当前位置:文档之家› 定积分练习题1.doc

定积分练习题1.doc

定积分练习题1.doc
定积分练习题1.doc

定积分练习题

一.选择题、填空题

1.将和式的极限

lim 1p 2 p

3p .......

n p

0) 表示成定积分

n P 1

( p

n

1

1

1 p

dx

1

1 p

dx

1

x

p dx

A .dx

B . x

C .()

D . ()

0 x

0 x

n

2.将和式 lim ( 1

1 .........

1

) 表示为定积分

n

n 1

n 2 2n

3.下列等于 1 的积分是

A . 1

xdx

B . 1

C . 1

1

1

( x 1)dx

1dx

D . dx

2

1

2

4 | dx =

4. | x

A .

21

B .

22

23

25

3

3

C .

3

D .

3

5.曲线 y

cos x, x

[0,

3

] 与坐标周围成的面积

2

5

A .4

B .2

D . 3

C .

2

1

e x

)dx =

6. (e

x

A . e 1

B .2e

2

D . e

1

e

C .

e

e

7.若 m

1

e x

dx , n

e

1

dx ,则 m 与 n 的大小关系是( )

1 x

A . m n

B . m n

C . m n

D .无法确定 8.

9 y x

2 1 和 x 轴围成图形的面积等于 S

.给出下列结果:

.由曲线

1

1)dx ; ② 1

1

①( x 2

(1 x 2

)dx ; ③ 2 ( x

2

1)dx ; ④ 2 (1 x 2 )dx . 1

1

1 则 S 等于(

A . ①③

B . ③④

C . ②③

D . ②④ 10. y

x

cost sin t)dt ,则 y 的最大值是(

(sin t )

A . 1

B . 2

C .

7 D . 0

2

17

f ( x)

11. 若 f (x) 是一次函数,且

1

1

2 dx 的值是

f ( x) dx 5 , xf ( x)dx

6

,那么

x

1

15.设 f (x )

sin x 3 x

,则

f (x) cos2 xdx (

)

其余

( A )

17. 定积分

3 3 (D )- 1

( B )

(C )1

4

4

sin x sin 3 xdx 等于 _______

18. 定积分

cos x

cos 3 xdx 等于 ( )

( A )

3 ( B )

2 ( C )

4 4 3

( D )

3

19. 定积分

2

| sin x cos x | dx 等于 (

)

( A ) 0

( B )

1

( C )

2 1

(D )2( 2 1)

2

20.定积分

max{ x 3

, x

2

,1}dx 等于 ( )

2

( A ) 0

( B ) 4

( C )

16

( D )

97

3

12

综合题:

(1) 1

x 2

dx (2) 1

x)dx

2

( x

2

4

x 2 x cos 5 x)dx

ln(1

(3)

x

2

x 2

2 (4)

e

dx

2 dx e

x

(1

ln x)ln x

(5)

3

(3 2x 2

)2

x

(6)

2 tan 2 x[sin 2

2x ln( x

1 x

2

)]dx

(7)

2

1 dx

2

2

4 x 2

(14) 用定积分定义计算极限: lim( n n

...

n

)

2 2 2

2

2

n

n 1 n 2

n

n

定积分练习题

1

x) 1 x 2 dx

2.

(1 (

)

1

( A )

( B )

2

(C ) 2

( D )

4

3. 设 f

C [ 0, 1] ,且

1

x dx ,则

2

f (cos 2

x) sin 2xdx ()

f

( 2

)

( A )2 (B )3 ( C )4 (D )1

4. 设 f ( x) 在 [a,b] 上连续,且

b 0 ,则(

f ( x)dx )。

a

( A )在 [ a, b] 的某个子区间上, f ( x) 0 ;

( B )在 [ a, b] 上, f ( x) 0 ;

( C )在 [ a, b] 内至少有一点

c , f (c) 0 ;

( D )在 [ a, b] 内不一定有 x ,使 f ( x)

0 。

2

5.

x 3 2x 2

xdx =(

)

(A)

4

(2

2)

4

(2

2 )

4 2

8 2 (D)

4 2 8 2

15 15

3

5

3 5

1

e x

dx 6..

e x

(

)

1

1

(A)

1 e 1 e (D)

1

1 (B)

e

(C)

e

1 1 填空、选择题

(1) 2 sin 8 xdx _______,

2

cos 7 xdx _______,

x

(2)lim

t sin tdt

______;

x)

x 0

ln(1

2

x 2

2x dx _______;

(3) 1

曲线

y x t(1

的上凸区间是

_______;

(4)

1

t )dt

(5) 1 cos2xdx _______;

是连续函数,且

,则: f ( x) ______;

(6)

f ( f ( x ) si n xf ( x dx

1

x(1

x 2005 )(e x

e x )dx

______; (7)

1

(8) lim

1 x 1

)dt _______;

ln(1

x

x 1

t

定积分练习题

一.计算下列定积分的值

( 1) 3 2

2

5

2

;(4) 2

2

xdx ;

(4x x )dx

;( )

( x 1) dx

; ( ) ( x sin x)dx cos

1

2

1

3

2

π

1

1

1 x 2

e

2

( 5)

2

cos 2

d

(2x 3) dx ;

dx ; 0

2 (6) 0 (7) 01 x 2 ( 8) e

dx

x ln x

1

e x

e x 3 tan 2

xdx

9

1 4

dx

(9) 0

2

dx ;

(10) 0 (11) 4 ( x

x

)dx;

( 12) 0 1

x ;

e

1

(ln x) 2

dx

5

x

1

dx

;

(13) 1

x

2

cos xsin 2xdx; (15) 2 e sin xdx; (16)

(x 2

x 1) 3 / 2

e (14) 0

2

cos x

1

dx

sin 2 x

dx;

(18)

e x

;

(17) 0 1

e x

三.利用定积分求极限

( 1)

lim n

n 1 1 1 ;

(n 1) 2

( n 2) 2

(n n) 2

( 2)

lim

n(

2

1

2

1 1

2 );

n

n 1 ( n

2)

2n

定积分练习题

一、填空题:

如果在区间 [a, b] 上 ,

b

1. f ( x) 1,则 f (x)dx

.

a

2.

1

(2x 3)dx

.

3. 设 f ( x)

x

2dt ,则 f ( x)

. sin t

4. 设 f ( x)

1

e t 2 dt ,则

f (x)

.

cosx

5.

2

cos 5 x sin xdx

6.

2 sin 2n 1 xdx

.

2

7.

1

3 dx

.

1

x

3

3

8. 比较大小 ,

x 2

dx

x 3

dx .

1

1

9. 由曲线 y sin x 与 x 轴 ,在区间 [0, ] 上所围成的曲边梯形的面积为

.

10. 曲线 y

x 2 在区间 [0,1] 上的弧长为

.

二、选择题:

3

1. 设函数 f(x) 仅在区间 [0, 4]上可积,则必有

f (x)dx =[

]

2

f ( x)dx

3

1

3

f ( x)dx

A .

0 f ( x)dx

B .

f (x)dx

2

1

5

3

10 3

f (x)dx

C . f (x)dx

f (x)dx

D .f ( x) dx

5

10

1

2

2.设 I 1 = xdx , I 2 =

x 2 dx ,则 [

]

1

A . I 1

I 2

B . I 1 I 2

C . I 1

I 2

D . I 1

I 2

y

x 3

2) dt 则

dy

x

0 3. 0 (t

1) (t

dx

A . 2

B . -2

C . 0

D . 1

a

3x)dx

2, 则 a 4.

x(2

A .2

B . -1

C . 0

D . 1

5. 设 f ( x ) =

2

( x 0) 则

f (x)dx =[ ]

x

1

x(x

0)

1

A . 2

1

xdx

B . 2 x 2 dx

1

1

x 2

dx +

xdx

1

C . 1

D . xdx

x 2dx

1

x sin t 2dt 6. lim

x 2

x 0

1

1

C . 0

D . 1

A .

B .

2

3

x

e

t

7.

F ( x)

costdt, 则 F (x) 在 [0, ]上有(

)

(A)

F ( ) 为极大值 , F (0) 为最小值

F ( ) 为极大值 ,但无最小值

2 2 (B)

F ( ) 为极小值 ,但无极大值 F ( ) 为最小值 , F (0) 为最大值

2

2

x 2

2

x

3 ,则 f (2)

9. 设 f ( x) 是区间 a,b 上的连续函数,且

f (t)dt (

1

(A) 2 (B) -2

1

1

(C)

(D)

4

4

1

ln(1 x)

10. 定积分

1

x 2

dx =(

( A )

1

( B ) 2

( )

ln 2

( ) ln 2

C

D

8

11. 定积分

4

tan 2 x

=( )

4 1 e x

dx

( A )

1

( B )

1

2

4 2

( C )

1 2

( D )

1

4

13. 设函数 f

R[ a, b] , 则极限 lim

f ( x) | sin nx | dx 等于(

n

( A )

2 f (x)dx

( B ) 2

f (x)dx

1

( C )

f ( x)dx

( D ) 不存在

x x 2

x

14. 设 f (x) 为连续函数,且满足

x)dt

e

1,则 f (x)

f (t

)。

2

( A )

x e x

( B ) x e x

( C ) x e x

( D ) x e x

15. f

C [ a , b) , F ( x)

x

x

1

dt ,则 F ( x) 0 设正定函数 f (t) dt

f ( x)

a

b

( a , b) 内根的个数为

( )

(A )0

( B )1

(C )2

(D )3

三.计算题:

1. d

x

2

1 t 2

dt

2. 2

sin xdx

dx

(

x t

2 dt ) 2

1 dx

e

3.

4. lim

2

x

2

x

0 te 2t dt

4 x

5. a 1 dx (a 0)

6.

4 dx

x 2 a 2

1

x

x

1

t

2

1

x

dx

2

dt 7.

te

8.

e

高数不定积分例题

不定积分例题 例1、设)(x f 的一个原函数是x e 2-,则=)(x f ( ) A 、x e 2- B 、2-x e 2- C 、4-x e 2- D 、4x e 2- 分析:因为)(x f 的一个原函数是x e 2- 所以)(x f ='=-)(2x e 2-x e 2- 答案:B 例2、已知?+=c x dx x xf sin )(,则=)(x f ( ) A 、x x sin B 、x x sin C 、x x cos D 、x x cos 分析:对?+=c x dx x xf sin )(两边求导。 得x x xf cos )(=,所以= )(x f x x cos 答案:C 例3、计算下列不定积分 1、dx x x 23)1(+ ? 2、dx x e e x x x )sin 3(2-+? 分析:利用基本积分公式积分运算性质进行积分,注意在计算时,对被积函数要进行适当的变形 解:1、dx x x 23)1 (+?dx x x x )12(3++ =? c x x x dx x dx x xdx +-+=++=? ??22321ln 22112 2、dx x e e x x x )sin 3(2-+?dx x dx e x ??+=2sin 1)3(c x e x +-+=cot 3ln 1)3( 例4、计算下列积分

1、dx x x ?-21 2、dx e e x x ?+2) 1( 分析:注意到这几个被积函数都是复合函数,对于复合函数的积分问题一般是利用凑微分法,在计算中要明确被积函数中的中间变量)(x u ?=,设法将对x 求积分转化为对)(x u ?=求积分。 解:1、dx x x ?-21c x x d x +--=---=?2221)1(1121 2、dx e e x x ?+2) 1(c e e d e x x x ++-=++=?11)1()1(12 例5、计算?+xdx x sin )1( 分析:注意到这些积分都不能用换元积分法,所以要考虑分部积分,对于分部积分法适用的函数及u ,v '的选择可以参照下列步骤①凑微分,从被积函数中选择恰当的部分作为dx v ',即dv dx v =',使积分变为?udv ;②代公式,?udv ?-=vdu uv ,计算出dx u du '=;③计算积分?vdu 解:?+xdx x sin )1(???--=+=x x xd xdx xdx x cos cos sin sin ?+-+-=---=c x x x x x xdx x x cos sin cos cos )cos cos (

完整word版,高等数学考研辅导练习题不定积分定积分及常微分方程

《高等数学》考研辅导练习4 不定积分 1. 求()x f x e -=在R 上的一个原函数。 2. 已知2 2 2 (sin )cos tan f x x x '=+,求()01f x x <<。 3. 设 2 ()f x dx x C =+?,则2(1)xf x dx -=? 。 4. 计算 3。 5。 计算。 6. 计算 71 (2) dx x x +?。 7。 计算。 8. 计算 21 13sin dx x +?。 9。 计算172 2 1sin cos dx x x ? 。 10. 计算 () 2 2 sin cos x dx x x x +?。 11. 计算 ()()2 ln ()ln ()()()()f x f x f x f x f x dx ''''++?。 12. 设()arcsin xf x dx x C =+? ,则 1 () dx f x =? 。 13. 设2 2 2(1)ln 2 x f x x -=-,且(())ln f x x ?=,求()x dx ??。 14. 计算arctan 23/2(1)x xe dx x +?。 15. 计算x 。 16. 计算 1sin 22sin dx x x +?。 17. 计算ln t tdt α ? 。 18. 计算()ln n x dx ?。 《高等数学》考研辅导练习5 定积分 1.设02 ()2 l kx x f x l c x l ? ≤≤??=??<≤??,求0 ()()x x f t dt Φ=?。 2. 设1 ()2()f x x f x dx =+? ,则()f x = 。 3. 计算 {}2 23 min 2,x dx -? 。 4. 已知()f x 连续,且满足()()1f x f x -=,则 2 2cos 1()x dx f x π π-+?= 。

高等数学不定积分习题

第四章 不 定 积 分 § 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上)()(x f x F =',则F(x)叫做)(x f 在该区间上的一个 , )(x f 的 所有原函数叫做)(x f 在该区间上的__________。 2.F(x)是)(x f 的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为 dx x x d 2 11)(arcsin -= ,所以arcsinx 是______的一个原函数。 4.若曲线y=?(x)上点(x,y)的切线斜率与3 x 成正比例,并且通过点A(1,6)和B(2,-9),则该 曲线方程为__________?。 二.是非判断题 1. 若f ()x 的某个原函数为常数,则f ()x ≡0. [ ] 2. 一切初等函数在其定义区间上都有原函数. [ ] 3. ()()()??'='dx x f dx x f . [ ] 4. 若f ()x 在某一区间内不连续,则在这个区间内f ()x 必无原函数. [ ] 5. =y ()ax ln 与x y ln =是同一函数的原函数. [ ] 三.单项选择题 1.c 为任意常数,且)('x F =f(x),下式成立的有 。 (A )?=dx x F )('f(x)+c; (B )?dx x f )(=F(x)+c; (C )? =dx x F )()('x F +c; (D) ?dx x f )('=F(x)+c. 2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)≠0,则下式成立的有 。 (A )F(x)=cG(x); (B )F(x)= G(x)+c; (C )F(x)+G(x)=c; (D) )()(x G x F ?=c. 3.下列各式中 是| |sin )(x x f =的原函数。 (A) ||cos x y -= ; (B) y=-|cosx|; (c)y={ ;0,2cos , 0,cos <-≥-x x x x (D) y={ . 0,cos ,0,cos 21<+≥+-x c x x c x 1c 、2c 任意常数。 4.)()(x f x F =',f(x) 为可导函数,且f(0)=1,又2 )()(x x xf x F +=,则f(x)=______.

(完整版)定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数 dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ))(2 122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、3 23xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 23xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π ? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==?若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、1 2 二、填空 (2小题,共5分) 得分 阅卷人

高等数学不定积分例题思路和答案超全

高等数学不定积分例题思路和答案超全 内容概要 课后习题全解 习题4-1 :求下列不定积分1.知识点:。直接积分法的练习——求不定积分的基本方法思路分析:!利用不定积分的运算性质和基本积分公式,直接求出不定积分(1)★思路: 被积函数,由积分表中的公式(2)可解。 解: (2)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (3)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。:解. (4)★思路: 根据不定积分的线性性质,将被积函数分为两项,分别积分。解: (5)思路:观察到后,根据不定积分的线性性质,将被积函数分项,分别积分。

解: (6)★★思路:注意到,根据不定积分的线性性质,将被积函数分项,分别积分。 解: 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。(7)★思路:分项积分。 解: (8)★思路:分项积分。 解: (9)★★思路:?看到,直接积分。 解: (10)★★思路: 裂项分项积分。解: (11)★解: (12)★★思路:初中数学中有同底数幂的乘法:指数不变,底数相乘。显然。 解: (13)★★思路:应用三角恒等式“”。 解: (14)★★思路:被积函数,积分没困难。 解: (15)★★思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。 解: (16)★★思路:应用弦函数的升降幂公式,先升幂再积分。 解: () 17★思路:不难,关键知道“”。 :解. ()18★思路:同上题方法,应用“”,分项积分。 解: ()19★★思路:注意到被积函数,应用公式(5)即可。 解: ()20★★思路:注意到被积函数,则积分易得。 解: 、设,求。2★知识点:。考查不定积分(原函数)与被积函数的关系思路分析::。即可1直接利用不定积分的性质解::等式两边对求导数得 、,。求的原函数全体设的导函数为3★知识点:。仍为考查不定积分(原函数)与被积函数的关系思路分析:。连续两次求不定积分即可解:,由题意可知:。所以的原函数全体为、证明函数和都是的原函数4★知识点:。考查原函数(不定积分)与被积函数的关系思路分析:。只需验证即可解:,而、,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。一曲线通过点5★知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。 思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。 解:设曲线方程为,由题意可知:,; 又点在曲线上,适合方程,有, 所以曲线的方程为 、,:问6一物体由静止开始运动,经秒后的速度是★★(1)在秒后物体离开出发点的距离是多少?

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

高等数学微积分复习题

第五章 一元函数积分学 1.基本要求 (1)理解原函数与不定积分的概念,熟记基本积分公式,掌握不定积分的基本性质。 (2)掌握两种积分换元法,特别是第一类换元积分法(凑微分法)。 (3)掌握分部积分法,理解常微分方程的概念,会解可分离变量的微分方程,牢记非齐次 线性微分方程的通解公式。 (4)理解定积分的概念和几何意义,掌握定积分的基本性质。 (5)会用微积分基本公式求解定积分。 (6)掌握定积分的凑微分法和分部积分法。 (7)知道广义积分的概念,并会求简单的广义积分。 (8)掌握定积分在几何及物理上的应用。特别是几何应用。 2.本章重点难点分析 (1) 本章重点:不定积分和定积分的概念及其计算;变上限积分求导公式和牛顿—莱布 尼茨公式;定积分的应用。 (2) 本章难点:求不定积分,定积分的应用。 重点难点分析:一元函数积分学是微积分学的一个重要组成部分,不定积分可看成是微分运算的逆运算,熟记基本积分公式,和不定积分的性质是求不定积分的关键,而定积分则源于曲边图形的面积计算等实际问题,理解定积分的概念并了解其几何意义是应用定积分的基础。 3.本章典型例题分析 例1:求不定积分sin3xdx ? 解:被积函数sin3x 是一个复合函数,它是由()sin f u u =和()3u x x ?==复合而成,因此,为了利用第一换元积分公式,我们将sin3x 变形为'1 sin 3sin 3(3)3x x x = ,故有 ' 111 sin 3sin 3(3)sin 3(3)3(cos )333 xdx x x dx xd x x u u C ===-+??? 1 3cos33 u x x C =-+ 例2:求不定积分 (0)a > 解:为了消去根式,利用三解恒等式2 2 sin cos 1t t +=,可令sin ()2 2 x a t t π π =- << ,则 cos a t ==,cos dx a dt =,因此,由第二换元积分法,所以积分 化为 2221cos 2cos cos cos 2 t a t a tdt a tdt a dt +=?==??? 2222cos 2(2)sin 22424a a a a dt td t t t C =+=++?? 2 (sin cos )2 a t t t C =++ 由于sin ()2 2 x a t t π π =- << ,所以sin x t a = ,arcsin(/)t x a =,利用直角三角形直接写

《高等数学》不定积分课后习题详解Word版

不定积分内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解:53 22 2 3 x dx x C -- ==-+ ? ★ (2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:114 111 333 222 3 ()2 4 dx x x dx x dx x dx x x C -- -=-=-=-+ ???? ★(3)2 2x x dx + ?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:223 21 22 ln23 x x x x dx dx x dx x C +=+=++ ??? ( ) ★(4)3) x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 2222 2 3)32 5 x dx x dx x dx x x C -=-=-+ ??

★★(5)4223311 x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项, 分别积分。 解:2221arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?? ???34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x -=-=-+++?? ★★(9) 思路=11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+? ★★(10)221(1)dx x x +? 思路:裂项分项积分。

定积分测试题

题 号 一 二 三 四 总分 统分人 分 数 得 分 一、选择 (8小题,共26分) 得分 阅卷人 1. 4)(2 x dt t f x =? ,则=?dx x f x 40)(1( ) A 、16 B 、8 C 、4 D 、2 2.设正值函数 )(x f 在],[b a 上连续,则函数dt t f dt t f x F x b x a ? ?+=) (1 )()(在),(b a 上至少有( )个根。 A 、0 B 、1 C 、2 D 、3 3. =+? dx x x 3 1 ( ) A .18 B . 3 8 C . 1 D .0 4.设 )(x ?''在[b a ,]上连续,且a b =')(?,b a =')(?,则 ?='''b a dx x x )()(??( ) (A )b a - (B )21(b a -) (C ))(2 1 22b a + (D ) )(2122 b a - 5. 19 3 8 dx x +? 定积分作适当变换后应等于 A 、 3 2 3xdx ? B 、30 3xdx ? C 、 2 3xdx ? D 、3 2 3xdx --?  6.sin 22y x x ππ?? -=???? 在 ,上的曲线与轴围成图形的面积为 A 、 22 sin xdx π π-?  B 、2 sin xdx π? C 、0 D 、 22 sin x dx π π-? 7.2 1 x xe dx +∞ -=? 广义积分 A 、 12e B 、12e - C 、e D 、+∞ 8 . 2 ()d ()(0)0(0)2lim x x f x x f x f f x →'==?若为可导函数,且已知,,则之值为 A 、0 B 、1 C 、2 D 、 1 2

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

高等数学-不定积分例题、思路和答案(超全)

第4章不定积分

习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数52 x - =,由积分表中的公式(2)可解。 解: 53 2 2 23x dx x C -- ==-+? ★(2) dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 33322 23()2 4dx x x dx x dx x dx x x C - - =-=-=-+???? ★(3)22 x x dx +? () 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4) 3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解: 3153 22 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)4223311x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积 分。 解:4223 2233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +?

思路:注意到 22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ? 34134( -+-)2 思路:分项积分。 解:34 11342x dx xdx dx x dx x dx x x x x --=-+-?????34134(- +-)2 223134 ln ||.423 x x x x C --=--++ ★ (8) 23(1dx x -+? 思路:分项积分。 解 :2231( 323arctan 2arcsin .11dx dx x x C x x =-=-+++? ? ★★ (9) 思路 =? 1117248 8 x x ++==,直接积分。 解 : 7 15 8 88 .15x dx x C ==+? ? ★★(10) 221 (1)dx x x +? 思路:裂项分项积分。 解: 222222 111111 ()arctan .(1)11dx dx dx dx x C x x x x x x x =-=-=--++++???? ★(11)21 1 x x e dx e --? 解:21(1)(1)(1).11 x x x x x x x e e e dx dx e dx e x C e e --+==+=++--??? ★★(12) 3x x e dx ?

(完整word版)高等数学第四章不定积分习题,DOC

第四章不定积分 §4–1不定积分的概念与性质 一.填空题 1.若在区间上)( ',则F(x)叫做)(x f在该区间上的一个,)(x f的 F= x f )(x A(1,6)和B(2,- .[] 三.单项选择题 1.c为任意常数,且) F=f(x),下式成立的有。 ('x (A)?= =F(x)+c; ('f(x)+c;(B)?dx x F) dx ( f) x (C)?=dx x F)()('x F+c;(D)?dx ('=F(x)+c. x f) 2.F(x)和G(x)是函数f(x)的任意两个原函数,f(x)≠0,则下式成立的有。

48 (A )F(x)=cG(x);(B )F(x)=G(x)+c; (C )F(x)+G(x)=c;(D))()(x G x F ?=c. 3.下列各式中是||sin )(x x f =的原函数。 (A)||cos x y -=;(B)y=-|cosx|; (c)y={ ;0,2cos , 0,cos <-≥-x x x x (D)y={. 0,cos ,0,cos 21<+≥+-x c x x c x 1c 、2c 任意常数。 dx x -2 x 2sin 9.dx x x 2 )2sin 2(cos -?10.? ++dx x x 2cos 1cos 12 11.?dx x x x 2 2 cos sin 2cos 12.?++-dx x x x 3322332 13.dx x x )12 13( 22?--+14.?-dx x x x )tan (sec sec

15.?- dx x x x )1 1(216.dx x x ? -+11 五.应用题 1.一曲线通过点(2e ,3),且在任一点处的切线的斜率等于该点横坐标的倒数,求该 曲线的方程. 2.一物体由静止开始运动,经t 秒后的速度是32t (米/秒),问: ? 15.= -? dx x x 1 12 = -? dx x x 2 2)1 (11=-? 2 )1(11x x d _________ 16.若??≠=++=)0________()(,)()(a dx b ax f c x F dx x f 则 二.是非判断题 1. ??+?=??? ??=c x x d x dx x x 21 2111ln .[]

同济大学(高等数学)_第四章_不定积分

第四章不定积分 前面讨论了一元函数微分学,从本章开始我们将讨论高等数学中的第二个核心内容:一元函数积分学.本章主要介绍不定积分的概念与性质以及基本的积分方法. 第1节不定积分的概念与性质 不定积分的概念 在微分学中,我们讨论了求一个已知函数的导数(或微分)的问题,例如,变速直线运动中已知位移函数为 =, s s t () 则质点在时刻t的瞬时速度表示为 =. () v s t' 实际上,在运动学中常常遇到相反的问题,即已知变速直线运动的质点在时刻t的瞬时速度 v v t =, () 求出质点的位移函数 =. s s t () 即已知函数的导数,求原来的函数.这种问题在自然科学和工程技术问题中普遍存在.为了便于研究,我们引入以下概念.

1.1.1原函数 定义 1 如果在区间I 上,可导函数()F x 的导函数为()f x ,即对任一x I ∈,都有 ()()F x f x '= 或 d ()()d F x f x x =, 那么函数()F x 就称为()f x 在区间I 上的原函数. 例如,在变速直线运动中,()()s t v t '=,所以位移函数()s t 是速度函数()v t 的原函数; 再如,(sin )'cos x x =,所以 sin x 是 cos x 在 (,) -∞+∞上的一个原函 数.1 (ln )'(0),x x x =>所以ln x 是1x 在(0,)+∞的一个原函数. 一个函数具备什么样的条件,就一定存在原函数呢这里我们给出一个充分条件. 定理1 如果函数()f x 在区间I 上连续,那么在区间I 上一定存在可导函数()F x ,使对任一∈x I 都有 ()()'=F x f x . 简言之,连续函数一定有原函数.由于初等函数在其定义区间上都是连续函数,所以初等函数在其定义区间上都有原函数. 定理1的证明,将在后面章节给出. 关于原函数,不难得到下面的结论:

高等数学-不定积分例题、思路和答案(超全)

第4章不定积分 内容概要 课后习题全解 习题4-1

1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数 5 2 x -=,由积分表中的公式(2)可解。 解:5 322 23x dx x C --==-+? ★(2)dx - ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:1 14111 3332223()2 4dx x x dx x dx x dx x x C --=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:22 32122ln 23x x x x dx dx x dx x C +=+=++???() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:3153 222223)325x dx x dx x dx x x C -=-=-+??? ★★(5)4223311x x dx x +++? 思路:观察到422223311311 x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 1 1x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 21x dx x +? 思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。 解:22 21arctan .11x dx dx dx x x C x x =-=-+++??? 注:容易看出(5)(6)两题的解题思路是一致的。一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。 ★(7)x dx x x x ?34134(-+-)2 思路:分项积分。 解:3411342x dx xdx dx x dx x dx x x x x --=-+-?????34134(-+-)2 223134ln ||.423 x x x x C --=--++ ★(8) 23(1dx x -+? 思路:分项积分。 解: 2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++?? ★★(9) 思路=?11172488x x ++==,直接积分。 解:715888.15 x dx x C ==+?? ★★(10) 221(1)dx x x +? 思路:裂项分项积分。

高等数学定积分复习题

1. 求 dx e x ?-2ln 01。5.解:设t e x =-1,即)1ln(2+=t x ,有dt t t dx 122+= 当0=x 时,0=t ;当2ln =x 时,1=t 。 dt t dt t t dx e x )111(21211021 0222ln 0???+-=+=- 22)1arctan 1(2)arctan (210π- =-=-=x t . 2. 求由两条曲线2x y =与2y x =围成的平面区域的面积。 .解:两条曲线的交点是)0,0(与)1,1(,则此区域的面积 31)3132()(1 0323210=-=-=?x x dx x x S 3. 求反常积分 ?+∞-+222x x dx 。 解:dx x x x x dx x x dx b b b b )2111(lim 3 12lim 222222+--=-+=-+???+∞→+∞→+∞ 4ln 3 1)4ln 21(ln lim 31)21ln(lim 312=++-=+-=+∞→+∞→b b x x b b b 5、 4. 设???≤<≤≤-+=20,02,13)(32x x x x x f ,求?-22)(dx x f 解:原式=??-+0 22 0)()(dx x f dx x f ---------5分 =14 ----------5分 6. 求由曲线32,2+==x y x y 所围成的区域绕x 轴旋转而得的旋转体体积。 解:两曲线交点为(-1,1)(3,9)-------2分 面积?--+=3122)32(dx x x S π ---------5分 =17 256 7. 计算定积分2 2π π -? 8. 设()f x 在区间[,]a b 上连续,且()1b a f x dx =?,求() b a f a b x dx +-?。 答案:解:令u a b x =+-,则当x a =时,u b =;当x b =时,u a =,且d x d u =-, 故 ()b a f a b x dx +-?=()a b f u du -? =()1b a f x dx =?。

高等数学第四章不定积分课后习题详解

第4章不定积分 内容概要

课后习题全解 习题4-1 1.求下列不定积分: 知识点:直接积分法的练习——求不定积分的基本方法。 思路分析: 利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1) 思路: 被积函数 5 2 x- =,由积分表中的公式(2)可解。 解: 53 2 2 2 3 x dx x C -- ==-+ ? ★(2)dx ? 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1 14111 33322 23 ()2 4dx x x dx x dx x dx x x C - - -=-=-=-+???? ★(3)22x x dx +?() 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:2 2 3 2122ln 23 x x x x dx dx x dx x C +=+=++? ??() ★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。 解:315 3 2 2 222 3)325 x dx x dx x dx x x C -=-=-+?? ★★(5)422 331 1 x x dx x +++? 思路:观察到422 223311311 x x x x x ++=+++后,根据不定积分的线性性质, 将被积函数分项,分别积分。 解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++??? ★★(6)2 2 1x dx x +? 思路:注意到22222 111 1111x x x x x +-==-+++,根据不定积分的线性性质,将

高等数学 定积分及其应用复习题

第五、六章 定积分及其应用 (1) 一.判断题 ( )1.函数)(x f 在区间],[b a 上有界,则)(x f 在],[b a 上可积. ( )2.若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续. ( )3.设)(x f 在),(+∞-∞内连续,则? =x a dt t f x G )()(是)(x f 的一个原函数. ( )4. ? ?=b a b a dx x f k dx x kf )()(,??=dx x f k dx x kf )()(都对. ( )5.函数)(x f 在],[b a 上有定义,则存在一点],[b a ∈ξ,使 )()()(a b f dx x f b a -=? ξ. ( ). 二.填空题 1.设?= x x tdt x f 2 ln )(,则=')2 1(f . 2.?=x tdt dx d 1sin , dx d ?b a x 2 s i n dx = . 3.若),1(2) (0 2x x dt t x f +=? 则=)2(f . 4.1 1xdx -? = . 5. ? +21 42 )1 (dx x x = , ?-10241dx x = . 三.计算题 1. ? -e e dx x 1 ln 2.dx x x ?-π 53sin sin 3.设???? ?>-≤=1 , 11, )(2 x x x x x f ,求 ? 20 )(dx x f . 4.dt t dx d x x ?+32411 5.20 0arctan lim x tdt x x ?→ 四.对任意x ,试求使 ? -+=x a x x dt t f 352)(2成立的连续函数)(x f 和常数a . 五.证明题:设)(x f 在闭区间],[b a 上连续,在开区间),(b a 内可导,且0)('≤x f ,证明

高等数学不定积分练习题

作业习题 求下列不定积分。 1、dx x ? +sin 11;2、dx e x ?+-23;3、dx x x x ?+--22)83(32;4、dx e e x x )sin(?; 5、dx e x ?-2; 6、dx x a x ?-2 2 1; 7、dx x x x ? -3 ; 8、dx x x x ? +) 1(arctan 2 2;9、dx x e x ?+22)1(tan ;10、dx x x ?++)1ln(2; 11、?-xdx e x cos ;12、dx x x x x x ?+++-232223;13、dx x ?+sin 451 ; 14、dx x x x -+?111;15、dx x x ?+)1(124; 16、dx b x a x ?++) )((1 。

作业习题参考答案: 1、解:dx x ? +sin 11 ?+-=-=C x x dx x x sec tan cos sin 12 。 2、解:dx e x ?+-23C e x d e x x +-=+--=+-+-?23233 1 )23(31。 3、解:dx x x x ?+--2 2)83(32C x x x x x x d ++--=+-+-=?831)83()83(2222。 4、解:dx e e x x )sin(?C e de e x x x +-==?cos sin 。 5、解:dx e x ?-2 C t t t dt dt dt t t t e t x +-=+-=+? -=???2 arctan 24224222222 C e e x x +-- -=2 2arctan 2 422。 6、解:dx x a x ? -2 2 1 C x x a a a C t t a t a dt t a x +--=+-==?2 2ln 1cot csc ln 1sin sin 。 7、解:dx x x x ? -3dt t t t t t t dt t t t t x )11 1(6623452386 -++++++=-=?? C t t t t t t t +-++++++=)1ln 2 3456(62 3456 C x x x x x x x +-++++++=)1ln 2 3456(661613 1 21 32 65 。 8、解:dx x x x ? +) 1(arctan 2222 21sin cos cot )1(csc arctan t dt t t t t dt t t x t -+-=-=?? C t t t t +-+-=22 1 sin ln cot C x x x x x +-++- =22)(arctan 2 1 1ln arctan 。 9、解:dx x e x ?+22)1(tan ??+=xdx e xdx e x x tan 2sec 222

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解 篇一:高等数学第四章不定积分习题 第四章不 定 积 分 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上 F?(x)?f(x),则 F(x)叫做 f(x)在该区间上的一个 f(x)的 所有原函数叫做 f(x) 在该区间上的__________。 2.F(x)是 f(x)的一个原函数,则 y=F(x)的图形为?(x)的一条_________. 3.因为 d(arcsinx)? 1?x2 dx ,所以 arcsinx 是______的一个原函数。 4.若曲线 y=?(x)上点(x,y)的切线斜率与 x 成正比例,并且通过点 A(1,6)和 B(2,-9),则该曲线 方程为__________ 。 二.是非判断题 1. 若 f?x?的某个原函数为常数,则 f?x??0.[ ] 2. 一切初等函数在其定义区间上都有原 函数.[ ] 3. 3 ??f?x?dx???f??x?dx.[ ] ? 4. 若 f?x?在某一区间内不连续,则在这个区间内 f?x?必无原函数. [ ] 5.y?ln?ax?与 y?lnx 是同一函数的原函数.[ ] 三.单项选择题 1.c 为任意常数,且 F'(x)=f(x),下式成立的有 。(A)?F'(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c; (C)?F(x)dx?F'(x)+c;(D) ?f'(x)dx=F(x)+c. 2. F(x)和 G(x)是函数 f(x)的任意两个原函数,f(x)?0,则下式成立的有 。(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c;(D) F(x)?G(x)=c.3.下列各式中是 f(x)?sin|x|的原函数。(A) y??cos|x| ;(B) y=-|cosx|;(c)y=? ?cosx,x?0,cosx?2,x?0; (D) y=? ?cosx?c1,x?0,cosx?c2,x?0. c1、c2 任意常数。 4.F?(x)?f(x),f(x) 为可导函数,且 f(0)=1,又 F(x)?xf(x)?x2,则 f(x)=______.(A) ?2x?1 (B)?x?1 (C)?2x?1(D)?x?1 5.设 f?(sin2x)?cos2x,则 f(x)=________. 1 (A)sinx?sin2x?c;(B)x?1x2?c; (C)sin2x?1sin4x?c;(D)x2?1x4?c; 1 / 30

相关主题
文本预览
相关文档 最新文档