当前位置:文档之家› 金融衍生产品的定价综述

金融衍生产品的定价综述

金融衍生产品的定价综述
金融衍生产品的定价综述

金融衍生产品定价模型综述

蒲实

(重庆大学数学与统计学院2008级统计2班)

一.摘要

衍生证券已经有很长的历史。期权和期货是所有衍生证券里在交易所交易最活跃的衍生证券。十七世纪晚期,在荷兰的Amsterdam 股票交易所,就已经有了期权这种形式的证券交易。1973年建立的Chicago Board Options Exchange (CBOE) 大大带动了期权的交易。19世纪出现有组织的期货市场。

期权定价理论是最成熟也是最重要的衍生证券定价理论。最早的期权定价理论可以追溯到1900年Bachelier (1900) 的博士论文,Bachelier 的主要贡献在于:发展了连续时间游走过程。受Louis Bachelier 工作的启发,Kiyoshi It?在二十世纪四、五十年代作出了随机分析方面奠基性的工作,这套理论随即成为金融学最本质的数学工具,也带来了衍生证券定价理论革命性的飞跃。但是,风险中性定价的概念直到Black-Scholes (1973)和Merton (1973)才得以突破。他们的工作使随机分析和经济学达到了最优美的结合,也给金融实际操作带来了最具有影响力的冲击。由于许多权益都可以被视为偶发性权益(例如债务,股权,保险等),所以在他们以后,期权定价的技巧被广泛的应用到许多金融领域和非金融领域,包括各种衍生证券定价、公司投资决策等。

我们可以把这些研究大致分为:复杂衍生证券的定价(例如MBS ,奇异期权等);数值计算(例如美式期权定价,亚式期权);拓展模型来解释Black-Scholes 模型不能解释的现象(例如Volatility smile );交易约束和交易成本对衍生证券套期保值和定价的影响。

二.关键词

金融衍生产品,维纳过程(wiener Processes) ,Ito(伊藤)引理,随机过程,布朗运功,套期保值,鞅过程。

三.正文

1. 二项树模型

该模型由Sharpe (1978)提出, Cox, Ross and Rubinstein (1979)对它进行了拓展,将二项分布用于描述股价运动,从此二叉树模型被广泛运用于衍生品的定价,成为构造离散时

间价格运动的基本模型。定义如下:0S =标的资产现在的价格;q =标的资产上涨的概率;

r f =无风险利率;u =标的资产上涨的幅度;d =标的资产下跌的幅度;f =衍生证券现在的价格;u c =当标的资产价格为uS 时衍生物的价格;d c =当标的资产价格为dS 时衍生物的价格 对r f 的限制为u r d f >+>1 我们构造无风险套期保值证券组合:以价格S 0买一份股票,买m 份以股票为标的物的衍生证券(m 称为套期保值比率)。如果这个套期保值证券组合在每种状态下的到期支付都相等,则这个证券组合是无风险的。得到:uS mc dS mc u d 00-=-解

得衍生证券的份数:m S u d c c u d

=--0() 因为套期保值证券组合是无风险的,它的终端支付应该等于它的现价乘以1+r f 即:()()100+-=-r S mc uS mc f u 从这个式子得出衍生证券的价格:

()[]()

c S r u mc m r f u f =+-++011把套期保值比率m 代入得:c c r

d u d c u r u d r u f d f f =+--?? ???+-+-?? ???????????+()()()111 设p r d

u d f =+--()1则11-=-+-p u r u d f ()

从而,我们得到:[]c pc p c r u d f

=+-+()11 这里定义的p 总是大于0而小于1,具有概率的性质,我们称之为套期保值概率。从p 的定义可以看出,无套利条件u r d f >+>1成立当且仅当p 大于0而小于1(即,p 是概率),所以,在金融学里,我们又把p 称为等价鞅测度。这儿所说的正是金融学的一个重要定理:无套利等价于存在等价鞅测度。我们也可从另外一个角度来解释p 的意义:p 是当市场达到均衡时,风险中性者所认为的q 值,即,股票价格上涨的概率。作为风险中性者,投资者仅仅需要投资在风险股票上的回报率为无风险利率,因此,我们有:()()11000+=+-r S quS q dS f 从中解出q 值, 得到:q r d u d

f =+--()1所以,对一个风险中性者来说,p =q ,而衍生证券的价格可以解释为,在一个风险中性环境中,衍生证券的期望终端支付的折现值。在求得衍生证券价格的过程中,有两点是至关重要的,一是套期保值证券组合的存在性;二是无风险的套期保值证券组合的的回报率为无风险利率。无套利定价原理很容易推广到多期二项树股票价格过程。Cox, Ross and Rubinstein (1979)证明,当二项树模型中每期的时间趋于0时,股票价格依分布收敛于对数状态扩散过程,而期权价格公式收敛于Black-Scholes-Merton 定价公式。

2. Black-Scholes-Merton 模型

Black and Scholes (1973) 和Merton (1973) 利用随机分析这种强有力的方法,第一次对期权定价问题提出了严格的解。标的股票的价格)(t S 服从如下的随机微分方程

)()()(t dw dt t S t dS σμ+= x S =)0( ,μ为常数,

称为漂移项,可以视为股票的瞬时期望回报率,σ为常数,称为扩散项,可以视为股票的瞬时标准差,(){}0≥t t w 为标准布朗运动, x 为常数。无风险债券的价格)(t B 服从如下的方程dt t rB t dB )()(=()0(B 、r 为常数) 对于给定的欧式看涨期权,由于它的到期日支付是标的股票的函数,我们假设期权的价格为标的股票价格的函数()t t S C c t ),(= 这里,我们并不知道函数()C ?的具体形式,只知道它在()[)00,,+∞?T 是两次连续可微的。对函数()C ?利用It?引理,我们得到

())()(),()(t dw t S t t S C dt t dc x Y t σμ+=,t T < 这里,

()()()()222

1)(),(),()(),(t S t t S C t t S C t S t t S C t xx t x Y σμμ++= 下面,我们利用套期保值的思想,希望通过股票和债券构造证券组合来模拟欧式看涨期权的价格。假设自融资交易策略()a b ,=(){}T t b a t t ≤≤0:,满足此要求,这里,a t 表示在时间t 购买的股票份数,b t 表示在时间t 购买的债券的份数,则t t t c t B b t S a =+)()(,[]t T ∈0, 我们得到)()(t dB b t dS a dc t t t +=())()()()(t dw t S a dt r t B b t S a t t t σμ++=

通过比较)(t dw 与dt 的系数,我们来确定满足要求的自融资交易策略。首先,我们比较)(t dw 的系数,得到()t t S C a x t ),(=。我们得到()()t t S C t B b t S t t S C t x ),()()(),(=+从而 ()()[])(),(),()

(1t S t t S C t t S C t B b x t -=其次,我们比较dt 的系数,得到,对于t T <有 ()()()t t S C t rS t t S C t t S rC x t ),()(),(),(++-()0),()(2221

=+t t S C t S xx σ

为了成立,只需()C ?满足如下的偏微分方程()()()()-+++=rC x t C x t rxC x t x C x t t x xx ,,,,12

220σ ()()[)x t T ,,,∈∞?00,由欧式期权的到期日支付得边界条件()()C x T x K ,=-+,()x ∈∞0, 利用Feynman-Kac 公式,通过解带边界条件(1.2.8)的偏微分方程(1.2.7),我们得到Black-Scholes 期权定价公式c xN d Ke N d rT 012=--()()这里()

d x K r T T T f 112=++ln σσ d d T 21=-σ具体的解过程由Smith (1976) 和Malliaris (1983) 给出。

Smith 非常系统的给出了期权定价方法的应用,Malliaris 说明了随机分析的本质作用。Duffie (1996) 给出了Black-Scholes-Merton 定价公式的数学基础以及金融解释,同时还给出了期权定价的金融学解释。上面给出的欧式期权的定价方法的基本假设是市场无套利机会,同时应满足如下假设:股票价格服从常波幅的扩散过程;市场连续交易;常无风险利率;市场无摩擦。在上述假设下,期权定价这样原始的问题被刻画成金融思想和数学推导的完美结合。

3.衍生证券的一般定价方法

直到1976年,利用复合的证券组合一直是期权定价的基础。Cox and Ross (1976) 引入风险中性定价的概念,他们利用无风险利率代替股票价格过程的漂移项。在他们工作的基础上,Harrison and Kreps (1979), Harrison and Pliska (1981) 建立了系统的风险中性定价的理论框架以及与无套利的联系。无套利等价于存在等价概率测度,在等价概率测度下,期权和证券的价格以无风险利率折现后,是一个鞅过程。这是动态资产定价的基础。根据资产定价的基本定理,对随机过程(){}0,≥t t S 而言,存在等价鞅测度本质上等价于无套利机会。

换一种说法,如果资产的折现价格(){}0,≥t t S 不存在套利机会,则资产定价定理说明原有的概率测度可以用一个新的概率测度代替,在新概率测度下,资产的折现价格过程是一个鞅过程。早期的风险中性定价工作是以货币市场帐户作为计量单位的。事实上,计量单位的选取有很大的灵活性。Geman, El Karoui and Rochet (1995) 证明可以选取不同的计量单位。对于每一个计量单位,都有一个概率与其相对应,从而有不同的定价模型。纯折现债券的价格,不同到期日的远期合约都可以用来作为计量单位。计量单位的选取的灵活性产生了许多利率衍生证券的定价模型。

4.随机波幅模型

Wiggins (1987) 推广了Black-Scholes-Merton 期权定价模型。假设(1.2.1)中的瞬时波幅服从一个扩散过程()()σσγσβσdz dt d +=这里σz 是一个标准布朗运动,它和布朗运动w 的相关系数为ρ。在这种市场中,因为有两种风险根源σz 和w ,所以不能通过股票和债券构造证券组合来模拟欧式看涨期权的价格。波幅风险的价格由市场均衡来确定,而一般来说,不存在期权价格闭形式解。Wiggins 通过有限差分、Kalman 滤子和Monte Carlo 模拟计算方法来求解。在波幅风险价格是常数,波幅是同方差的O-U 过程的假设下,Heston (1993)得到欧式看涨期权闭形式的解。

5.蒙特卡罗模拟

蒙特卡罗模拟(Monte Carlo Simulation )是一种通过模拟标的资产价格随机运动路径得到权证价值期望的数值方法。如果股价运动服从伊藤过程,则当然股价如果服从其他分布,只要给出具体表达式,就可以模拟。蒙特卡罗模拟进行期权定价的核心在于生成的股价价格的随机过程。在股票期权到期的T 时刻,标的股票价格的随机过程为z dS Sd Sd τμσ=+)

dz 是一个维纳过程,μ)是风险世界的期望收益率,σ是股票的波动率。为了模拟路径,我

们把期权的有效期分为N 个长度为t ?的时间段,则上式的近似表达式为

()()()(S t t S t S t t S t μσ+?-=?+)由于金融市场中,更多时候应用ln S 来代替S ,

根据伊藤引理,则有:2

()ln ()(0.5)S t t S t dt dz μσσ+?-=-+) 因此: 2ln ()ln ()(0.5)S t t S t t dz μσσ+?-=-?+)

2()()exp[(0.5)S t t S t t μσ+?=-?+)蒙特卡罗模拟随机产生一组股价终值T S 的样本值,即模拟实验。然后为每一个样本值计算期权收益并记录下来。产生足够多样本值后,就可以得到期权收益分布,通常需要计算其期望和标准差。模拟试验的代数平均数常用来估计期权的收益分布期望值,然后用无风险利率对其折现来得到看涨期权的价格。蒙特卡罗模拟的实质是模拟标的变量的随机运动,预测其衍生品的平均回报,并由此得到衍生平价格的概率解。

四.总结

衍生证券定价的基本思想是,在完备市场中,通过自融资的动态证券组合策略来合成衍生证券,从而衍生证券的价格等于证券组合最初的成本。金融衍生产品的定价强烈依赖于相关标的资产的数学模型,我们基于无套利原则,得到一个风险中性的“公平”价格。金融资产的运动随时间变化,形成一个随机过程,随机过程理论是对观察到的价格进行分析和做出统计推断的基础。

期权定价的技巧对产生全球化的金融产品和金融市场起着最基本的作用。由于衍生资产在证券市场中具有分散风险、完备化市场等重要作用,近年来,从事金融产品的创造及定价的行业蓬勃发展,从而使得期权定价理论得到不断的改进和拓展。所以,无论从理论还是从实际需要出发,期权定价的思想都具有十分重要的意义。

五.参考文献

张树德. 金融衍生产品定价教程,2010

姜尚礼,徐成龙,任学敏,李少华. 金融衍生产品定价的数学模型与案例分析,2008 Bachelier, L.[1900](1964), Theory of speculation, in P. Cootner (ed.), The Random Character of Stock Market Prices, Cambridge, MA:MIT Press, pp. 17-78.

Barone-Adesi and Whaley (1987), Efficient analytical approximation of American option values, J.F. 42, 301-320.

Bensoussan (1984), On the theory of option pricing, Acta. Appl. 2, 139-158.

Black(1976), The pricing commodity contracts, J.F.E.3, 167-79.

Cox, Ross and Rubinstein(1979), Option pricing: A simplified approach, J.F.E 7, 229-63.

金融衍生品及套利定价

金融衍生品工具期中论文翻译 金融衍生品及套利定价 Andrea Pascucci 王凌霄 20081340043 金融衍生品是一种价值取决于一个或一个以上多证劵或者基础资产的合约。基础资产可以是股票,债券,货币兑换率也可以是货品的报价单,例如金,石油和小麦。 1.1 期权 期权是金融衍生工具种最简单的一个例子,它是一种拥有在未来某个特定时间以特定的价格买卖一些基础资产权利(但没有义务)的合约。所以在期权合约中,我们需要特别指出?一种基础资产; ?合约价格K,称为执行价格; ?日期T,称为合约到期日 看涨期权拥有购买的权利,看跌期权拥有卖出的权利,欧式期权则只能在合约到期日进行买卖,美式期权则可以在任意时刻进行买卖。 我们考虑一个以执行价格为K,合约到期入为T的欧式期权,我们在合约到期日以价格ST 卖出。在日期T我们有两种可能(1.1):如果ST>K,根据相应期权获得利润,最后的盈利等于ST-K,(例如以价格K买入,然后以ST卖出)如果ST

1.3欧式看跌期权盈利 1.4跨式盈利 最后,我们可以得到欧式看张期权盈利的公式为 (K ?S T )+ = max{K ?S T , 0}. 看涨期权和看跌期权是基础金融衍生品工具,现在他们也经常被称为普通期权。将这些期权合并,可能建立起新的衍生品工具:例如对同一资产购买看涨和看跌期权,确定执行价格和合约到期日期,我们得到了一个衍生品,我们将它称为鞍式期权,他的盈利增长比执行价格大的多的多。这种类型的衍生品盈利是靠价格在一边大幅度变化,而我们并不需要对价格的走向进行预测。显然,期权的价格可以以普通期权的形式进行定价,另一方面,在现实的市场当中存在着许多金融衍生品,他们有复杂的结构,这些衍生品在市场当中 不断得扩展和发展。 1.1.1 主要用途 衍生品的应用主要有两个用途: ?规避风险 ?投机 例如,我们假设一个投资者拥有股票S:购买看跌期权S,他拥有将来一敲定价格卖出S的权利,因此他或她规避了S价格崩盘的风险。类似的,一家石油公司回购买看张期权让他有权利在未来以相对低的价格购买石油,这样做,公司规避了将来石油价格上涨带来的风险。最近几年,衍生品的应用也越来越广泛:不久以前购房贷款的汇率只能固定或者可变,然而现在报价将更广泛。例如,我们不难发现,贷款汇率有上限:这种构架的产品包含一种虎扑多种衍生品

期权价格的性质金融衍生品定价理论讲义

第三章 期权价格的性质 在第一章里,我们定性地讨论了期权价格的性质。我们不但描述了影响期权价格的各种因素,而且讨论了在各种情况下期权的支付。在这一节里,我们将应用无套利原理严格证明欧式期权价格的一些重要的性质。需要强调的是,我们并不对标的资产的未来价格的分布作任何假设。在上一章中,我们利用标的资产和债券合成构造远期合约和期货合约,投资银行可以利用这种方法来为远期合约和期货合约做市及对冲风险。同样地,在本章中,我们利用合成构造期权的方法来为期权做市及对冲风险。我们仅仅研究以同一种资产为标的物的看涨和看跌期权价格之间最基本的关系。本章主要内容:美、欧式期权价格的上下界;美式期权的提前执行;红利对期权价格的影响;看涨和看跌期权价格之间的平价关系。 我们不妨假设标的物为某种股票,其在时间t 的价格为S t ,期权的执行价格为K ,到期日为一期,即,T =1,无风险利率为f r (或者r ),按离散或者连续方式计算复利。我们以t t t t P p C c ,,,分别表示欧式看涨、美式看涨、欧式看跌、美式看跌期权在时间t 的价格。 1.期权价格的上、下界 由第一章内容,期权价格受标的股票的价格、执行价格、标的股票的价格的方差、到期日、无风险利率和到期日之前标的资产的预期红利六种因素的影响。 1.1 上界 美式或者欧式看涨期权的持有者拥有以一定价格购买一份股票的权利,所以在任何情形下,期权的价值不会超过标的股票的价格 t t S c ≤ t t S C ≤ 否则,买入股票,卖空看涨期权就能获得套利机会。 例子:标的股票价格为30元,执行价格为25元的看涨期权,其价格不超过30元(不管是美式还是欧式)。如果价格为40元,如何构造套利机会? 看涨期权的价格永远不会超过标的股票的价格。即使执行价格为零,期权永远不到 期,期权的价格也至多为S T 。甚至在这种极端情形下,期权的价格也可能比标的股票的价格低,因为股票有选举权,而期权没有。 美式或者欧式看跌期权的持有者拥有以执行K 价格卖一份股票的权利,所以在任 何情形下,期权的价值不会超过K K p t ≤ K P t ≤ 对欧式看跌期权而言,我们知道它在到期日的价格不会超过K ,所以 r K p t +≤ 1 否则,卖出期权,投资在无风险利率,获得套利 例子:r =5%,t S =30元, K =25元,1 25?-≤r t e p 1.2 以不支付红利股票为标的物的欧式期权价格的下界

C13029 金融衍生品系列课程之一 80分

一、单项选择题 1. 一般情况下,期货合约()。 A. 较近月份交易价格低于较远月份交易价格 B. 不存在套期保值 C. 不存在投机 D. 较近月份交易价格高于较远月份交易价格 2. Cracked Corn公司(CCC)买入一份玉米期货合约,农民John 卖出一份玉米期货合约。如果玉米价格上涨,下列选项中表述正确的是()。 A. John的保证金账户金额增加 B. CCC的保证金账户金额增加 C. CCC直接向John付款 D. John直接向CCC付款 3. 远期合约买方的风险不包括()。 A. 现货价格下跌 B. 交割履约问题 C. 生产商的信用问题 D. 现货价格上涨

4. 下列各项中关于持有成本模型正确的是()。 A. 期货价格=远期价格-持有成本 B. 期货价格=现货价格-持有成本 C. 期货价格=现货价格+持有成本 D. 期货价格=远期价格+持有成本 5. 期货合约初始保证金账户金额由()来确定。 A. 期货交易所 B. 期货买方 C. 期货卖方 D. 期货经纪 6. 期货合约的盈利可在()实现。 A. 交割时 B. 每月 C. 每天 D. 合约购买时 7. 下列()情况下,采用期货合约交割商品时可能并无益处。 A. 卖方可能实现亏损 B. 合约价格等于现货价格

C. 期货合约不要求交割 D. 买方只是进行投机 8. 期货账户中每天调整保证金账户的做法被称为()。 A. 逐日盯市 B. 保证金要求 C. 清算所 D. 投机 二、多项选择题 9. 期货合约在交易所挂牌的好处包括()。 A. 价格有效性 B. 合约标准化 C. 消除了信用风险 D. 降低了基差风险 三、判断题 10. 一般情况下,在远期合约中,如果商品价格在交割时下跌,则卖方盈利。() 正确 错误

资产定价:理论演进及应用研究.

资产定价:理论演进及应用研究 摘要:资产定价理论是现代金融理论的核心。本文通过对资产定价理论的综述,揭示了从传统资产定价理论到行为资产定价理论的演进脉络,并对各理论及相应模型的內涵和应用进行了描述,最后对传统资产定价理论和行为资产定价理论进行了比较,以期对我国金融理论和实践的发展有所帮助。 关键词:资产定价;传统资产定价理论;行为资产定价理论 资产定价理论是现代金融理论的核心内容,也是研究最系统、成果最丰富的领域之一。从1900年Bachelier开始研究到现在的一个多世纪中,有关资产定价的研究汗牛充栋,并出现了百花齐放,百家争鸣的局面,这种局面催生出了诸如现代资产组合理论、资本资产定价理论、行为资产定价理论等成果,这些理论成果可以划分为传统资产定价理论阶段和行为资产定价理论阶段两个阶段。无论是传统资产定价理论还是行为资产定价理论都对金融理论和实践产生了巨大的影响。 一、传统资产定价理论阶段 传统资产定价理论阶段的特征是资产定价理论大都基于传统金融学的若干假设提出,这一阶段出现了很多卓有影响的理论,如最优投资组合理论、资本资产定价理论(CAPM)、无套利定价理论(APT)和消费基础的资本资产定价理论(CCAPM)等。这一阶段是资产定价理论的产生和发展阶段,开创了资产定价理论专门研究的先河,为后续的行为资产定价等理论的产生和发展提供了坚实的基础。 (一)现代资产组合理论(modern portfolio theory,MPT) Markowiz于1952年提出现代资产组合理论以减少投资者总量风险。其风险分散原理是:多种证券组合的总收益等于个别证券收益的加权平均,而组合的总风险可以比个别证券风险的加权平均小。现代资产组合理论的出现标志着现代金融学这一学科正式确立。 Markowiz的模型以资产回报率的均值和方差作为选择的对象,而不去考虑个体的效用函数。一般来说,资产回报率的均值和方差并不能完全包含个体作

金融资产定价理论

金融资产定价理论 出自MBA智库百科(https://www.doczj.com/doc/261561721.html,/) 金融资产定价理论(Financial Asset Pricing Theory) 金融资产定价理论的概述 金融学主要研究人们在不确定环境中进行资潦的最优配置,资产时间价值,资产定价理论(资源配置系统)和风险管理理论是现代金融经济学的核心内容,资源配置系统中核心问题就是资产的价格,而金融资产的最大特点就是结果的不确定性,因此金融资产的定价也就是金融理论中最重要的问题之一。 目前,金融资产的定价主要包括以股票、债券、期权等为代表的单一产品定价以及采用风险收益作为研究基础的资产组合定价理论、套利理论和多因素理论等。不同的定价理论和方法是随着时间发展,统计方法、计算机技术的进步而不断修正改进的,使其逐步与现实要求接近。 金融资产定价理论方法的概述 金融资产定价是当代金融理论的核心,资金的时间价值和风险的量化是金融资产定价的基础。金融资产价格是有资金时间价值和风险共同决定的。 (一)现金流贴现方法 资金的时间价值是指资金随着时间的推移会发生增值,因而不同时点的现金流难以比较其价值。要对未来现金流贴现,关键的是折现率的确定。而贴现率不是任意选择的,应该是由市场决定的资金使用的机会成本,也就是同一笔资金用于除考察的用途之外所有其他用途中最好的用途所能得到的收益率。机会成本是市场反映的金融资产的收益率,而资产的收益率(资本成本)一定与该资产的风险水平对应。一般来说,较高风险的资产一般对应较高的收益率。在金融实践中,折现率往往用一个无风险利率再加上一个风险补偿率表示。无风险利率是指货币资金不冒任何风险可取得的收益率,常用国库券的短期利率为代表;风险补偿率取决于金融资产风险的大小,风险越大需要的风险补偿率越高,因此折现率的确定需要解决两个问题,无风险利率和风险补偿率。 理论上,不同期间使用不同的贴观率进行贴现,因为资本的机会成本在不同时期会随着市场条件的变化而变化。既是说,同一资产的收益率对于不同的投资期限是不一样的,对这一问题的研究就是利率的期限结构,利率是金融市场上最重要的价格变量之一,它直接决定了相关金融产品的定价和利率风险的管理。利率期限结构是指不同期限证券的到期收益率和到期期限之间的关系,它对于利率风险的管理和金融资产的定价十分重要。 (二)投资组合理论(MPT) 哈里·马科维茨(Harry Markowit,1952)提出的投资组合理论(Modern portfolio theory)是现代金融学的开端。在基本假定:(1)所有投资者都是风险规避的,(2)所有投资者处于同一单期投资期,(3)投资者根据收益率的均值和方差选择投资组台的条件下,投资组合理论认为投资者的效用是关于投资组合的期望收益率和标准差的函数,使在给定风险水平下期望收益率最高或者在给定期望收益率水平风险最小。理性的投资者通过选择有效的投资组合,实现期望效用最大化。这一选择过程借助于求解两目标二次规划模型实现。模型的本质是使

金融衍生工具定价

已知: 22 () 22 (,)() Z Z r T rT f S T e F Se e dZ σ +∞-- - -∞ =?, (,) (,) f S T S T S ? ?= ? , 2 2 (,)(,) f S T S T S ? Γ= ? , (,) (,) f S T S T T ? Θ=- ? . 求证:22 1 (,)(,)(,)(,) 2 S T S S T rS S T rf S T σ Θ=-Γ-?+. 证明:只需证明22 1 (,) 2 ((,) ) ) , , ( S S f S r T f S rS T S T T T σ+- ? ? Γ = ? . 设 2 () 2 (,,)Z r T G S T Z Se σ - =,(,,)((,,)) H S T Z F G S T Z =,则 2 2 (,)(,,) Z rT f S T e H S T Z e dZ +∞- - -∞ =. 于是 22 2 22 2 (,) (,) (,,)(,,) (,,) Z Z rT rT Z rT f S T e H S T Z e dZ e H S T Z e dZ T T e H rf S T Z S e T dZ T +∞+∞ -- -- -∞-∞ +∞- - -∞ ?? ?? ' ?? =+? ?? ???? ?? ? =+? ??? - 红色部分证毕. 对第二项,由先求积分后求偏导,变为先求偏导后求积分,则 22 22 (,,) (,,) Z Z rT rT H S T Z e H S T Z e dZ e dZ T T - +∞+∞ -- - -∞-∞ ?? ?? = ? ?? ?? . 接下来只需证明 2 2 22 1 (,) (,,) () 2 , Z rT S S T H S T Z e rS S T dZ T σ - +∞- -∞ ? ? Γ =+ ? . 回忆一下复合函数求导法则: 若(,,)((,,)) H S T Z F G S T Z =,则 (,,)(,,) ((,,)) H S T Z G S T Z F G S T Z T T ?? ' = ?? . 于是有 22 () 2 (,,) ((,,)) 2 Z r T H S T Z F G S T Z Se r T σσ -? ? ' =-? ?? . 2 () 2 (,,) ((,,))Z r T H S T Z F G S T Z e S σ - ? ' = ? (这个式子很重要!),(1)

第八章_Black-Scholes_模型(金融衍生品定价理论讲义)

第八章 Black-Scholes 模型 金融学是一门具有高度分析性的学科,并且没有什么能够超过连续时间情形。概率论和最优化理论的一些最优美的应用在连续时间金融模型中得到了很好地体现。Robert C. Merton ,1997年诺贝尔经济学奖得主,在他的著名教科书《连续时间金融》的前言中写到: 过去的二十年证明,连续时间模型是一种最具有创造力的多功能的工具。虽然在数学上更复杂,但相对离散时间模型而言,它能够提供充分的特性来得到更精确的理论解和更精练的经验假设。 因此,在动态跨世模型中引入的真实性越多,就能够得到比离散时间模型越合理的最优规则。在这种意义上来说,连续时间模型是静态和动态之间的分水岭。 直到目前为止,我们已经利用二项树模型来讨论了衍生证券的定价问题。二项树模 型是一种离散时间模型,它是对实际市场中交易离散进行的一种真实刻画。离散时间模型的极限情况是连续时间模型。事实上,大多数衍生定价理论是在连续时间背景下得到的。与离散时间模型比较而言,尽管对数学的要求更高,但连续时间模型具有离散时间模型所没有的优势:(1)可以得到闭形式的解。闭形式解对于节省计算量、深入了解定价和套期保值问题至关重要。(2)可以方便的利用随机分析工具。 任何一个变量,如果它的值随着时间的变化以一种不确定的方式发生变化,我们称它为随机过程。如果按照随机过程的值发生变化的时间来分,随机过程可以分为离散时间随机过程和连续时间随机过程。如果按照随机过程的值所取的范围来分,随机过程可以分为连续变量随机过程和离散变量随机过程。在这一章中,我们先介绍股票价格服从的连续时间、连续变量的随机过程:布朗运动和几何布朗运动。理解这个过程是理解期权和其他更复杂的衍生证券定价的第一步。与这个随机过程紧密相关的一个结果是Ito 引理,这个引理是充分理解衍生证券定价的关键。 In this chapter we study the best-known continuous time model, the Black-SCHOLES MODEL. This model, developed by Fischer Black and Myron Scholes in 1973, describes the value of a European option on an asset with no cash flows. The model has had a huge influence on the way that traders price and hedge options. It has also been pivotal to the growth and success of financial engineering in the 1980s and 1990s. The model requires only five inputs: the asset price, the strike price, the time to maturity, the risk-free rate of interest, and the volatility. The Black-Scholes model has becomes the basic benchmark model for pricing equity options and foreign currency options. It is also sometimes used, in a modified form, to price Eurodollar futures options, Treasury bond options, caps, and floors. We cannot say that we have mastered option pricing theory unless we understand the Black-Scholes formula. 本章的第二部分内容在连续时间下推导Black-Scholes 欧式期权定价公式,我们分别利用套期保值方法和等价鞅测度方法。并对所需的参数进行估计。最后讨论标的股票支付红利的欧式期权定价问题。 1.连续时间随机过程 我们先介绍Markov 过程。 定义:一个随机过程{}03t t X 称为Markov 过程,如果预测该过程将来的值只与它的目 前值相关,过程过去的历史以及从过去运行到现在的方式都是无关的,即 [][]t s t s X X E X E =Y (1) 这里,t s 3,t Y 表示直到时间t 的信息。 我们通常假设股票的价格过程服从Markov 过程。假设IBM 公司股票的现在的价格是100元。如果股票价格服从Markov 过程,则股票一周以前、一个月以前的价格对于预测股票将来价格是无用的。唯一相关的信息是股票当前的价格100元。由于我们对将来价格

金融衍生产品的定价综述

金融衍生产品定价模型综述 蒲实 (重庆大学数学与统计学院2008级统计2班) 一.摘要 衍生证券已经有很长的历史。期权和期货是所有衍生证券里在交易所交易最活跃的衍生证券。十七世纪晚期,在荷兰的Amsterdam 股票交易所,就已经有了期权这种形式的证券交易。1973年建立的Chicago Board Options Exchange (CBOE) 大大带动了期权的交易。19世纪出现有组织的期货市场。 期权定价理论是最成熟也是最重要的衍生证券定价理论。最早的期权定价理论可以追溯到1900年Bachelier (1900) 的博士论文,Bachelier 的主要贡献在于:发展了连续时间游走过程。受Louis Bachelier 工作的启发,Kiyoshi It?在二十世纪四、五十年代作出了随机分析方面奠基性的工作,这套理论随即成为金融学最本质的数学工具,也带来了衍生证券定价理论革命性的飞跃。但是,风险中性定价的概念直到Black-Scholes (1973)和Merton (1973)才得以突破。他们的工作使随机分析和经济学达到了最优美的结合,也给金融实际操作带来了最具有影响力的冲击。由于许多权益都可以被视为偶发性权益(例如债务,股权,保险等),所以在他们以后,期权定价的技巧被广泛的应用到许多金融领域和非金融领域,包括各种衍生证券定价、公司投资决策等。 我们可以把这些研究大致分为:复杂衍生证券的定价(例如MBS ,奇异期权等);数值计算(例如美式期权定价,亚式期权);拓展模型来解释Black-Scholes 模型不能解释的现象(例如Volatility smile );交易约束和交易成本对衍生证券套期保值和定价的影响。 二.关键词 金融衍生产品,维纳过程(wiener Processes) ,Ito(伊藤)引理,随机过程,布朗运功,套期保值,鞅过程。 三.正文 1. 二项树模型 该模型由Sharpe (1978)提出, Cox, Ross and Rubinstein (1979)对它进行了拓展,将二项分布用于描述股价运动,从此二叉树模型被广泛运用于衍生品的定价,成为构造离散时 间价格运动的基本模型。定义如下:0S =标的资产现在的价格;q =标的资产上涨的概率; r f =无风险利率;u =标的资产上涨的幅度;d =标的资产下跌的幅度;f =衍生证券现在的价格;u c =当标的资产价格为uS 时衍生物的价格;d c =当标的资产价格为dS 时衍生物的价格 对r f 的限制为u r d f >+>1 我们构造无风险套期保值证券组合:以价格S 0买一份股票,买m 份以股票为标的物的衍生证券(m 称为套期保值比率)。如果这个套期保值证券组合在每种状态下的到期支付都相等,则这个证券组合是无风险的。得到:uS mc dS mc u d 00-=-解

资产定价主要理论及其发展历程综述

资产定价主要理论及其发展历程综述 资产定价理论是金融学研究的重要领域之一,也是金融学研究中最系统、成果最丰富的领域之一。资产定价与公司财务、金融市场及机构一道构成了现代金融学的三大核心研究领域,其理论价值和实证魅力对众多的研究者产生了极强的吸引力,使得无数的研究人员前仆后继,不断推动资产定价理论的发展。从1900年巴舍利耶(Bachelier)开始到现在的一个多世纪中,有关资产定价的文献可以说是浩如烟海。据说最早规范研究资产定价的论文可以追溯到伯努利(Bernoulli)于1738年发表的论文,距今已经接近300年了。然而,20世纪50年代以前,金融资产价格定价理论没有受到经济学家的重点关注,具有代表性的观点是凯恩斯(Keynes)的“选美论”;另一种至今依然存在的理论就是股票价格的“内在价值”决定方式,其基本的分析范式是利用会计和法律工具来分析公司财务报表,从而获得不同证券的“内在价值”,这个时代典型的代表人物就是本杰明·格雷厄姆。 20世纪50年代以前的资产定价理论 关于资产定价理论的起源已经难以考证,目前具有代表性的说法包括1738年丹尼尔·伯努利(Daniel Bernoulli)发表的拉丁论文《关于风险衡量的新理论》和1900年法国数学博士路易丝·巴彻利尔(Louis Bachelier)完成的博士论文。其中,巴彻利尔以当时看来全新的方法对法国股票市场进行了研究,奠定了资产定价理论的基础。《投机理论》的创新之处在于作者将股票价格变化视为随机过程,并且提出了价格变化服从鞅过程。他试图运用这些全新的理论和方法来研究股票价格变化的规律性,因此巴彻利尔的理论不仅在数学界产生了很大的影响,而且对后来的B-S期权定价公式有直接的影响。 在巴彻利尔之后,20世纪30年代,经济学家威廉姆斯证明了股票价格是由其未来股利决定的,提出了重要的股利折现模型。威廉姆斯于1938年出版了《投资价值理论》,详细介绍了股利折现模型,该书对投资学和金融学的发展起了重要的作用。后来的研究者对股利折现进行了改进,并提出了现金流贴现模型。

第七章_美式期权定价(金融衍生品定价理论讲义)

第七章 美式期权定价 由于美式期权提前执行的可能,使得解决最优执行决策成为美式期权定价和套期保值的关键。由第三章的内容我们知道,如果标的股票在期权的到期日之前不分红,则美式看涨期权不会提前执行,因为在到期日之前执行将损失执行价格的利息。但是,如果标的股票在期权到期日以前支付红利,则提前执行美式看涨期权可能是最优的。提前执行可以获得股票支付的红利,而红利的收入超过利息损失。事实上,我们将证明,投资者总是在股票分红前执行美式看涨期权。 对于美式看跌期权而言,问题变的更复杂。看跌期权的支付以执行价格为上界,这限制了等待的价值,所以对于美式看跌期权而言,即使标的股票不支付红利,也可能提前执行。提前执行可以获得执行价格的利息收入。 许多金融证券都暗含着美式期权的特性,例如可回购债券(called bond ),可转换债券(convertible bond ), 假设: 1.市场无摩擦 2.无违约风险 3.竞争的市场 4.无套利机会 1.带息价格和除息价格 每股股票在时间t 支付红利t d 元。当股票支付红利后,我们假设股价将下降,下降的规模为红利的大小。可以证明,当市场无套利且在资本收益和红利收入之间没有税收差别时,这个假设是成立的。 ()()t e c d t S t S += 这里()t S c 表示股票在时间t 的带息价格,()t S e 表示股票在时间t 的除息价格。 这个假设的证明是非常直接的。如果上述关系不成立,即()()t e c d t S t S +1,则存在套利机会。 首先,如果()()t e c d t S t S +>,则以带息价格卖出股票,在股票分红后马上以除息价格买回股票。因为我们卖空股票,所以红利由卖空者支付,从而这个策略的利润为()()()t e c d t S t S +-。因为红利是确定知道的,所以只要()()()t S t S e c -var =0,则利润是没有风险的。 其次,如果()()t e c d t S t S +<,则以带息价格买入股票,获得红利后以除息价格卖出,获得利润为()()t S d t S c t e -+。

《金融衍生品定价的数学模型和案例分析》简介

《金融衍生品定价的数学模型和案例分析》简介 同济大学数学系 姜礼尚 期权(option)是一类金融衍生工具,但从更广义上讲,期权是一种未定权益(Contingent Claim),它是一种选择权;应用Black-Scholes-Morton 期权定价原理,可以为多种不同形式的未定权益和选择权给出一个“公平”的估价。基于这个理念,我们认为期权定价原理的应用绝不仅限于期权本身的定价,而应更广泛地应用于金融、保险、财务、投资等各个不同领域。本书正是从这个思路出发,试图利用期权定价原理对当前市场上流行的一些金融和保险的创新产品进行定价。在这里我们把这些创新产品看成是相关标的资产(underlying assets):外汇、黄金、股指、公司资产和利率等的衍生物,基于无套利原理,得到一个风险中性的“公平”价格,它的定价强烈地依赖于相关标的资产的数学模型,虽然它只是一种近似,但对金融机构的实际定价具有重要的参考价值。 本书可以看作是拙作“期权定价的数学模型和方法”(高等教育出版社,2003年)的应用篇,着重研究在已有定价模型和方法的基础上,针对各种金融和保险创新产品的具体实施条款,建立数学模型(即建立偏微分方程定解问题),求出它的闭合解或数值解,并进行定量分析,讨论一些金融参数和创新产品定价之间的依从关系。为了帮助更多读者掌握用偏微分方程方法研究Black-Scholes-Merton期权定价原理,我们专门写了“期权定价的偏微分方程模型和方法”一章放在附录中,供大家学习和参考。 本书作为金融数学专业的教学用书和金融、保险、管理等领域的参考教材,它适用于两大类读者:第一类读者是应用数学专业的教师和研究人员,特别是广大攻读金融数学各类学位的研究生和本科生,第二类读者是金融、保险、管理等的从业人员,特别是正在从事金融和保险创新产品设计的金融(保险)分析师,金融(保险)机构的决策人员以及相关的研究工作者。我们深信本书将对他们的学习和研究有所裨益。 本书中绝大部分内容都是我们同济大学数学系风险管理研究所的老师们和研究生们在最近三年内的研究成果,它从一个侧面反映了我们在应用数学理论解决实际问题的漫长道路上所做出的努力和尝试以及我们正在追求的目标。 我们衷心希望本书能起到抛砖引玉的作用,能对Black-Scholes-Morton期权定价原理在这一领域的应用起到一点推动作用。我们真诚地希望,能得到数学届的同仁特别是金融和保险业界从业人员的批评和指正。 2007年1月22日 目录(部分) 序言 第一章 跳扩散模型下的期权定价 §1.1 跳扩散模型 §1.2 期权定价的PDE模型 §1.3 期权定价公式 第二章 个人理财产品案例之一-一类与得利宝有关的理财产品的定价研究 §2.1问题的提出 得利宝之亚洲货币挂钩投资产品是中国交通银行上海分行于2005年11月28日推出一种投资保本型金融产品。它的条款内容是:客户将美元存入银行,银行拿这笔美元去投资另一货币或国债,另一货币是一篮子亚洲货币,篮子货币由日元(JPY)、韩元(KRW)、新加坡元(SGD)、泰株(THB)各占25%构成。投资者通过汇率的变动获取收益,其投资收益由固定收益和参与投资收益两部分构成,参与投资收益=参与率×[(最终篮子货币值-最初篮子货币值)或零中较大者],其中,参与率(参与篮子货币投资的比率)为50%,最初篮子货币值指的是交易本金,最终篮子货币值=交易本金×(25%×JPY最初汇价/JPY最终汇价+25% ×KRW最初汇价/KRW最终汇价+25%×SGD最初汇价/SGD最终汇价+25%×THB最初汇价/THB最终汇价)。客户在到期日除了可获得保本的固定收益外,还可获得与亚洲一篮子货币相对美元升幅相挂钩的额外收益。这些一篮子货币升幅越高,客户所获得的收益就越高,即使出现最差情况,一篮子货币相对于美元全部走弱,投资者也可获得保本的收益。因此得利宝具有收益高、风险小、本金安全等特点。 我们将得利宝条款中的投资收益稍作改变:假设到期日T,保本收益为K,参与投资收益为0(T)XXλ+?,总收益为0()T KXXλ++?,其中T X为T时刻的投资帐户资产值,0X为初始

资本资产定价模型(CAPM)理论及应用

[摘要]资本资产定价模型是用来确定证券均衡价格的一种预测模型,模型以其简洁的形式和理论的浅显易懂使它在整个经济学领域得到了广泛的应用,但由于理论与实际情况的背离使它的实用性降低。本文简要评述了资本资产定价模型的应用,指出了模型的改进方向。[关键词]资本资产定价模型β系数系统风险一、引言(资本资产定价模型的理论源渊)资产定价理论源于马柯维茨(Harry Markowtitz)的资产组合理论的研究。1952年,马柯维茨在《金融杂志》上发表题为《投资组合的选择》的博士论文是现代金融学的第一个突破,他在该文中确定了最小方差资产组合集合的思想和方法,开创了对投资进行整体管理的先河,奠定了投资理论发展的基石,这一理论提出标志着现代投资分析理论的诞生。在此后的岁月里,经济学家们一直在利用数量化方法不断丰富和完善组合管理的理论和实际投资管理方法,并使之成为投资学的主流理论。到了60年代初期,金融经济学家们开始研究马柯维茨的模型是如何影响证券估值,这一研究导致了资本资产定价模型(Capital Asset Price Model,简称为CAPM)的产生。现代资本资产定价模型是由夏普(William Sharpe ,1964年)、林特纳(Jone Lintner,1965年)和莫辛(Mossin,1966年)根据马柯维茨最优资产组合选择的思想分别提出来的,因此资本资产定价模型也称为SLM 模型。由于资本资产定价模型在资产组合管理中具有重要的作用,从其创立的六十年代中期起,就迅速为实业界所接受并转化为实用,也成了学术界研究的焦点和热点问题。 二、资本资产定价模型理论描述资本资产定价模型是在马柯维茨均值方差理论基础上发展起来的,它继承了其的假设,如,资本市场是有效的、资产无限可分,投资者可以购买股票的任何部分、投资者根据均值方差选择投资组合、投资者是厌恶风险,永不满足的、存在着无风险资产,投资者可以按无风险利率自由借贷等等。同时又由于马柯维茨的投资组合理论计算的繁琐性,导致了其的不实用性,夏普在继承的同时,为了简化模型,又增加了新的假设。有,资本市场是完美的,没有交易成本,信息是免费的并且是立即可得的、所有投资者借贷利率相等、投资期是单期的或者说投资者都有相同的投资期限、投资者有相同的预期,即他们对预期回报率,标准差和证券之间的协方差具有相同的理解等等。该模型可以表示为: E(R)= Rf+ [E(Rm)- Rf] ×β其中,E(R)为股票或投资组合的期望收益率,Rf为无风险收益率,投资者能以这个利率进行无风险的借贷,E(Rm)为市场组合的收益率,β是股票或投资组合的系统风险测度。从模型当中,我们可以看出,资产或投资组合的期望收益率取决于三个因素:(1)无风险收益率Rf,一般将一年期国债利率或者银行三个月定期存款利率作为无风险利率,投资者可以以这个利率进行无风险借贷;(2)风险价格,即[E(Rm)- Rf],是风险收益与风险的比值,也是市场组合收益率与无风险利率之差;(3)风险系数β,是度量资产或投资组合的系统风险大小尺度的指标,是风险资产的收益率与市场组合收益率的协方差与市场组合收益率的方差之比,故市场组合的风险系数β等于1。 [!--empirenews.page--] 三、资本资产定价模型的意义资本资产定价模型是第一个关于金融资产定价的均衡模型,同时也是第一个可以进行计量检验的金融资产定价模型。模型的首要意义是建立了资本风险与收益的关系,明确指明证券的期望收益率就是无风险收益率与风险补偿两者之和,揭示了证券报酬的内部结构。资本资产定价模型另一个重要的意义是,它将风险分为非系统风险和系统风险。非系统风险是一种特定公司或行业所特有的风险,它是可以通过资产多样化分散的风险。系统风险是指由那些影响整个市场的风险因素引起的,是股票市场本身所固有的风险,是不可以通过分散化消除的风险。资本资产定价模型的作用就是通过投资组合将非系统风险分散掉,只剩下系统风险。并且在模型中引进了β系数来表征系统风险。四、资本资产定价模型的应用资本资产定价模型之所以一经推出就风靡整个实业界、投资界,不仅仅因为其简洁的形式,理论的浅显易懂,更在于其多方面的应用。 1、计算资产的预期收益率这是资本资产定价模型最基本的应用,根据公式即可得到。资本资产定价模型其

金融衍生品定价理论

金融衍生品定价理论1 陶正如1,陶夏新1,2 1中国地震局工程力学研究所,哈尔滨(150080) 2哈尔滨工业大学,哈尔滨(150080) E-mail :taozhengru@https://www.doczj.com/doc/261561721.html, 摘 要:金融衍生品有利于规避金融市场风险,而衍生品是否能充分发挥作用则取决于其价格是否合理。本文总结了金融衍生品定价理论的发展,介绍了几种比较具有代表性的定价模型,并进行了简单的评述。 关键词:金融衍生品,定价模型,随机过程 1. 引言 真正的现代金融衍生品始于20世纪60年代末到70年代初,浮动汇率代替当时维系全球的固定汇率制-布雷顿森林体系成为世界各国新兴的汇率制度,西方经济发达国家各类金融机构以自由竞争和金融自由化为基调进行金融创新[1,2]。随着金融市场在全球范围的快速扩张,国际贸易与金融商品交易的风险日益增加,迫切需要规避市场风险、提高交易效率,金融衍生产品作为新兴的风险管理手段应运而生。 金融衍生品的价格衍生自标的资产(商品价格、利率、汇率和股票价格或股价指数等)的价格,根据两者间的关系,可以把衍生品分为两大类[3]:线性衍生品和非线性衍生品。前者主要包括远期、期货和互换合约,其价值与标的资产价值呈线性关系,定价比较容易。后者主要包括期权,以及一些更为复杂的结构化衍生证券和奇异衍生证券,它们的价值与标的资产价值之间呈现出复杂的非线性关系。 在所有的衍生品定价中,期权定价的研究最为广泛,因为与其它衍生品相比,期权易于定价;许多衍生品可表示为若干期权的组合形式;各种衍生品的定价原理相同,可以通过期权定价方法推导出一般衍生品的定价模型[4]。 2. 20世纪90年代前的金融衍生品定价模型 1900年,法国数学家Louis Bachelier 在《投机理论》中提出了最早的期权理论模型,奠定了现代期权定价理论的基础,这标志着研究连续时间随机过程的数学和连续时间衍生证券定价的经济学两门分支学科的诞生[5-14]。Bachelier 的模型第一次给予布朗运动严格的数学描述,假设股价变化满足标准布朗运动、没有漂移、每单位时间方差为σ2,则到期日期权的期望价值是: ()??? ??????+???????????????????=t X S t t X S XN t X S SN t S C σ?σσσ, (1) 其中,C (S , t )为t 时刻股票价格为S 时的期权价值;S 为股票价格;X 为期权的执行价格;t 是距到期日的时间,()?N 为标准正态分布累积函数;()??为标准正态分布密度函数。 巴氏模型比较适用于短期买权的定价,但其假设股价服从标准布朗运动,则股价可能为负,这与股票市场实际不符。另外,模型忽视了资金的时间价值为正的客观事实,期权与股票的不同风险特征和投资者的风险厌恶等问题使其在实际应用中受到限制[6,8,9]。但其仍具有 1本课题得到国家自然科学基金(项目编号:70603025),地震学联合基金(项目编号:606027), 黑龙江省自然科学基金(项目编号:G2005-13)的资助。

应用文-资本资产定价模型(CAPM)理论及应用

资本资产定价模型(CAPM)理论及应用 ' 资本资产定价模型是用来确定证券均衡价格的一种预测模型,模型以其简洁的形式和理论的浅显易懂使它在整个 学领域得到了广泛的 ,但由于理论与实际情况的背离使它的实用性降低。本文简要评述了资本资产定价模型的应用,指出了模型的改进方向。 资本资产定价模型β系数系统风险 资产定价理论源于马柯维茨(Harry Markowtitz)的资产组合理论的研究。1952年,马柯维茨在《金融杂志》上 题为《投资组合的选择》的博士 是现代金融学的第一个突破,他在该文中确定了最小方差资产组合集合的思想和方法,开创了对投资进行整体 的先河,奠定了投资理论 的基石,这一理论提出标志着现代投资分析理论的诞生。在此后的岁月里,经济学家们一直在利用数量化方法不断丰富和完善组合管理的理论和实际投资管理方法,并使之成为投资学的主流理论。 到了60年代初期,金融经济学家们开始研究马柯维茨的模型是如何影响证券估值,这一研究导致了资本资产定价模型(Capital Asset Price Model,简称为CAPM)的产生。现代资本资产定价模型是由夏普(William Sharpe ,1964年)、林特纳(Jone Lintner,1965年)和莫辛(Mossin,1966年)根据马柯维茨最优资产组合选择的思想分别提出来的,因此资本资产定价模型也称为SLM模型。 由于资本资产定价模型在资产组合管理中具有重要的作用,从其创立的六十年代中期起,就迅速为实业界所接受并转化为实用,也成了学术界研究的焦点和 问题。 资本资产定价模型是在马柯维茨均值方差理论基础上发展起来的,它继承了其的假设,如,资本市场是有效的、资产无限可分,投资者可以购买股票的任何部分、投资者根据均值方差选择投资组合、投资者是厌恶风险,永不满足的、存在着无风险资产,投资者可以按无风险利率自由借贷等等。同时又由于马柯维茨的投资组合理论计算的繁琐性,导致了其的不实用性,夏普在继承的同时,为了简化模型,又增加了新的假设。有,资本市场是完美的,没有交易成本,信息是免费的并且是立即可得的、所有投资者借贷利率相等、投资期是单期的或者说投资者都有相同的投资期限、投资者有相同的预期,即他们对预期回报率,标准差和证券之间的协方差具有相同的理解等等。 该模型可以表示为: E(R)= Rf+ [E(Rm)-Rf] ×β

衍生品定价概述

衍生证券已经有很长的历史。期权和期货是所有衍生证券里在交易所交易最活跃的衍生证券。十七世纪晚期,在荷兰的Amsterdam股票交易所,就已经有了期权这种形式的证券交易。到了18世纪,看涨和看跌期权开始在伦敦有组织的进行交易,但这些交易在有些场合是被明令禁止的。1973年建立的Chicago Board Options Exchange (CBOE) 大大带动了期权的交易。1975年看跌期权开始在CBOE挂牌交易。19世纪出现有组织的期货市场。 期权定价理论是最成熟也是最重要的衍生证券定价理论。最早的期权定价理论可以追溯到1900年Bachelier (1900) 的博士论文,该论文对投机活动的定价进行了重要的理论研究,并利用法国交易所的数据进行了实证研究。Bachelier的工作标志着在连续时间下,数学科学中随机过程理论和经济学中衍生证券定价理论的双双诞生。Bachelier的主要贡献在于:发展了连续时间游走过程(受Louis Bachelier 工作的启发,Kiyoshi It?在二十世纪四、五十年代作出了随机分析方面奠基性的工作,这套理论随即成为金融学最本质的数学工具,也带来了衍生证券定价理论革命性的飞跃。)。65年后,Samuelson(1965)用标的资产的价格服从几何连续随机游走运动的假设代替Bachelier的标的资产服从连续随机游走运动的假设,重新考虑期权的定价问题。他利用标的资产的期望回报率对期权的终端支付进行折现,得到了接近于Black-Scholes-Merton期权定价公式的期权定价方法。但是,风险中性定价的概念直到Black-Scholes (1973)和Merton(1973)才得以突破。他们的工作使随机分析和经济学达到了最优美的结合,也给金融实际操作带来了最具有影响力的冲击。Scholes和Merton也由此获得1997年诺贝尔经济学奖。由于许多权益都可以被视为偶发性权益(例如债务,股权,保险等),所以在他们以后,期权定价的技巧被广泛的应用到许多金融领域和非金融领域,包括各种衍生证券定价、公司投资决策等。学术领域内的巨大进步带来了实际领域的飞速发展。期权定价的技巧对产生全球化的金融产品和金融市场起着最基本的作用。由于衍生资产在证券市场中具有分散风险、完备化市场等重要作用,近年来,从事金融产品的创造及定价的行业蓬勃发展,从而使得期权定价理论得到不断的改进和拓展。所以,无论从理论还是从实际需要出发,期权定价的思想都具有十分重要的意义。 从20世纪80年代开始,这一领域在思想上没有大的突破。许多研究停留在完善和计算方面。我们可以把这些研究大致分为:复杂衍生证券的定价(例如MBS,奇异期权等);数值计算(例如美式期权定价,亚式期权);拓展模型来解释Black-Scholes 模型不能解释的现象(例如Volatility smile);交易约束和交易成本对衍生证券套期保值和定价的影响。 套利机会和套期保值、有效市场假设、均衡 1.衍生证券定价的经典理论 衍生证券定价的基本思想是,在完备市场中,通过自融资的动态证券组合策略来合成衍生证券,从而衍生证券的价格等于证券组合最初的成本。 1.1 二项树模型 该模型由Sharpe(1978)提出, Cox, Ross and Rubinstein(1979)对它进行了拓展。尽管最初提出二项树模型的目的是为了避开随机分析来解释Black-Scholes-Merton模型,但现在该模型已成为对复杂衍生证券进行定价的标准数值计算程序。 假设标的资产的价格服从二项分布产生的过程,如图所示 S=标的资产现在的价格 q=标的资产上涨的概率 r f=无风险利率 u=标的资产上涨的幅度 d=标的资产下跌的幅度 f=衍生证券现在的价格

相关主题
文本预览
相关文档 最新文档