所包矩形的面积与另一组对边所包矩形的面积之和。从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式,托勒密定理实质上是关于共圆性的基本性质. 证明 一、(以下是推论的证明,托勒密定理是其中一种特殊情况) 在任意凸四边形ABCD中,作△ABE使∠BAE=∠CAD ∠ABE=∠ACD,连接DE. 则△ABE∽△ACD 所以BE/CD=AB/AC,即BE·AC=AB·CD (1) 由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD, 所以△ABC∽△AED. BC/ED=AC/AD,即ED·AC=BC·AD (2) (1)+(2),得 AC(BE+ED)=AB·CD+AD·BC 又因为BE+ED≥BD (仅在四边形ABCD是某圆的内接四边形时,等号成立,即“托勒密定理”) 二.复数证明 用a、b、c、d分别表示四边形顶点A、B、C、D的复数,则AB、CD、AD、BC、AC、BD的长度分别是:(a-b)、(c-d)、(a-d)、(b-c)、(a-c)、(b-d)。首先注意到复数恒等式:(a? b)(c? d) + (a? d)(b? c) = (a? c)(b? d) ,两边取模,运用三角不等式得。等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。四点不限于同一平面。平面上,托勒密不等式是三角不等式的反演形式。

1.任意凸四边形ABCD,必有AC·BD≤AB·CD+AD·BC,当且仅当ABCD四点共圆时取等号。 2.托勒密定理的逆定理同样成立:一个凸四边形两对对边乘积的和等于两条对角线的乘积,则这个凸四边形内接于一圆、 托勒密不等式:凸四边形的两组对边乘积和不小于其对角线的乘积,取等号当且仅当共圆或共线。 简单的证明:复数恒等式:(a-b)(c-d)+(a-d)(b-c)=(a-c)(b-d),两边取模,得不等式AC·BD≤|(a-b)(c-d)|+|(b-c)(a-d)|=AB·CD+BC·AD 广义托勒密定理:设四边形ABCD四边长分别为a,b,c,d,两条对角线长分别为m,n,则有: m^2*n^2=a^2*c^2+b^2*d^2-2abcd*cos(A+C) 1.等号成立的条件是(a-b)(c-d)与(a-d)(b-c)的辐角相等,这与A、B、C、D四点共圆等价。 2.四点不限于同一平面。 欧拉定理:在一条线段上AD上,顺次标有B、C两点,则AD·BC+AB·CD=AC·BD

泰特猜想的延续 ——四色定理的书面证明

Pure Mathematics 理论数学, 2019, 9(8), 949-960 Published Online October 2019 in Hans. https://www.doczj.com/doc/b214783580.html,/journal/pm https://https://www.doczj.com/doc/b214783580.html,/10.12677/pm.2019.98121 Tait’s Conjecture Continue —The Proof of the Four-Color Theorem Wenzhen Han Jincheng Energy Co. Ltd., Jincheng Shanxi Received: Sep. 30th, 2019; accepted: Oct. 22nd, 2019; published: Oct. 29th, 2019 Abstract The four-color theorem also known as the four-color conjecture or the four-color problem is one of the world’s three largest mathematical conjecture. Although it has been proved on computer, which owes to its powerful computing ability, after all, it isn’t strictly reasoned mathematically. Lots of math enthusiasts devote themselves to studying the problem around the globe. In this pa-per, the new concepts of two-color dyeable continuous line are put forward. A new method is used to prove that the 3-coloring of 3-regular planar graph lines is equivalent to the 4-coloring of maximal graph points. It is also proved that the 3-coloring of 3-regular planar graph lines is in-evitably possible. Thus, a universal four-color coloring method for vertices of any maximal graph is given. Keywords Four Colors Enough, Two-Color Dyeable Continuous Line, 3-Regular Plane, Maximum Graph, Even Ring Elimination Method 泰特猜想的延续 ——四色定理的书面证明 韩文镇 晋城能源有限责任公司,山西晋城 收稿日期:2019年9月30日;录用日期:2019年10月22日;发布日期:2019年10月29日 摘要 四色定理,又称四色猜想、四色问题,是世界三大数学猜想之一。计算机证明虽然做了百亿次判断,终

山西省太原市初中数学奥林匹克中的几何问题 第3章 托勒密定理及应用(含答案)

第三章 托勒密定理及应用 【基础知识】 托勒密定理 圆内接四边形的两组对边乘积之和等于两对角线的乘积. 证明 如图3-1,四边形ABCD 内接于O ,在BD 上取点P ,使P A B C A D =∠∠,则△ABP ∽△ACD , 于是 A 图3-1 AB BP AB CD AC BP AC CD =??=?. 又ABC △∽△APD ,有BC AD AC PD ?=?. 上述两乘积式相加,得 AB CD BC AD AC BP PD AC BD ?+?=+=?(). ① 注 此定理有多种证法,例如也可这样证:作AE BD ∥交o 于E ,连EB ,ED ,则知BDAE 为等腰梯形,有EB AD =,ED AB =,ABD BDE θ==∠∠,且180E B C E D C +=?∠∠,令BAC ?=∠,AC 与 BD 交于G ,则 111 sin sin()sin 222 ABCD S AC BD AGD AC BD AC BD EDC θ?=??=??+=??∠∠, 11 sin sin 22 EBCD EBC ECD S S S EB BC EBC ED DC EDC =+=??+??△△∠∠ ()()11 sin sin 22 EB BC ED DC EDC AD BC AB DC EDC =?+??=?+??∠∠. 易知 A B C D E B C S S =,从而有AB DC BC AD AC BD ?+?=?. 推论1(三弦定理) 如果A 是圆上任意一点,AB ,AC ,AD 是该圆上顺次的三条弦,则 sin sin sin AC BAD AB CAD AD CAB ?=?+?∠∠∠. ② 事实上,由①式,应用正弦定理将BD ,DC ,BC 换掉即得②式. 推论2(四角定理) 四边形ABCD 内接于O ,则sin sin sin sin ADC BAD ABD BDC ?=?∠∠∠∠ sin sin ADB DBC +?∠∠. ③ 事实上,由①式,应用正弦定理将六条线段都换掉即得③式. 直线上的托勒密定理(或欧拉定理) 若A ,B ,C ,D 为一直线上依次排列的四点,则AB CD BC AD AC BD ?+?=?. 注 由直线上的托勒密定理有如下推论:若A ,B ,C ,D 是一条直线上顺次四点,点P 是直线AD 外一点,则 sin sin sin sin sin sin APB CPD APD BPC APC BPD ?+?=?∠∠∠∠∠∠. 事实上,如图3-2,设点P 到直线AD 的距离为h ,

四色猜想的证明

四色猜想的证明 吴道凌 (广东省广州市,510620) 摘要:四色猜想至今未得到书面证明。根据其定义的国家概念和着 色要求,揭示了无限平面或球面上任意国家及其邻国的构成和着色规 律,从而给四色猜想一个书面证明。 关键词:四色;猜想;证明;国家;着色 中图分类号:O157.5 文献标识码:A 1852年,英国学者弗南西斯·格思里(Francis Guthrie)提出,“每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色”,这就是后来数学上著名的四色猜想。对此猜想,一百多年来曾有无数学者予以研究,但人工验证均无功而返。1976年,美国数学家阿佩尔(Kenneth Appel)和哈肯(Wolfgang Haken)利用电子计算机,作了大量判断,对四色猜想进行了机器证明,但这一证明不能由人工直接验证,人们必须对计算机编译的正确性以及运行这一程序的硬件设备充分信任,因此并不被人们普遍接受。 本文拟根据四色猜想定义的国家概念和着色要求,研究无限平面或球面上国家的构成及其着色规律,寻找对四色猜想的书面证明。 1 四色猜想相关定义及表述方法 四色猜想所指的国家,是指连续的区域,可为单连通区域,也可为多连通区域,不连续的区域不属一个国家。共同边界指相邻国家有无数个共同点,四个或四个以上的国家不交于一点,或者说,这种交点不认为是共同边界, 只有这种交点的国家不需区分着色。 四色猜想并未限制地图范围,地图可定义在球面或无限平面 上。在球面上的任何国家,将存在一个外边界,由一条简单闭曲线 构成,在无限平面上的国家,一般也由一条简单闭曲线构成外边界, 个别国家也许在某些区间不存在边界(即区域无限延伸),其外边 界将由若干段曲线构成,对于这种情况,我们可在其无限远处虚拟 若干个国家若干段边界,与实在的若干段边界构成一条简单闭曲线 边界,这种做法实际上提高了这些国家的着色要求,因此不影响本 命题的论证。如为单连通区域,国家里边将不存在内边界,如为多 连通区域,国家里边将存在若干由简单闭曲线构成的内边界。因此,为使命题具有普遍性,把国家定义为具有一个外边界和若干内边界的区域,每 一边界均为该国与若干邻国的共同边界构成的简单闭曲线,如图1 示。下面把构成一条这种共同边界闭曲线的若干邻国称为一个邻国 圈。 用小圆圈表示邻国,两国相邻时,用线条连接两个小圆圈, 一个邻国在共同边界多处出现时,各处分别用小圆圈表示,并用线 条连接各处表示连通。把一个国家表示为由其若干邻国圈构成的闭 合圈围闭的区域,如图2示。其中,外闭合圈之外,一些邻国可能 跨越闭合圈上的一个或多个邻国与其它一个或多个邻国相邻,一些 邻国也可能多处出现在闭合圈上,这些情况将使闭合圈外存在若干

梅涅劳斯定理及应用

梅涅劳斯定理 梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。 展开 定理的证明 证明:当直线交△ABC的AB、BC、CA的反向延长线于点D、E、F时, (AD/DB)*(BE/EC )*(CF/FA)=1 逆定理证明: 证明:X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 证明一 过点A作AG∥BC交DF的延长线于G, 则AF/FB=AG/BD , BD/DC=BD/DC , CE/EA=DC/AG 三式相乘得:(AF/FB)×(BD/DC)×(CE/EA)=(AG/BD)×(BD/DC)×(DC/AG)=1 证明二 过点C作CP∥DF交AB于P,则BD/DC=FB/PF,CE/EA=PF/AF 所以有AF/FB×BD/DC×CE/EA=AF/FB×FB/PF×PF/AF=1 证明三 连结BF。 (AD:DB)·(BE:EC)·(CF:FA) =(S△ADF:S△BDF)·(S△BEF:S△CEF)·(S△BCF:S△BAF) =(S△ADF:S△BDF)·(S△BDF:S△CDF)·(S△CDF:S△ADF) =1 证明四 过三顶点作直线DEF的垂线,AA‘,BB',CC' 有AD:DB=AA’:BB' 另外两个类似,三式相乘得1 得证。如百科名片中图。 充分性证明: △ABC中,BC,CA,AB上的分点分别为D,E,F。 连接DF交CA于E',则由充分性可得,(AF/FB)×(BD/DC)×(CE'/E'A)=1

简洁破解四色猜想——“1+3”证明与“3+1”充要条件模型证明——

简洁破解四色猜想 ——“1+3”证明与“3+1”充要条件模型证明—— 李传学 四色猜想与费马猜想、哥德巴赫猜想,是数学界三大难题。本文利用“1+3”、“3+1”链锁思维方式,并结合计算机逻辑判断方式,给予地球四色猜想的有、且只有数学方法与应用方法的两种证明。并在实践中,使链锁着色,直至组成四色猜想的(△)网状平面整(总)体地图。 一、四色猜想简洁证明的提出。 随着计算机运算速度的加快、人机对话智能的出现,极大加快了对四色猜想研究、证明的步伐。1976年6月,美国哈肯与阿佩尔编制程序,利用1200个小时,分别在两台计算机上,作了100亿次判断,终于完成了四色猜想的证明。到目前为止,仍是世界上唯一被认可的证明方法。但是,由于计算机证明方法过程深长,不符合人的逻辑思维判断过程,缺乏简洁性,无法令人信服。 二、“四色”是地球“四方八位”的客观存在。 “四方八位”是个动态概念,存在于“天、地、人合一”的地球万物运动的整个过程中。同样,数学界三大难题之一的四色猜想,也离不开这一客观规律。 地球,蕴育了万物。天圆地方、“四方八位”、四面八方、东西南北、五湖四海是人类认识地球的思维方式。远在史前人类整体文明时期,就有文物记载了地球上有关“四方八位”的许多概念。如半坡人鱼盆、人网盆、含山玉版、澄湖陶罐、八角星陶豆、良渚陶璧、古埃及金字塔,以及其他图形、符号记载的伏羲八卦图、彝族八卦图、河图、洛书、五行属性,也都应用了“四方八位”概念。 四色绚丽的地球生生不息,是“天人合一”的赋予。地球的天圆地(四)方是阴阳学说的核心和精髓,又是阴阳学说的具体体现,具有朴素的辩证法色彩,是古代人类认识世界的思维方式。 阴阳五行中的五色、四方位:即,木有青、东,金有白、西,火有红、南,水有黑、北,土有黄、中,以及罗盘定位、经纬仪、四季、纳米四大光波(红、蓝、绿、黄)、四色光谱仪都与地球上的“四方八位”寓意紧密相关。当然,“四色猜想”也不例外,也只能有、且只有在地球图上的客观存在。 三、四色猜想的数学语言定义。 任何一张平面地图,只要用四种不同颜色就能使具有共同边界的国家,着上不同颜色,称之为四色猜想。 四色猜想的数学语言定义:将平面任意地细分为不相重叠的区域,每一区域总可以用1、2、3、4这四个数字之一来进行标记,且不会使相邻的两个区域得到相同的数字。这里的相邻区域,是指有一整段(非点)边界是公共的边界(注:据网络“科普中国”)。 四、四色猜想的数学证明。

圆中的基本概念及定理(讲义及答案)

圆中的基本概念及定理(讲义) ?课前预习 在小学的时候,我们知道“一中同长”表示的是圆,中心称为,固定的线段长称为,还知道半径为r 的圆的周长为,面积为. 在七年级我们学习了圆的另外一种说法:平面上,一条线段绕着它固定的一个端点旋转一周,另一个端点形成的图形叫做圆.固定的端点O 称为圆心,线段OA 称为半径. 一条弧AB 和经过这条弧的两条半径OA,OB 所组成的图形叫做扇形. 顶点在圆心的角叫做圆心角.

1

?知识点睛 1.在一个平面内,线段OA 绕它固定的一个端点O 旋转一周, 另一个端点A 所形成的图形叫做.其固定的端点O 叫做,线段OA 叫做.以点O 为圆心的圆,记作,读作“圆O”. 2.圆中概念: 弧:,弧包括和; 弦:; 圆周角:; 圆心角:; 弦心距:; 等圆:; 等弧:. 3.圆的对称性: 圆是轴对称图形,其对称轴是; 圆是中心对称图形,其对称中心为.4.圆中基本定理: *(1)垂径定理: .推论: .(2)四组量关系定理:在中,如果 、、、 中有一组量相等,那么它们所对应的其余各组量都分别相等. (3)圆周角定理: .推论1:. 推论2:, .推论3: .注:如果一个多边形的所有顶点都在同一个圆上,那么这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆.圆中处理问题的思路: ①找圆心,连半径,转移边; ②遇弦,作垂线,垂径定理配合勾股定理建等式; ③遇直径,找直角,由直角,找直径; ④由弧找角,由角看弧.

2

? 精讲精练 1. 如图,AB 是⊙O 的直径,弦 CD ⊥AB ,垂足为 M ,下列结论不一定成立的是( ) ︵ ︵ A .CM =DM B . CB = B D C .∠AC D =∠ADC D .OM =MB 第 1 题图 第 2 题图 2. 如图,⊙O 的弦 AB 垂直平分半径 OC ,若 AB = 的半径为 . ,则⊙O 3. 工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是 10 mm ,测得钢珠顶端离零件表面的距离为 8 mm ,如图所示,则这个小圆孔的宽口 AB 的长度为 mm . 第 3 题图 第 4 题图 4. 如图,圆拱桥桥拱的跨度 AB =12 m ,桥拱高 CD =4 m ,则拱桥的直径为 . 5. 如图,在⊙O 中,直径 CD 垂直于弦 AB ,垂足为 E ,连接 OB , CB .已知⊙O 的半径为 2,AB = 2 ,则∠BCD = . 6 3

第三讲 托勒密定理及其应用

第三讲 托勒密定理及其应用 托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之和). 即:;内接于圆,则有: 设四边形BD AC BC AD CD AB ABCD ?=?+? ;内接于圆时,等式成立并且当且仅当四边形中,有:定理:在四边形ABCD BD AC BC AD CD AB ABCD ?≥?+? 一、直接应用托勒密定理 例1 如图2,P 是正△ABC 外接圆的劣弧上任一点 (不与B 、C 重合), 求证:PA=PB +PC . 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为繁冗. 若借助托勒密定理论证,则有PA ·BC=PB ·AC +PC ·AB , ∵AB=BC=AC . ∴PA=PB+PC . 二、完善图形 借助托勒密定理 例2 证明“勾股定理”: 在Rt △ABC 中,∠B=90°,求证:AC 2=AB 2+BC 2 四点共圆时成立; 、、、上时成立,即当且仅当在且等号当且仅当相似 和且又 相似 和则:,,使内取点证:在四边形D C B A BD E BD AC BC AD CD AB ED BE AC BC AD CD AB ED AC BC AD AD ED AC BC AED ABC EAD BAC AD AE AC AB BE AC CD AB CD BE AC AB ACD ABE ACD ABE CAD BAE E ABCD ?≥?+?∴+?=?+?∴?=??=∴??∴∠=∠=?= ??=∴??∠=∠∠=∠)(

证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是圆内接四边形.由托勒密定理,有 AC·BD=AB·CD+AD·BC.① 又∵ABCD是矩形, ∴AB=CD,AD=BC,AC=BD.② 把②代人①,得AC2=AB2+BC2. 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD,求证:AD·BC=BD(AB+AC).证明:连结CD,依托勒密定理, 有AD·BC=AB·CD+AC·BD. ∵∠1=∠2,∴BD=CD. 故AD·BC=AB·BD+AC·BD=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1. 求证:ax+by≤1. 证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB, 使AC=a,BC=b,BD=x,AD=y. 由勾股定理知a、b、x、y是满足题设条件的. 据托勒密定理,有AC·BD+BC·AD=AB·CD. ∵CD≤AB=1,∴ax+by≤1. 四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b+c),求证:∠A=2∠B. 分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c. 证明:如图,作△ABC的外接圆,以A为圆心,BC为半径作弧交圆于D,连结BD、DC、DA.∵AD=BC,

托勒密定理、婆氏定理——圆中基本模型专题(二)(1)

托勒密定理、婆氏定理——圆中基本模型专题(二) 【教学重难点】 1.圆中托勒密定理;对角互补模型:旋转视角、托勒密视角 2.婆罗摩笈多定理 3.例题探究 【模块一圆中托勒密定理】 古希腊最伟大的天文学家,数学家、天文学家伊巴谷(约公元前190年-公元前125年),最早提出了,圆内接四边形两对对边乘积的和等于两条对角线的乘积,后称托勒密定理.古罗马著名的天文学家、光学家克罗狄斯·托勒密(约90年-168年),从伊巴谷的书中将其摘出并完善.托勒密定理实质上是关于共圆性的基本性质,故从这个定理可以推出正弦、余弦的和差公式及一系列的三角恒等式. 1.基本图形与结论:如图1,当A、B、C、D四点共圆,则AC×BD=AB×DC+AD×BC. 2.简单证明: 在线段BD上取一点E,连AE,使∠AEB=∠ADC, 易得△AEB∽△ADC, AC CD =??=?① AC BE AB CD AB BE 旋转一拖二得△ABC∽△AED, AC BC =??=?② AC DE BC AD AD DE 由①+②得:AC×(BE+DE)=AC×BD=AB×DC+AD×BC. 3.模型识别: 具体情境中出现四点共圆,且四点构成的四边形边长、对角线长信 息较多,可以尝试用托勒密定理进行计算. ※4.广义托勒密定理:对于任意凸四边形ABCD,则有AC×BD ≤AB×DC+AD×BC.证明从略···【模块二对角互补模型→旋转视角】 1.基本图形与模型识别:如图2,对角互补且一组邻边相等 ...........的四边形, 可通过旋转变换将四边形转化为等腰三角形(等腰思旋转). 2.四类常见对角互补模型: ①模型一:等边60°对120°型 条件:如图3,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120° 结论:(1)CA平分∠BCD;(2)BC+CD=AC. 证明:证明:如图,将△ACD绕点A逆时针旋转60°至△AMB,使AD, AB重合, 则△ACD≌△AMB, ∴∠ADC=∠ABM,AC=AM,CD=BM,∠ACD=∠M, ∵∠BAD=60°,∠BCD=120°, ∴∠ABC+∠ADC=180°,

圆中三大切线定理

14 初三秋季·第2讲·尖子班·学生版 围田地 漫画释义 满分晋级阶梯 圆7级 期末复习之圆中的 重要结论及应用 圆6级 期末复习之圆的综合 圆5级 圆中三大切线定理 2 圆中三大切线定理

中考内容与要求 中考考点分析 圆是北京中考的必考内容,主要考查圆的有关性质与圆的有关计算,每年的第20题都会考 15

16 初三秋季·第2讲·尖子班·学生版 查,第1小题一般是切线的证明,第2小题运用圆与三角形相似、解直角三角形等知识求线段长度问题,有时也以阅读理解、条件开放、结论开放探索题作为新的题型。 要求同学们重点掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化,理解直线和圆的三种位置关系,掌握切线的性质和判定方法,会根据条件解决圆中的动态问题。 年份 2011年 2012年 2013年 题号 20,25 8,20,25 8,20,25 分值 13分 17分 17分 考点 圆的有关证明,计算(圆周角定理、切线、等腰三角形、相似、解直角三角形);直线与圆的位置关系 圆的基本性质,圆的切线证明,圆同相似和三角函数的结合;直线与圆的位置关系 圆中的动点函数图像,圆的基本性质(垂径定理、圆周角定理),圆同相似和三角函数的结合;直线与圆的位置关系 知识互联网 题型一:切线的性质定理

17 题目中已知圆的切线,可以“连半径,标直角”,然后在直角三角形中利用勾股、相似或锐角三角函数解决问题。 【例1】 如图,在△ABC 中,BC AB =,以AC 为直径的⊙0与BC 边 交于点D ,过点D 作⊙O 的切线DE ,交AB 于点E ,若 DE ⊥AB .求证:BE AE 3=. 判定切线共有三种方法:定义法、距离法和定理法,其中常用的是距离法和定理法,可以总结为六字口诀,定理法是“连半径,证垂直”,距离法是“作垂直,证半径”,定理法的使用频率最高,必须熟练掌握。 【例2】 如图,C 是以AB 为直径的⊙O 上一点,过O 作OE ⊥AC 于点E ,过点A 作⊙O 的切线 交OE 的延长线于点F , 典题精练 思路导航 典题精练 思路导航 题型二:切线的判定定理 E O D C B A

圆概念公式定理

1.圆的周长C=2πr=πd 2.圆的面积S=πr2 3.扇形弧长l=nπr/180 4.扇形面积S=nπr2/360=rl/2 5.圆锥侧面积S=πrl 〖圆的定义〗 几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。 轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。 集合说:到定点的距离等于定长的点的集合叫做圆。 〖圆的相关量〗 圆周率:圆周长度与圆的直径长度的比叫做圆周率, 值是 3.141592653589793238462643383279502884197169399375105820974944 5923078164062862089986280348253421170679..., 通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。 圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。 圆心角和圆周角:顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。 〖圆和圆的相关量字母表示方法〗 圆—⊙半径—r 弧—⌒直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S 〖圆和其他图形的位置关系〗 圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

第4章 斯特瓦尔特定理及应用(含答案)

第四章 特瓦尔特定理及应用 【基础知识】 斯特瓦尔特定理 设P 为ABC △的BC 边上任一点(P B ≠,P C ≠),则有 222AB PC AC BP AP BC BP PC BC ?+?=?+?? ① 或 2222P C B P B P P C A P A B A C B C B C B C B C B C =? +?-??. ② 证明 如图4-1,不失一般性,不妨设90APC

托勒密定理塞瓦定理梅涅劳斯定理西姆松定理

托勒密定理 内容:指圆内接凸四边形两对对边乘积的和等于两条对角线的乘积。 证明: 在任意凸四边形ABCD中(如右图),作△ABE使∠BAE=∠CAD ∠ABE=∠ ACD,连接DE. 则△ABE∽△ACD ∴BE/CD=AB/AC,即B E·AC=AB·CD (1) 由△ABE∽△ACD得AD/AC=AE/AB,又∠BAC=∠EAD, ∴△ABC∽△AED. BC/ED=AC/AD,即ED·AC=BC·AD (2) (1)+(2),得 AC(BE+ED)=AB·CD+AD·BC 又∵BE+ED≥BD ∴AB×CD+AD×BC≥AC×BD 塞瓦定理 在△ABC内任取一点O, 直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1 因为(AD:DB)*(BE:EC)*(CF:FA)=1所以CD、AE、BF交于一点

用同一法证 点D,E,F分别为三角形ABC三边BC,AC,AB上的点,若AF/BF*BD/DC*CE/AE=1,则AD,BE,CF 三点共线 逆命题证明 证明:设BE,CF交与点O,AO交BC于点P。 则由赛瓦定理可知,AF/BF*BP/PC*CE/AE=1。 由已知AF/BF*BD/DC*CE/AE=1知,AF/BF*BP/PC*CE/AE=1=AF/BF*BD/DC*CE/AE。 推出BP/PC=BD/DC,所以BD/BC=BP/BC,故BD=BP。 所以D点与P点重合。则AD,BE,CF三点共线,命题得证。 梅涅劳斯定理 如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/Y A)=1 。 西姆松定理 (1)称三角形的垂心为H。西姆松线和PH的交点为线段PH的中点,且这点在九点圆上。 (2)两点的西姆松线的交角等于该两点的圆周角。 (3)若两个三角形的外接圆相同,这外接圆上的一点P对应两者的西姆松线的交角,跟P的位置无关。

证明四色猜想

证明四色猜想 本文用递推的方法,分别用点和线代替平面图形及平面图形相交,则三个平面图形两两相交时,构成一个三角形的封闭空间。通过讨论第四个点与此三角形的关系,简明地证明了四色猜想。 四色猜想最先是由一位叫古德里的英国大学生提出来的。高速数字计算机的发明,促使更多数学家对“四色问题”的研究。就在1976年6月,哈肯和与阿佩尔合在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。直到现在,仍有不少数学家和数学爱好者在寻找更简洁的证明方法。 证明 将平面图形抽象极限成成点或线,当然在这一点或线的基础上可以任意发出一些线(这些射线可以任意扩展为面)。这些射线都属于这个点。 首先,A,B两个面相交看成点A发出的射线和点B发出的射线相遇于点Pab,如图1。第三点C要和A,B两两相交,则构成一个三角形ABC的封闭空间,如图2。 这时点D要和A、B、C两两相交则有两种情况: (1)D在ABC之内和ABC相交 当D和和A、B、C中任意两者相交都将构成新封闭三角形。第五点E继续相交时就和D与A、B、C相交的情况一样。 假设D和A,B,C分别相交于Pad,Pbd和Pcd。Pbd在P到B点间,Pad 在Pac到A点间,Pcd在Pac到C点间。这样即使A,B,C内部还有剩余空间也被分成了3部分如图3。尽管这三个图形不一定都是三角形但都是封闭的,都可以简化成三角形。所以无论第五点E在哪部分都是点与三角形关系。(见图3) (2)D在ABC之外和ABC相交 D可以完全将ABC包围或者将ABC一部分包围。但无论怎样ABC三者至少有一者完全在D的图形内。 若D将ABC一部分包围。那么ABC至少有一点完全被D包围。如图5 若E在D外就不能和A、B同时相交。

相关主题
文本预览
相关文档 最新文档