当前位置:文档之家› 实数综合提高习题(有答案)

实数综合提高习题(有答案)

实数综合提高习题(有答案)

最新初二实数提高训练试题

第2章 《实数》试题 ( )班 姓名 一、填空题(每小题3分,共30分) 1. 0.36的平方根是 ;14算术平方根是 ;27-的立方根是 . 2. 计算: ;= ;= . 3. 的倒数是 ;π-的绝对值是 ;52 -的相反数是 . 4. 用计算器计算(保留2个有效数字): ≈ ; ;≈ . 5. 用“>或<或=”填空:0 π-; 3.16- 6. 请你写出三个在1 和4之间的无理数: 、 、 . 7. 若某数的一个平方根是4,则这个数的另一个平方根的立方等于 . 8. 若一个正方形桌面的面积为20.64m ,则这个桌面的边长为 m . 9. 若10.1=,则 . 10. 借助计算器可以求得: = ;55== ;…… . 二、选择题(每小题3分,共30分) 11. “9的平方根是3±”,用式子表示就是( ) A 3=± B 3 C .93±= D .3± 12. 立方根等于8的数是( ) A .512 B .64 C .2 D .2± 13. 在数轴上点A ,点B 2,则A 、B 两点之间的距离等于( ) A .22 B .22- C .2- D .2 14. 在下列各对数中,互为相反数的是( ) A .13 -与3- B . C 与 D 15. ) A .9 B .9± C .3 D .3±

16. 算术平方根等于它本身的数是() A.0B.1或1-C.1或0D.1或0或1- 17. 在下列说法中,正确的是() A.1的平方根是1B.3- C.2 10 -能进行开平方运算D.2-是8-的立方根 18. 在下列说法中,错误的是() A.无限小数都是无理数B.实数与数轴上的点一一对应 C.无理数都是无限小数D.带有根号的数不都是无理数 19. 若底面为正方形的蓄水池容积是3 4.86m,水池的深为1.5m,则水池底面边长是() A.3.24m B.1.8m C.0.324m D.0.18m 20 .若2 1(2)0 a b ++-+=,则23 a b c ++的值等于()A.0B.6-C.24 -D.32 - 例4 (1) 已知2 2(4)0,()y x y xz -++=求的平方根。 (2 a2 ,小数部分为b,求-16ab-8b的立方根。 (3 ,, 4 x y m m = - 试求的算术平方根。 (4)设a、b 是有理数还是无理数,并说明理由。 例5 (1)已知2m-3和m-12是数p的平方根,试求p的值。 (2)已知m,n 是有理数,且2)(370 m n +-+=,求m,n的值。 (3)△ABC的三边长为a、b、c,a和b 2440 b b -+=,求c的取值范围。 (4 )已知1993 2 ( 4 a x a - = + ,求x的个位数字。 训练题:一、填空题 1 的算术平方根是。

下实数提高题与常考题型压轴题

实数提高题与常考题型压轴题(含解析) 一.选择题(共15小题) 1.的平方根是() A.4 B.±4 C.2 D.±2 2.已知a=,b=,则=() A.2a B.ab C.a2b D.ab2 3.实数的相反数是() A.﹣B. C.﹣D. 4.实数﹣π,﹣,0,四个数中,最小的是() A.﹣πB.﹣C.D.0 5.下列语句中,正确的是() A.正整数、负整数统称整数 B.正数、0、负数统称有理数 C.开方开不尽的数和π统称无理数 D.有理数、无理数统称实数 6.下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于,正确的说法有() A.4个B.3个C.2个D.1个 7.实数a、b满足+4a2+4ab+b2=0,则b a的值为() A.2 B.C.﹣2 D.﹣ 8.的算术平方根是() A.2 B.±2 C.D. 9.下列实数中的无理数是() A.B.C.πD.﹣8 10.关于的叙述,错误的是() A.是有理数 B.面积为12的正方形边长是

C .=2 D .在数轴上可以找到表示的点 11.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是() A.a?b>0 B.a+b<0 C.|a|<|b| D.a﹣b>0 12.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是() A.p B.q C.m D.n 13.估计+1的值() A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间14.估计的值在() A.2和3之间B.3和4之间C.4和5之间D.5和6之间 15.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例: 指数 运算 21=222=423=8…31=332=933=27… 新运算log 2 2=1log 2 4=2log 2 8=3…log 3 3=1log 3 9=2log 3 27=3… 根据上表规律,某同学写出了三个式子:①log 216=4,②log 5 25=5,③log 2 =﹣1.其 中正确的是() A.①②B.①③C.②③D.①②③ 二.填空题(共10小题) 16.﹣2的绝对值是. 17.在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是.18.能够说明“=x不成立”的x的值是(写出一个即可).19.若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为.

(完整版)集合提高练习题及答案

集合提高练习及答案 一、选择题 1.若集合{|1}X x x =>-,下列关系式中成立的为( ) A .0X ? B .{}0X ∈ C .X φ∈ D .{}0X ? 2.50名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格40人和31人, 2项测验成绩均不及格的有4人,2项测验成绩都及格的人数是( ) A .35 B .25 C .28 D .15 3.已知集合{}2|10,A x x mx A R φ=++==I 若,则实数m 的取值范围是( ) A .4m C .40<≤m D .40≤≤m 4.下列说法中,正确的是( ) A . 任何一个集合必有两个子集; B . 若,A B φ=I 则,A B 中至少有一个为φ C . 任何集合必有一个真子集; D . 若S 为全集,且,A B S =I 则,A B S == 5.若U 为全集,下面三个命题中真命题的个数是( ) (1)若()()U B C A C B A U U ==Y I 则,φ (2)若()()φ==B C A C U B A U U I Y 则, (3)若φφ===B A B A ,则Y A .0个 B .1个 C .2个 D .3个 6.设集合},4 12|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则( ) A .N M = B .M N C .N M D .M N φ=I 7.设集合22{|0},{|0}A x x x B x x x =-==+=,则集合A B =I ( ) A .0 B .{}0 C .φ D .{}1,0,1- 二、填空题

八年级数学_实数习题精选(含答案)

1 实数单元测试题 填空题:(本题共10小题,每小题2分,共20分) 1、()26-的算术平方根是__________。 2、 π π-+-43= _____________。 3、2的平方根是__________。 4、实数a ,b ,c 在数轴上的对应点如图所示 化简c b c b a a ---++ 2=________________。 5、若m 、n 互为相反数,则 n m +-5=_________。 6、若 2)2(1-+-n m =0,则m =________,n =_________。 7、若 a a -=2,则a______0。 8、 12-的相反数是_________。 9、 3 8-=________,3 8-=_________。 10、绝对值小于π的整数有__________________________。 一、 选择题:(本题共10小题,每小题3分,共30分) 11、代数式12 +x ,x ,y ,2)1(-m ,33 x 中一定是正数的有( )。 A 、1个 B 、2个 C 、3个 D 、4个 12、若7 3-x 有意义,则x 的取值范围是( )。 A 、x >37- B 、x ≥ 3 7- C 、x >37 D 、x ≥37 13、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。 A 、0 B 、 2 1 C 、2 D 、不能确定 14、下列说法中,错误的是( )。 A 、4的算术平方根是2 B 、 81的平方根是±3 C 、8的立方根是±2 D、立方根等于-1的实数是-1 15、64的立方根是( )。 A 、±4 B 、4 C 、-4 D 、16 16、已知04)3(2 =-+-b a ,则 b a 3 的值是( )。 A 、 41 B 、- 41 C 、433 D 、4 3 17、计算 33 841627-+-+的值是( )。 A 、1 B 、±1 C 、2 D 、7 18、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。 A 、-1 B 、1 C 、0 D 、±1 19、下列命题中,正确的是( )。 A 、无理数包括正无理数、0和负无理数 B 、无理数不是实数 C 、无理数是带根号的数 D 、无理数是无限不循环小数 20、下列命题中,正确的是( )。 A 、两个无理数的和是无理数 B 、两个无理数的积是实数 C 、无理数是开方开不尽的数 D 、两个有理数的商有可能是无理数 三、解答题:(本题共6小题,每小题5分,共30分) 21、求9 7 2的平方根和算术平方根。 22、计算252826-+的值。 0c b a

人教版七年级数学 下册第六章 《实数》能力提升练习题

人教版七年级数学下册第六章 《实数》能力提升练习题 一、选择题:(每题2分,共20分) 1、一个自然数的算术平方根是x ,那么大于这个自然数且与它相邻的自然数是( ) A 、x +1 B 、x 2+1 C 、 1+x 2 D 、1+x 2、2a 的算术平方根一定是( ) A 、a B 、||a C 、a D 、-a 3、下列说法中错误的是( ) A 、2 1是0.25的一个平方根 B 、正数a 的两个平方根的和为0 B 、169的平方根是4 3 D 、当0≠x 时,2-x 没有平方根 4、已知07|1|=++-b a ,则b a +的值为( ) A 、-8 B 、-6 C 、6 D 、8 5、设n 为正整数,且n<65

10、已知6694.03.03≈,442.133≈,那么下列式子中正确的是( ) A 、42.143003≈ B 、694.63003≈ C 、94.663003≈ D 、2.1443003≈ 二、填空题:(每题2分,共20分) 11、如果n m =2,且m>0,则m= 。(用含n 的式子表示) 12、4的算术平方根为 。 13、21++a 的最小值是 ,此时a 的值为 。 14、若两个连续整数y x ,满足y x <+<15,则y x +的值为 。 15、如果12+x 的平方根是3±,那么x = 。 16、若0>a (填"">或""<) 17、若22-y x n m -与n m y x +243是同类项,则n m 3-的立方根是 。 18、2-3的相反数是 ,绝对值是 。 19、实数a 所对应的点在数轴上的位置如图所示,则|1|-a = 。 20、有一个数值转换器,原理如下,当输入81时,输出的y 是 。 三、解答题:(共10题,每题8分,共80分) 21、已知35的整数部分是a ,小数部分是b ,求b a +2的值。

七年级数学《实数》提高题及标准答案

七年级数学《实数》提高题及答案

————————————————————————————————作者:————————————————————————————————日期:

实数提高题 一.选择题(每小题3分,共30分) 1.实数a 等于它的倒数,实数b 等于它的相反数,则20152014b a +( ) A .0 B . 1 C .-1 D .2 2.设a =26,则下列结论正确的是( ) A .0.55.4<

(完整版)实数提高练习题

实数提高练习题 一、选择题 1.在实数5、 3 7 ( ). A .5 B .3 7 C D 2.-3216-的立方根是 ( ) (A )6 (B)-6 (C) 3 6 (D) -36 3.估算24+3的值 ( ) (A )在5和6之间 (B )在6和7之间 (C )在7和8之间 (D )在8和9之间 4.下列说法正确的个数是 ( ) ①无理数都是实数;②实数都是无理数;③无限小数都是有理数;④带根号的数都是无理数;⑤除了π之外不带根号的数都是有理数. (A)1个 (B )2个 (C )3个 (D )4个 5. 无理数3-的相反数是 ( ) A .3- B .3. C . 3 1 D .3 1- 6.若a 2=9,b 3 =-64,则 a +b 的所有可能情况为( ) (A )7 (B )-7 (C )-1 (D )-7或-1 7.若2 2 a b =.则下列等式中成立的是 ( ) (A )a b = (B )3 3 a b = (C )a b = (D) = 8.实数 13、4、6 π中,分数的个数是 ( ) (A )0 (B )1 (C )2 (D )3 9.若x <2,化简2)2(-x -|3-x |的正确结果是( ) (A )-1 (B )1 (C )2x -5 (D )5-2x 10.如图,若A 是实数a 在数轴上对应的点,则关于a ,-a ,1的大小关系表示正确的是 ( ) A .a <1<-a B .a <-a <1 C .1<-a <a D .-a <a <1 1 A (第10题图)

11.若225a =,3b =,则a b +=( ) A .-8 B .±8 C .±2 D .±8或±2 二、填空题 12.数轴上-5到原点的距离为___________,表示-3.14的点在-π点的___ ____边. 13.若将三个数11,7,3-表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________________. 14.当m <0时,则2m +33m 的值为________. 15.若m >1,则m _______3 m .(填“>”或“<”) 16. 一个自然数的算术平方根为a,则比它大4的自然数的平方根为____。 17.若2-m 与2m +1是同一个数的平方根,则这个数可能是_________. 18..若x x +-有意义,则1x += 19. 的平方根是 ,﹣错误!未找到引用源。的立方根是 . 20.若实数m 、n 满足(m -1) 2 +2+n =0,则m n =______. 21、若一个数的平方根等于它的立方根,则这个数是 22、若a≠0,则错误!未找到引用源。= 23、错误!未找到引用源。的平方根 ,错误!未找到引用源。的立方根 24.现在要将一个边长为π m 的正方形的铁板锻造成一个面积是它2倍的圆形铁板(厚度一样),则这个铁板的半径为_____m. 25. 如图所示,将两个边长为2的正方形沿对角线剪开,拼成一个大正方形,这个大正方形的边长是 . 26.若[]x 表示不超过x 的最大整数(如[]33 22,3-=?? ??? ?-=π等), 则=???????-++???? ?? ?-+?????? ?-200120002001132312121 Λ_2000________________。 三、解答题 27.计算 5 43210-1 -2 (第2题)

七年级数学实数练习题

七年级数学《实数》练习题 A卷 基础知识 班级________姓名_________成绩__________ 一、判断题(1分×10=10分) 1. 3是9的算术平方根 ( ) 2. 0的平方根是0,0的算术平方根也是0 ( ) 3. (-2)2 的平方根是2- ( ) 4. -0.5是0.25的一个平方根 ( ) 5. a 是a 的算术平方根 ( ) 6. 64的立方根是4± ( ) 7. -10是1000的一个立方根 ( ) 8. -7是-343的立方根 ( ) 9. 无理数也可以用数轴上的点表示出来 ( ) 10.有理数和无理数统称实数 ( ) 二、选择题(3分×6=18分) 11.列说法正确的是() A 、 4 1 是5.0的一个平方根 B 、 正数有两个平方根,且这两个平方根之和等于0 C 、 72 的平方根是7 D 、负数有一个平方根 12.如果 25.0=y ,那么y 的值是() A 、 0625.0 B 、 5.0- C、 5.0 D、5.0± 13.如果x 是a 的立方根,则下列说法正确的是() A 、x -也是a 的立方根 B 、x -是a -的立方根 C、x 是a -的立方根 D 、等于3 a 14.π、 7 22、3-、3343、1416.3、3.0 可,无理数的个数是() A 、1个 B 、 2个 C 、 3个 D 、 4个 15.与数轴上的点建立一一对应的是()( A 、全体有理数 B 、全体无理数 C、 全体实数 D 、全体整数 16.果一个实数的平方根与它的立方根相等,则这个数是()

A 、0 B 、正实数 C 、0和1 D 、1 三、填空题(1分×30=30分) 2.100的平方根是 ,10的算术平方根是 。 3.3±是 的平方根3-是 的平方根;2 )2(-的算术平方根 是 。 4.正数有 个平方根,它们 ;0的平方根是 ;负数 平方根。 5.125-的立方根是 ,8±的立方根是 ,0的立方根是 。 6.正数的立方根是 数;负数的立方根是 数;0的立方根是 。 7.2的相反数是 ,π-= ,3 64-= 8.比较下列各组数大小: ⑴140 12 ⑵ 2 1 5- 5.0 ⑶π 14.3 23 四、解下列各题。 1. 求下列各数的算术平方根与平方根(3分×4=12分) ⑴225 ⑵ 144 121 ⑶ 81.0 ⑷ 2 )4(- 2. 求下列各式值(3分×6=18分) ⑴ 225 ⑵16.0- ⑶289 144 ± ⑷ 364 ⑸

实数提高题

实数部分能力提高训练 1、 2 9 7 的平方根是 ;125的立方根是___________________; 2)4(±的算术平方根是 ;36的平方根是 ; 3 27-= ; 的平方根是 ;的立方根 是 ; 的平方根是 ;3,则a= 。 2、 若41<

七年级数学实数练习题及答案

实数练习题

解析: 该瓶的容积相当于底面与瓶底面相同,高为25 cm 的圆柱体的体积. 答案: 解:1L=1000cm 3,由题意得瓶子的底面积为4025 1000=(cm 2) (1) 瓶内溶液的体积是 40×20=800(cm 3) (2) 设圆柱形杯子的内底面半径为r ,则 πr 2×10=800, ∴r=π80 ≈5.0(cm ) 小结: 解此类等积变形问题的关键是根据体积不变确定数量关系或建立等量关系. 例6 规律探究:观察 284222-=25555?==,即222255-=;32793333=310101010?-==,即333=31010 -. (1)猜想5526- 等于什么,并通过计算验证你的猜想; (2)写出符合这一规律的一般等式. 解析:从给出的运算过程中找出规律,然后依规律计算

答案:(1)55552626 -=, 验证:51252555552626 2626?-===; (2) 22-11 n n n n n n =++ (n 为大于0的自然数). 小结: 此类规律型问题的特点是给定一列数或等式或图形,要求适当地计算,必要的观察,猜想,归纳,验证,利用从特殊到一般的数学思想,分析特点,探索规律,总结结论. 举一反三: 1. 某正数的平方根为3a 和3 92-a ,则这个数为(). A. 1 B. 2 C. 4 D. 9 解析:由平方根定义知3a 与3 92-a 互为相反数, 所以3a +3 92-a =0, 解得a=3, 所以这个数的平方根为±1, 所以这个数为1.选A. 2. 如图3-3,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为点C ,则点C 所表示的数为( ). A. -2-3 B. -1-3 C. -2+3 D. 1+3 解析:∵AB=3+1, ∴C 点表示的数为-1-(3+1)=-2-3. 选A

实数练习题提高版

1、 算术平方根等于它本身的数是( ) A. 0 B. 1 或 _1 C. 1 或 0 D. 1 或 0 或 _1 2、 若 a ? 1 ? (b —2)2 ? . c ? 3 =0,则 a b 2 c 3 的值等于( ) A. 0 B. -6 C. _24 D. -32 3、 已知 x —2 +(y+4)2 +J x + y —2z=0,求(xz)y 的平方根。 4、 设Q 的整数部分为a ,小数部分为b ,求-16ab-8b 2的立方根。 x, y, m 适合于关系式 3x 5y 「3「m 2x 3y 「m 二 5、 若二 J x + y -2004十J2004 - x - y,试求m -4的算术平方根。 6、 已知2m-3和m-12是数p 的平方根,试求 p 的值。 7、 A ABC 的三边长为a 、b 、c ,a 和b 满足?. a -1 b^4b *4=0,求c 的取值范围。 … /-2a 』a -3+J 3-a \1993 +砧人/亠舷宀 8、 已知 X=( --------- — -------- -- ------- ) ,求x 的个位数子。 4+a 3-a 9、 已知 J a +1 +(b _1)2 =0,则折 + 拓= _______________ 。 10、 已知 y=4 ^^,则(32)xy = ______________________ 。 x 十1 11、 ____________________________________________________________________ 已知实数 a 满足 |1999-a Z a -2000 =a,则a —19992 = _______________________ 。 12、 已知实数 1 ___ 1 c a,b,c 满足一a-b + J 2b +c +c 2 _c +— =0,则一的算术平方根是 ________ 2 4 ab 13、 ____________________________________________________________________ 已知实数a 满足a + 厲 + 荷=0,那么 a_1 +|a + 1 = ________________________ 。 14、 使等式(-?? -X )2 =X 成立的x 的值( ) A 、是正数 B 、是负数 C 、是0 D 、不能确定 15、已知 x 0,y 0,且x 「2 xy 「15y=0,求 16、已知:x,y,z 适合关系式 、3x y -z -2 2x y - z 二 x y -20022002 - x -y,试求x,y,z 的值。 2x+xy 3y 的值 x , xy -y

(完整)新人教版七年级数学下册实数练习题(提高篇)

新人教版七年级数学下册实数练习题(提高篇) 一、选择题: 1.下列各数6 54.0 、2 3 、0 )( 、14.3、80108.0、 1、 1010010001.0、4、 544514524534.0,其中无理数的个数是 ( ) (A) 1 ( B) 2 (C) 3 (D) 4 2.。在下列各数 51515354.0、0、2 .0 、 3、722、 1010010001.6、11 131、27中,无理数的个数是 ( ) (A) 1 ( B) 2 (C) 3 (D) 4 3.数 032032032.123是 ( ) (A) 有限小数 (B) 无限不循环小数 (C) 无理数 (D) 有理数 4.边长为3的正方形的对角线的长是 ( ) (A) 整数 (B) 分数 (C) 有理数 (D) 以上都不对 5.下列说法正确的是 ( ) (A) 无限小数都是无理数 (B) 正数、负数统称有理数 (C) 无理数的相反数还是无理数 (D) 无理数的倒数不一定是无理数 6.下列语句中,正确的是 ( ) (A) 无理数与无理数的和一定还是无理数 (B) 无理数与有理数的和一定是无理数 (C) 无理数与有理数的积一定仍是无理数 (D) 无理数与有理数的商可能是又理数 7.一个长方形的长与宽分别时6、3,它的对角线的长可能是 ( ) (A) 整数 (B) 分数 (C) 有理数 (D) 无理数 8.下列说法中不正确的是 ( ) (A) 1 的立方是1 ,1 的平方是1 (B) 两个有理之间必定存在着无数个无理数 (C)在1和2之间的有理数有无数个,但无理数却没有(D) 如果62 x ,则x 一定不是有理数 9.两个正有理数之和 ( ) (A) 一定是无理数 (B) 一定是有理数 (C) 可能是有理数 (D) 不可能是自然数 10.36的平方根是( ) (A) 6 (B) 6 (C) 6 (D) 6 11.下列语句中正确的是 ( ) (A) 9 的平方根是3 (B) 9的平方根是3 (C) 9的算术平方根是3 (D) 9的算术平方根是3 12.下列语句中正确的是 ( ) (A) 任意算术平方根是正数 (B) 只有正数才有算术平方根 (C) ∵3的平方是9,∴9的平方根是3 (D) 1 是1的平方根 13.下列运算中,错误的是 ( ) ①1251144251 ,②4)4(2 ,③22222 ,④20 9 5141251161 (A) 1个 ( B) 2个 (C) 3个 (D) 4个 14. 22)4( x 的算术平方根是 ( ) (A) 4 2 )4( x (B) 2 2 )4( x (C) 42 x (D) 42 x 15.2)5( 的平方根是 ( )(A) 5 (B) 5 (C) 5 (D) 5 16.下列说法正确的是 ( ) (A) 一个数的立方根有两个,它们互为相反数 (B) 一个数的立方根与这个数同号 (C) 如果一个数有立方根,那么它一定有平方根 (D) 一个数的立方根是非负数 17.下列运算正确的是 ( ) (A) 33 11 (B) 33 33 (C) 33 11 (D) 33 11 18下列计正确的是 ( ) (A) 5.00125.03 (B) 4 3 64273 (C) 211833 3 (D) 5 212583 19下列说法正确的是 ( ) (A) 27的立方根是3 (B) 6427 的立方根是4 3 (C)2 的立方根是8 (D) 8 的立方根是2 20.若51 m m ,则m m 1 的平方根是 ( ) (A) 2 (B) 1 (C) 1 (D) 2 21.若a 、b 为实数,且47 112 2 a a a b ,则b a 的值为 ( ) (A) 1 (B) 4 (C) 3或5 (D) 5 22.已知一个正方形的边长为a ,面积为S ,则 ( ) (A) a S (B) S 的平方根是a (C) a 是S 的算术平方根 (D) S a 23.若9,42 2 b a ,且0 ab ,则b a 的值为 ( ) (A) 2 (B) 5 (C) 5 (D) 5 24.算术平方根等于它本身的数是 ( ) (A) 1和0 (B) 0 (C) 1 二、填空题: 1.如右图:以直角三角形斜边为边的正方形面积是 ; 2.有理数包括整数和 ; 有理数可以用 小数和 小数表示; 3. 叫无理数; 4.无限小数包括无限循环小数和 , 学校:______________ 班级:_______________ 姓名:_______________ 考号:___________ -------------------------------------------密---------------------------------封--------------------------------------线---------------------------------- F

初一年级实数所有知识点总结及常考题提高难题压轴题练习含答案及解析

精品文档初一实数所有知识点总结和常考题 知识点:一、实数的概念及分类1、实数的分类正有理数 有理数零有限小数和无限循环小数 实数负有理数 正无理数 无理数无限不循环小数 负无理数 整数包括正整数、零、负整数。 正整数又叫自然数。 正整数、零、负整数、正分数、负分数统称为有理数。 2、无理数 在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类: 3等;1)开方开不尽的数,如(2,7π(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;3(3)有特定结构的数,如0.1010010001…等; 二、实数的倒数、相反数和绝对值 1、相反数 实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b互为相反数,则有a+b=0,a=—b,反之亦成立。 2、绝对值

一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。 3、倒数 如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。 4. 实数与数轴上点的关系: 每一个无理数都可以用数轴上的一个点表示出来, 数轴上的点有些表示有理数,有些表示无理数, 实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数。 三、平方根、算数平方根和立方根 1、平方根 (1)平方根的定义:如果一个数x的平方等于a,那么这个数x就叫做a的平方根.即: 2x?a,那么x叫做如果a的平方根. 精品文档. 精品文档被开方数叫做开平方.开平方运算的2()开平方的定义:求一个数的平方根的运算,非负数才有意义。必须是??33的平方等于9,9(3)平方与开平方互为逆运算:的平方根是;正数进行开平方运算有两个结果(4)一个正数有两个平方根,即运算负数没有平方根,即负数不能进行开平方一个aa的表示,算术平方根;的(5)符号:正数a正的平方根也是可用a a平方根可用表示-.a正数的负的2a??xax?—> <(6) a x的平方是a是x的平方x a的平方根是x是a的平方根2、算术平方根2ax?,那么这即1()算术平

-实数练习题基础篇附答案

实数练习题 一、判断题(1分×10=10分) 1. 3是9的算术平方根 ( ) 2. 0的平方根是0,0的算术平方根也是0 ( ) 3. (-2)2 的平方根是2- ( ) 4. -0.5是0.25的一个平方根 ( ) 5. a 是a 的算术平方根 ( ) 6. 64的立方根是4± ( ) 7. -10是1000的一个立方根 ( ) 8. -7是-343的立方根 ( ) 9. 无理数也可以用数轴上的点表示出来 ( ) 10.有理数和无理数统称实数 ( ) 二、选择题(3分×6=18分) 11.列说法正确的是() A 、 4 1 是5.0的一个平方根 B 、 正数有两个平方根,且这两个平方根之和等于0 C 、 72 的平方根是7 D 、负数有一个平方根 12.如果 25.0=y ,那么y 的值是() A 、 0625.0 B 、 5.0- C 、 5.0 D 、5.0± 13.如果x 是a 的立方根,则下列说法正确的是() A 、x -也是a 的立方根 B 、x -是a -的立方根 C 、x 是a -的立方根 D 、等于3 a 14.π、 7 22、3-、3343、1416.3、3.0 可,无理数的个数是() A 、1个 B 、 2个 C 、 3个 D 、 4个 15.与数轴上的点建立一一对应的是()( A 、全体有理数 B 、全体无理数 C 、 全体实数 D 、全体整数 16.如果一个实数的平方根与它的立方根相等,则这个数是() A 、0 B 、正实数 C 、0和1 D 、1 三、填空题(1分×30=30分) 2.100的平方根是 ,10的算术平方根是 。

3.3±是 的平方根3-是 的平方根;2)2(-的算术平方根是 。 4.正数有 个平方根,它们 ;0的平方根是 ;负数 平方根。 5.125-的立方根是 ,8±的立方根是 ,0的立方根是 。 6.正数的立方根是 数;负数的立方根是 数;0的立方根是 。 7.2的相反数是 ,π-= ,3 64-= 8.比较下列各组数大小: ⑴⑵ 2 1 5- 5.0 ⑶π 14.3 2 四、解下列各题。 1. 求下列各数的算术平方根与平方根(3分×4=12分) ⑴225 ⑵ 144 121 ⑶ 81.0 ⑷ 2 )4(- 2. 求下列各式值(3分×6=18分) ⑴225 ⑵16.0- ⑶289 144± ⑷ 364 ⑸ 3125- ⑹327125 - 3. 求下列各式中的x :(3分×4=12分) ⑴2 x 49= ⑵ 81252 =x ⑶8 333 =-x ⑷125)2(3=+x 附加题:(10分×2=20分) 1. 怎样计算边长为1的正方形的对角线的长? 2. 如图 平面内有四个点,它们的坐标分别是 )22,1(A )22,3(B )2,4(C )2,1(D ⑴依次连接A 、B 、C 、D ,围成的四边形是什么图形?并求它的面积

人教版七年级下数学 实数 练习题及答案

基础训练 一、 填空题 1. 在Λ262262226.4,9,4.0,81,8,2,31,14.3---?π.)个之间依次多两个216(中: 属于有理数的有 属于无理数的有 属于正实数的有 属于负实数的有 2.-5的相反数是 ,绝对值是 ,没有倒数的实数是 . 3.比较大小:5 3, 2π 1.5 二、选择题 4.下列说法正确是 ( ) A 不存在最小的实数 B 有理数是有限小数 C 无限小数都是无理数 D 带根号的数都是无理数 5.下列说法中,正确的是 ( ) A 4,3,2都是无理数 B 无理数包括正无理数、负无理数和零 C 实数分为正实数和负实数两类 D 绝对值最小的实数是0 6. 在π,1415.3,3,0,2 1,4-这6个数中,无理数共有( ) A 1个 B 2个 C 3个 D 4个 7.和数轴上的点一一对应的是( ) A 整数 B 有理数 C 无理数 D 实数 8.下列各数中,不是无理数的是 ( )

A 7 B 0.5 C 2π D 0.151151115…)个之间依次多两个115( 三、解答题 9.分别求下列各数的绝对值与相反数。 (1)-3 (2)7 (3)-2π (4)3-2 10.在数轴表示下列各数,并把它们按从小到大的顺序排列,用“>”连接: -?3.0,-2, 2 5,0,3.14 综合提高 一、填空题 1.23-的相反数地 ,绝对值是 . 2.写出两个无理数,使它们的和为有理数 ;写出两个无理数,使它们的积为有理数 . 3.在数轴上,到原点距离为5个单位的点表示的数是 . 二、选择题 4.下列说法中,正确的是( ) A 数轴上的点表示的都是有理数 B 无理数不能比较大小 C 无理数没有倒数及相反数 D 实数与数轴上的点是一一对应的 5. 下列结论中,正确的是( ) A 正数、负数统称为有理数 B 无限小数都是无理数 C 有理数、无理数统称为实数 D 两个无理数的和一定是无理数 6.两个实数在数轴上的对应点和原点的距离相等,则这两个数( ) A 、一定相等 B 、一定不相等 C 、相等或互为相反数 D 、以上都不对 7.满足大于π-而小于π的整数有( ) A 、3个 B 、4个 C 、6个 D 、7个

八年级_上数学讲义五_实数综合提高练习题

美博教育实数练习题 教师:王光明 一、选择题: 1.在实数范围内,下列判断正确的是( ) A.若b a b a ==则, B.若()b a b a ==则,2 C.若22,b a b a ??则 D.若b a b a ==则,33 2.以下四个命题:①若a 是无理数,则a 是实数;②若a 是有理数,则a 是无理数;③若a 是整数,则a 是有理数;④若a 是自然数,则a 是实数.其中,真命题的是( ) A.①④ B.②③ C.③ D.④ 3.当01a <<,下列关系式成立的是( ) A.a a >,3a a > B.a a <,3a a < C.a a <,3a a > D.a a >,3a a < 4.已知:0>21 B.21x x x >> C.x x x 12>> D.21x x x >> 5.如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( ) A.2 11 B.1.4 C.2 D.3 6.如图,数轴上表示1,2的对应点分别为A ,B ,点B 关于点A 的对称点为C ,则点C 表示的数是( ). A .2-1 B .1-2 C .2-2 D .2-2 7.如果一个自然数的算术平方根是n ,则下一个自然数的算术平方根是( ) A.n+1 B.2n +1 C.1n + D.21n + 8.若53+的小数部分是a ,5-3的小数部分是b ,则a+b 的值为( ) A.0 B.1 C.-1 D.2

二、填空题: 9.实数a 、b 、c 在数轴上对应的位置如下: 则332)()(a c c b b a +-++-= 10.8116的平方根是 11.若._____6416=+b a b a 的立方根,则是的平方根,是 12.若215b +和31a -都是5的立方根,则a = ,b = 13.估计512-与0.5大小关系是512 - 0.5(填“>”“=”或“<)。 14.比较大小:3 2; 310 5; 6 2.35.(填“>”或“<”) 15.使式子252x x --有意义的x 的取值范围是 16.大于2-,小于10的整数有______个。 17.点A 在数轴上和原点相距3个单位,点B 在数轴上和原点相距5个单位,则A ,B 两点之间的距离是____. 18.点A 在x 轴上,且到y 轴的距离为5,B 与A 点关于点(1,0)对称,,则B 点坐标为 ( , ) 19.若101n n <<+,81m m <-<+,其中m 、n 为整数,则m n += 20.如果a 是15的整数部分,b 是15的小数部分, a b -=________ 21.若15+a 有意义,则a 能取的最小整数值为 22.a 200是个整数,那么最小正整数a 是____ 23.已知x 、y 是有理数,且x 、y 满足22322332x y y ++=-,则x+y= 24.我们知道53432=+,黄老师又用计算器求得:、55334432=+、55533344432=+、55553333444432=+、…, 则计算2333444)32011(2 )42011( 个个+等 于

八年级上-实数运算练习题500道加强版

实数的运算大全 1. 计算:8×24; 2. 计算: 5 2 ; 3. 计算: 3 ×(21-12+1) 4. 计算: 2-2 1 ; 5.化简:3164 37 -; 6.计算: 212+348 ; 7.化简:348-; 8. 计算:)515(5- 9.计算:252826-+ 10 .计算:2022 (()3 -+- 11.计算:|-2|-(3-1)0+1 21-?? ? ?? 12 13 14.化简:5312-? 15.化简: 2 2 36+? 16.计算:(25+1)2 17.计算:)12)(12(-+ 18.计算:(1)20 9 5? 19.计算: 8 6 12? 20.计算:(1+3)(2-3) 21.计算:(132-)2 22.计算:(2+5)2 23.计算:21850-? 24.计算:)82(2+ 25.计算: 3 7 21? 26.计算: 10 40 5104+ 27.计算: 2 )3 13(- 28.计算:250580?-? 29.计算: (1+5)(5-2) 30.计算:(1)(1-2+3)(1-2-3) 31.计算:)623)(623(-++- 32.计算:320-45-5 1 33.x =2- 3时,求(7+43) x 2+(2+3)x +3的值.

34.计算:32 22 1 (4)3(--?+) 35.计算:2 2232 1+- 36 .计算:0211(1)12 4 π-+---+ 37.计算:∣-2∣-23 38.先化简,再求值:5x 2- (3y 2 +5x 2 )+(4x 2 +7xy ),其中x =-1,y = 1 39 a 的 值。 40.计算:221213- 41.计算:(18).22 1+; 42.若a=3 -10,求代数式a 2-6a -2的值; 43.计算: 348-1477 1 37+ ; 44.数轴上,点A 1,点B 表示 3AB 间的距离; 45.计算: 2)2(182-- ? 46.计算:2)525(- 47.已知xy=2,x -y=125-, 求(x +1)(y -1)的值; 48.计算:)—()(23322332?+ ; 49 .计算:1 3.14?? ???-1+(-π)2 50.计算:)32)(32(-+ 51 .计算:210(2)(1--- 52.计算:2)4(|3|ππ-+- 53.4)12(2=-x x : 求 54.计算:3322323--+ 55.已知32b ,32a -=+=,求下列 各式的值:(1)ab (2)a 2+b 2 56.计算:328- 57.计算: 21850-? 58.计算:)56)(56(-+ 59.计算: 3164 37- 60.计算:13 327-+ 61.计算: 25.05 116.021- 62.计算:22)2332()2332(--+ 63.计算:32 -32 1 +2; 64.计算: )4838 1 4122(22-+ 65 66 67.求x 的值: 9)2(2=-x

相关主题
文本预览
相关文档 最新文档