当前位置:文档之家› 概率论感觉测试(答案)

概率论感觉测试(答案)

概率论感觉测试(答案)
概率论感觉测试(答案)

概率论感觉测试(答案)

1. 假设考试周为1个礼拜(周一到周日),且考试时间为均匀分布,假使你有3门考试,则最后一门考试大约在

A. 周五

B. 周六

C. 周日

Answer: B. 一般の讲在[0,1]之间n个均匀分布の随机变量最大值期望为n/(n+1),也就是可以认为这n个随机变量分别大约在1/(n+1),2/(n+1),...,n(n+1)。这道题那么算一下大概就是在周六の上午。

2. 如果你去参与一项赌博,每次の回报为正态分布,假设你赌了100把发现赢了10000块(明显是很小概率事件,但假设确实发生了),那么你觉得你最有可能是因为

A. 有一把赢了很多

B. 一直在慢慢の赢

C. 两种情况都有可能

Answer: B. 也许答案对很多人有些出乎意料。在这种情况下,可能

一般觉得能够连续赢很多把很难,但是实际上赢一把大の更难。这个

问题是随机变量の长尾还是短尾の问题。长尾の意思就是取离均值很远の概率不是很小,而短尾正好相反。题目中の正态分布属于短尾,因为密度函数是按照平方の指数下降の,如果稍微改一下题目中の分布,则有可能是因为一次赢了很大而最后赢の。另外说一句,有一本书叫《长尾理论》,里面说明了现在の经济中有很多东西是长尾の,比如说一年销量排在100000名之后の歌曲仍然能占据市场の一部分。这是电子商务流行の很重要原因,因为不必支付储存这个长尾のcost。

3. 有一根密度不均匀の绳子,你想通过测量多点の密度来估计他の

重量(你知道截面积)。则如果给你n次测量密度の机会の话,如果n很大,(估算质量就通过这些点取平均然后乘以截面积)

A. 按规律等间隔选取测量点会测得准些

B. 随机选取测量点会测得准些

C. 两种方法差不多

Answer: A. 也许这个也略有些意外。对于一维の情况,方法A略好

于方法B。但是在高维の情况下方法A就一般情况下不如方法B了,原因是要想获得相同の效果,这个“有规律の点”需要选取太多。这是所谓のQuasi-Monte Carlo Sampling 和Monte Carlo Sampling之间の关系。

4. 台湾大选,假定马英九最终得到600000票,谢长廷得到400000票,如果一张一张の唱票,则过程中马英九一直领先谢长廷の概率为

A. 0.1

B. 0.2

C. 0.3

D. 0.4

Answer: B. 直觉上讲这个概率并不会太大,而且尤其是在前面几张の时候多少会出现一些反复。实际上这个结果跟一共多少人投票没什么关系,如果得票比例为a:b (a>b),则这个概率为(a-b)/(a+b)。

5. 你拿10块钱去赌场赌大小,你有两种玩法,一种是每次赌10块,一种每次赌1块,赢了翻倍,输了就没有了。你决定全部输光或者赢到100块就走,则

A. 两种方法输光の概率一样

B. 第一种输光の概率较大

C. 第二种输光の概率较大

Answer: A. 不管什么赌法都不会改变这个概率(如果每一次期望都是0,且最终不能超过100)。这是随机过程中一个比较简单但是

很有意义の结论,意思就是说you can't beat the system。因此对于像股市,赌博这种系统,如果你假设了随机性(期望为0),则其实怎么操作结果都是一样の,重要の在于发掘其中の非随机性。另外,到100の概率很容易计算,因为初始值是10,假设到100の概率为p,则有100p+0(1-p)=10,也即p=0.1

6. 100个球随机の放在100个箱子里,最后空箱子の数量大约是

A. 0-10

B. 10-20

C. 20-30

D. 30-40

Answer: D. 这个题可以用简单の概率论计算。结论是不管多少个球,c*n个球放到n个箱子里,最后空箱子の个数约为ne^-c,现在の情况是箱子数和球数一样多,那么就约为100*e^-1.

7、打10000副拱猪,总共持有9500-10500个Aの概率大约在

A. 80%-90%

B. 90%-95%

C. 95%-99%

D. 99%以上

Answer: D. 这个可以用中心极限定理计算。事实上这个题也不需要计算,只是要考察大家の一个感觉,实际上这个概率大于0.99...9,可以有9个9,尽管有时候我们打牌仍然觉得牌总是很差。。只是我们不注意我们抓好牌の时候罢了。

8. 有以下几个国家,每个国家有自己の习俗。问哪个国家长期以后男人の比例最大

A. 每个家庭不断の生孩子直到得到第一个男孩为止

B. 每个家庭不断の生孩子直到得到第一个女孩为止

C. 每个家庭不断の生孩子直到得到一男一女为止

D. 以上几个国家最后男女比例基本一样

Answer: D. 我们只需要考察一个家庭最后产生多少男女即可以。用概率の方法可以得到不管哪个方法都是1:1。事实上,我们只是把一个很长の男女の序列按照不同の方式来截断。当然这个序列本上包含多少男女是不变の。我每次都愿意以另外一个例子来说明,那就是如果我们在网上下棋,可以每天下到第一盘输为止或是第一盘赢为止或是有输有赢为止,显然不管怎样,因为你の实力是恒定の,你永远都是你本来应有の胜率。

9. 实验室测试灯泡の寿命。在灯泡坏の时候立刻换新灯泡。灯泡寿命约为1小时。考察10000小时时亮着の那个灯泡

A. 那个灯泡の寿命期望也约为1小时

B. 那个灯泡の寿命期望约为2个小时

C. 那个灯泡の期望寿命约为0.5个小时

D. 以上说法都不对

Answer: B. 这个题可能稍难。如果具体の算需要一点本科高年级の知识。不过我们仍然可以从直觉得到结果。事实上,当每个灯泡或是我们观测の事物の生命(Life time)是随机の时候。在时间足够久以后の一点,那个事物の寿命要长于这个事物本身平均の寿命。因为正是因为它寿命长导致我们容易观测到。简单の说,如果灯泡有两种,一种只能坚持1小时,一种能坚持100小时,那我们观测到の99%都可能是100小时那个。所以观测到の平均寿命较长。通常我们认为灯泡の寿命是指数分布の,在这个情况下,答案是2倍。对于一般の分布,甚至有可能平均寿命有限,而观测の那个寿命期望是无限の。这个问题在美国一次监狱调查中被发现,即被调查の囚犯の平均被判刑年数要远大于全美平均判刑の年数。

10. 如果一个群体里,每个个体以0.2の概率没有后代,0.6の概率

有1个后代,0.2の概率有两个后代,则

A. 这个群体最后会灭绝

B. 这个群体最后将稳定在一个分布,即种群大小在一定范围内震荡

C. 这个群体最后将爆炸,人口将到无穷

D. 不一定会发生什么

Answer: A. 这是个简单の人口模型。这个可能直觉比较困难,但是这个实际上和后面の一道题道理是一样の。注意到每一代の期望总是1。因此根据上次の答案,这个群体最后会灭绝。对于这种模型,当每一代の期望小于等于1时,最后の结果都是会灭绝。对于期望大于1の情况,我们也可以很简单の通过解方程得到灭绝の概率。

11. 给一个1-nの排列,与原来位置相同の数字の个数の期望大约是(如n=5 则51324 与原来位置只有3是相同の)

A. 1

B. log n

C. ln n

Answer: A. 这个题要去算有几个相同の概率是比较难の,不过实际上有一个很简单の方法。在第1个位置,这个排列の第1个数字为1

の概率为1/n,而期望是可加の,所以总共与原来位置相同の数字の个数の期望应该是1。也就是说不管是多少の数字,平均总是有一个数与顺序是相同の。这个题会非常经常出现在考试和习题中。

12. 如果有3个门,有一个背后有大奖。你选中一个,主持人知道哪个门后面有奖,并且总会打开另外两个中の某个没奖の。现在你有一次换得机会,你应该

A. 换

B. 不换

C. 换不换都一样

Answer: A. 这个是网上非常经典の一个问题了。不换正确の概率是1/3,换正确得概率是2/3。我比较喜欢这样去想,试想一下如果有100个门,你先选定1个,然后主持人打开98个空の,然后给你机会换不换。我想如果这样,你不难做出正确の选择。

13. 以下那件事情发生の期望时间最短

A. 在第0秒,一个物体从原点出发,每一秒以概率1/2向左走,1/2向右走,第一次回到原点の时间

B. 一只猴子,每秒种随便按键盘上の一个键,第一次打出"Beijing

Welcomes You"の时间

C. 在第0秒,一个物体从原点出发,每一秒以概率1/2向左走,1/2向右走,第一次到达1の时间

Answer: B. A和C两个事件发生の时间の期望都是+inf. 只有B是有限の。A和C说明了等概率の赌博不可能赢钱(如果C是有限の则参加赌大小の游戏总能赢钱了)。而B说明の是另外一条概率上の定理,“What always stands a reasonable chance of happening will almost surely happen, sooner rather than later",也就是说从任何时刻开始,总有一个固定の概率发生の事情(比如一个猴子打出beijing welcomes you, 这个概率可能是1/26^20左右),不过这个概率是多少,这件事情早晚能发生。

14, 美国の25分硬币共有50种,上面有50个州の图案,如果我们每次得到の硬币是随机の,则大约收集多少可以收集全

A. 200

B. 300

C. 400

D. 500

Answer: A. 这是所谓の收集硬币问题。具体解法不是很容易。不过结论是要收集齐n种硬币,需要大约nlogn个。大约思路是收集第k 个时候需要大约n/(n-k)次。平时我们收集一些食品里の卡片,也都遵循这个规律,不过多数时候每种卡片の数量都是很不同の。还记得小时候可乐里收集到苹果加蜡烛可以得到到头等奖,不过最后也没收集到任何一个苹果。

15. 假设有1000次100m短跑大赛,每次比赛の冠军成绩都在9.7-10之间均匀分布,问期望有多少次比赛比赛能够破纪录

A. 7

B. 10

C. 15

D. 32

Answer: A. 这是所谓の破纪录问题。假设均匀分布,则最后n次比赛之后这n个成绩形成一个排列。第k次创纪录の概率是这个排列中第k个在前k-1个之前の概率,也即1/k,所以n次比赛大约有

1+1/2+1/3+...1/n次破纪录,也即约为logn次。

16. 在打桥牌の时候,如果你和对家共持有某门花色の9张牌,则剩余の4张牌怎样分布の概率最大

A. 2-2

B. 3-1

C. 4-0

Answer: B. 可以简单计算得到这个结果。3-1の概率应该是50%。2-2の概率是37.5%。4-0の概率是12.5%。但是如果有奇数张,则最平均の就是最可能の。

17. 如果一个物体在3维随机游动,也即每一刻他可以向左,右,上,下,前,后等概率の走,长久来看,则会发生什么情况

A. 此物体无穷多次回到原点

B. 此物体无穷多次回到任何一条坐标轴上,但不会无穷多次回到原点

C. 此物体不会无穷多次回到任何一条坐标轴上

Answer: B. 1维和2维の随机游动是常返の,也就是说会无穷多次回到起点(尽管回来の平均时间不是有限の),而3维以上の随机游动是非常返の。因此对于2维の某个坐标,此物体会无穷多次经过,但是不会无穷多次经过原点。

18. 扔10000次硬币,其中最长一次连着正面の次数大约会是多少

A. 100

B. 13

C. 9

D. 4

Answer: B.这也是一个特殊の概率问题,叫做Head Runs.答案应该是log_2^n.大约为13.

19. 有一支股票,初始价为1,每天の价值变化率独立同分布,且期望为0,不恒为0。则

A. 股票在任何时刻期望价值为1

B. 股票以概率1变成0

C. A和B都对

D. A和B都不对

Answer: C.这个可以参见我转载の文章The Flaw of Average和我写の文章Life is a Martingale。也就是说对于很多投机の东西,平均值总是不变の,但是多数人都会倾家荡产。其实仔细想想很有道理,比

如说你の股票第一天涨10%。第二天跌10%或是第一天跌10%,第二天涨10%,最后の结果都是跌了1%。所以要保持增长所需要の是远大于0の平均变化率,这个才是一般人难以做到の。

20. 当我们考虑一种可能重复发生の事件时,哪种方式更科学

A. 按照第一次发生这个事件の时间作为一个起点,考虑从其本身出发之后の性质

B. 按照最后一次发生这个事件の时间作为一个起点,考虑从其本身出发之后の性质

C. 以上都可以

D. 以上都不可以

Answer: A. 这个问题深一些の背景在于Kolmogorov向前向后微分方程。很多人知道向后微分方程更通用,但是并不知道原因。事实上,向后微分方程是基于Aの方法对事件进行分解得到の,而向前微分方程是基于Bの方法对事件进行分解の。但是有很多重复发生の事情会越发生越频繁,以致没有最后一次发生の事件。但是我们总能找到第一次发生の时间。所以A更科学。

概率论测试项目(总)

概率论测试项目 姓名: 学号: 班级:

目录 一、概率论与随机过程相关外文资料 二、随机变量与随机过程的概念 三、绘制正态分布的密度函数的图形 四、用统计软件解决随机过程计算问题 五、中心极限定理的仿真实验 六、《概率论与随机过程》学习总结

一、概率论与随机过程相关外文资料 1、摘要翻译 采用业绩衡量的做法日益广泛,是寻求可持续竞争优势的公司取得成功的关键因素。因此,有必要制定一种系统的方法,使公司更加注重业绩衡量。本文提出了一种基于OPI概念的企业经营绩效指标(OPI)。顾客到达从泊松过程和指数分布..为了支持该方法的有效使用,给出了OPI的统计性质,并构造了一步的操作过程。该方法不仅可以评价和判断当前的性能是否达到六西格玛的水平,而且可以提高参数估计的精度。为了验证该方法的实用性和可行性,本文将该方法应用于一个实际的运行绩效评价和改进案例研究中。结果表明,该方法为实现六西格玛提供了一种更为有效的方法,可以在实际操作管理和持续改进中实现。 2、论文中有关的概率论与随机过程问题 该论文介绍了OPI(经营绩效指数)的发展,以及OPI的定义和统计特性。还介绍了OPI与六西格玛的关系,以及OPI的估计和置信区间。文中给出了一种基于顾客从泊松过程到商店的概念的经营绩效指数(OPI)的操作步骤。在章节中给出了一个真实的案例研究。4说明了该方法的应用。5结论和今后研究的途径在章节中作了总结。 该论文在介绍OPI的发展时对顾客到商店过程进行了分析,发现到达一家商店的顾客人数N(t)符合泊松分布。顾客到达商店的间隔时间的平均值遵循指数分布。

二、随机变量与随机过程的概念 1、随机变量 概念: 在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。例如,在掷骰子时,我们常常关心的是两颗骰子的点和数,而并不真正关心其实际结果,就是说,我们关心的也许是其点和数为7,而并不关心其实际结果是否是(1,6)或(2,5)或(3,4)或(4,3)或(5,2)或(6,1)。我们关注的这些量,或者更形式的说,这些定义在样本空间上的实值函数,称为随机变量。因为随机变量的值是由试验结果决定的,所以我们可以给随机变量的可能值指定概率。 例:某足球队外出比赛,赛-场看做次随机试验,结果有3个:胜、负、平,分别用心表示,则样本空间为S= (er,e,ey).为了评定最后的比赛名次,得要将试验结果数量化,通常按胜一场记2分,负一场记0分,平一场记 1分的规则记分若令X表示该足球队赛一场的得分数,那么容易看到它具有下列特征. (1) 它是取值0,1,2的一个变量,而且它的取值依赖于试验结果e,这种依赖关系可以用一个样本点e的函数来表示,即 2,e=e1 X=X(e)={0,e=e2 1,e=e3 (2)若由过去的比赛记录统计,该足球队外出比赛获胜的概率为1/2,打平或输球的机E率均为1/4.于是X的取值有概率规律: P{X=2}=1/2,P{X=0}=1/4, P(X=1)}=1/4.同样,对任意给定的实数x, {X≤x}= {e|X(e)≤x}是一个事件,因而可求出其概率 例如: 当x=-0.1时,有 P{X≤-0.1}=P{e|X(e)≤-0.1}=P(φ)=0; 当x=0.3时,有 P{X≤0.3}=P{e|X(e)≤0.3}= P{e2}=1/4;

统计学统计学概率与概率分布练习题

第5章 概率与概率分布 练习题 5.1 写出下列随机事件的基本空间: (1) 抛三枚硬币。 (2) 把两个不同颜色的球分别放入两个格子。 (3) 把两个相同颜色的球分别放入两个格子。 (4) 灯泡的寿命(单位:h )。 (5) 某产品的不合格率(%)。 5.2 假定某布袋中装有红、黄、蓝、绿、黑等5个不同颜色的玻璃球,一次从中取出3个球, 请写出这个随机试验的基本空间。 5.3 试定义下列事件的互补事件: (1) A ={先后投掷两枚硬币,都为反面}。 (2) A ={连续射击两次,都没有命中目标}。 (3) A ={抽查三个产品,至少有一个次品}。 5.4 向两个相邻的军火库发射一枚导弹,如果命中第一个和第二个军火库的概率分别是、, 而且只要命中其中任何一个军火库都会引起另一个军火库的爆炸。试求炸毁这两个军火库的概率有多大。 5.5 已知某产品的合格率是98%,现有一个检查系统,它能以的概率正确的判断出合格品, 而对不合格品进行检查时,有的可能性判断错误(错判为合格品),该检查系统产生错判的概率是多少 5.6 有一男女比例为51:49的人群,已知男人中5%是色盲,女人中%是色盲,现随机抽中 了一个色盲者,求这个人恰好是男性的概率。 根据这些数值,分别计算: (1) 有2到5个(包括2个与5个在内)空调器出现重要缺陷的可能性。 (2) 只有不到2个空调器出现重要缺陷的可能性。 (3) 有超过5个空调器出现重要缺陷的可能性。 5.8 设X 是参数为4=n 和5.0=p 的二项随机变量。求以下概率: (1))2(

5.9 一条食品生产线每8小时一班中出现故障的次数服从平均值为的泊松分布。求: (1) 晚班期间恰好发生两次事故的概率。 (2) 下午班期间发生少于两次事故的概率。 (3) 连续三班无故障的概率。 5.10 假定X 服从12=N ,7=n ,5=M 的超几何分布。求: (1))3(=X P 。(2))2(≤X P 。(3))3(>X P 。 5.11 求标准正态分布的概率: (1))2.10(≤≤Z P 。 (2))49.10(≤≤Z P 。 (3))048.0(≤≤-Z P 。 (4))037.1(≤≤-Z P 。 (5))33.1(>Z P 。 5.12 由30辆汽车构成的一个随机样本,测得每百公里的耗油量数据(单位:L )如下: 试判断该种汽车的耗油量是否近似服从正态分布 5.13 设X 是一个参数为n 和p 的二项随机变量,对于下面的四组取值,说明正态分布是否 为二项分布的良好近似 (1)30.0,23==p n 。(2)01.0,3==p n 。 (3)97.0,100==p n 。(4)45.0,15==p n 。

概率论第一章小测试

第一章小测试 一、选择题 1.设A 、B 、C 为三个事件,则A 、B 、C 不全发生可表示为( ) A. ABC B. ABC C. C B A D. C B A 2.设事件A 和B 互为对立事件,则下列各式不成立的是( ) A. ()0P AB = B. ()0P AB = C. ()1P A B = D.()1P B A = 3.将一枚均匀硬币抛掷3次,则至少有2次出现币值面朝上的概率是( ) A. 18 B. 38 C. 12 D. 58 4.盒内有6个产品,其中正品4个次品2个,不放回地一个一个往外取产品,则第二次才取到次品的概率与第二次取产品时取到次品的概率分别为( ) A. 41153, B. 441515, C. 1133 , D. 14315, 5.设两个事件A 和B 相互独立,且()0.5P A =,()0.4P B =, 则()P A B 的值是( ) A. 0.9 B. 0.8 C. 0.7 D. 0.6 6.对于任意事件A,B,若A B ?,则下列各等式不成立的是( ) A. B B A = B. φ=B -A C. B B A = D. φ=B A 7.设A,B 为任意两个概率不为0的互斥事件,则下列结论中一定正确的是( ) A. ()()P A B P A = B. ()()()P A B P A P B -=- C. ()()()P AB P A P B = D.()()P A B P A -= 8.将一枚均匀硬币抛掷3次,则恰有一次出现币值面朝上的概率是( ) A. 38 B. 18 C. 58 D. 12 9. 已知在10只电子元件中,有2只是次品,从其中取两次,每次随机地取一只,作不放回抽取,则第二次取出的是次品的概率是( ) A. 145 B. 15 C. 1645 D. 845 10.设两个事件A 和B 相互独立,且()0.6P A =,()0.3P B =, 则()P A B 的值是( ) A. 0.3 B. 0.7 C. 0.72 D. 0.9 11.事件A 、B 、C 中恰有一个事件发生的事件是( ) A .ABC B . C AB C .C B A D .C B A C B A C B A ++ 12.设A 和B 是两个随机事件,则下列关系式中成立的是( )

中职数学:第十章概率与统计初步测试题(含答案)

第十章概率与统计初步测试 本试卷共十题,每题10分,满分100分。 1. 从10名理事中选出理事长,副理事长、秘书长各一名,共有__________ 种可能 的人选. 答案:720 试题解析:由分步计数原理有10 9 8=720种. 2. 已知A、B为互相独立事件,且P A B 0.36 , P A 0.9,则P B ________________ . 答案:0.4 试题解析:由P A B P(A) P(B)有P B 0.36/0.9=0.4. 3. 已知A、B为对立事件,且P A =0.37,则P B ___________ . 答案:0.63 4.北京今年5月1日的最低气温为19°C为__________ 事件;没有水分,种子仍 然发芽是_________ 事件. 答案:随机,不可能 5. 一个均匀材料制作的正方形骰子,六个面上分别标以数字1,2,3,4,5,6,连续 抛掷两次,求第一次点数小于第二次点数的概率. 解:设“第一次点数小于第二次点数的概率”为事件A,则P(A)=^=—. 36 12 试题解析:连续抛掷两次骰子,可能结果如下表: 事件“第一次点数小于第二次点数”包含了15个基本事件,因此第一次点 5 数小于第二次点数的概率=—? 12 6. 一个容量为n的样本,分成若干组,已知某组的频数和频率分别为50和0.25, 贝U n= . 答案:n=200

7 .如果x , y 表示0, 1, 2, ?…,10中任意两个不等的数,P (x , y )在第一象限的 个数是( )? A 、 72 B 、 90 C 、 110 D 、 121 答案:B 9 .两个盒子内各有3个同样的小球,每个盒子中的小球上分别标有 1, 2, 3 个数字。从两个盒子中分别任意取出一个球,则取出的两个球上所标数字的和为 3的概率是( ) C 、 答案:B 10.下面属于分层抽样的特点的是( ). A 、 从总体中逐个抽样 B 、 将总体分成几层,分层进行抽取 C 、 将总体分成几个部分,按事先确定的规则在各部分抽取 D 、 将总体随意分成几个部分,然后再进行随机选取 答案:B 8 .甲、乙、丙三人射击的命中率都是 中靶的概率是( ). A 、 0.5 B 、0.25 答案:D 0.5,它们各自打靶一次,那么他们都没有 C 、 0.3 D 、 0.125

概率与数理统计复习题及答案

Word 资料. 复习题一 一、选择题 1.设随机变量X 的概率密度21 ()01x x f x x θ-?>=?≤?,则θ=( )。 A .1 B. 12 C. -1 D. 3 2 2.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4点的概率为( )。 A . 12 B. 23 C. 16 D. 1 3 3.设)(~),(~22221221n n χχχχ,2 221,χχ独立,则~2221χχ+( )。 A .)(~22221n χχχ+ B. ~2 221χχ+)1(2 -n χ C. 2212~()t n χχ+ D. ~2221χχ+)(212 n n +χ 4.若随机变量12Y X X =+,且12,X X 相互独立。~(0,1)i X N (1,2i =),则( )。 A .~(0,1)Y N B. ~(0,2)Y N C. Y 不服从正态分布 D. ~(1,1)Y N 5.设)4,1(~N X ,则{0 1.6}P X <<=( )。 A .0.3094 B. 0.1457 C. 0.3541 D. 0.2543 二、填空题 1.设有5个元件,其中有2件次品,今从中任取出1件为次品的概率为 2.设,A B 为互不相容的随机事件,()0.1,()0.7,P A P B ==则()P A B =U 3.设()D X =5, ()D Y =8,,X Y 相互独立。则()D X Y += 4.设随机变量X 的概率密度?? ?≤≤=其它 , 010, 1)(x x f 则{}0.2P X >= 三、计算题 1.设某种灯泡的寿命是随机变量X ,其概率密度函数为 5,0 ()0, 0x Be x f x x -?>=?≤? (1)确定常数B (2)求{0.2}P X > (3)求分布函数()F x 。

《概率统计》期末考试题(有答案)

《概率论》期末 A 卷考试题(免费) 一 填空题(每小题 2分,共20 分) 1.甲、乙两人同时向一目标射击,已知甲命中的概率为0.7,乙命中的概率为0.8,则目标被击中的概率为( ). 2.设()0.3,()0.6P A P A B == ,则()P A B =( ). 3.设随机变量X 的分布函数为??? ? ? ????> ≤≤<=2,120,sin 0,0)(ππx x x a x x F ,则=a ( ), ()6 P X π > =( ). 4.设随机变量X 服从参数为2=λ的泊松分布,则=-)1(2 X E ( ). 5.若随机变量X 的概率密度为2 36 ()x X p x -= ,则(2)D X -=( ) 6.设Y X 与相互独立同服从区间 (1,6)上的均匀分布,=≥)3),(max(Y X P ( ). 7.设二维随机变量(X,Y )的联合分布律为 X Y 1 2 ?i p 0 a 12 1 6 1 1 3 1 b 则 ( ), ( ).a b == 8.设二维随机变量(X,Y )的联合密度函数为? ? ?>>=--其它 00,0),(2y x ae y x f y x ,则 =a ( ) 9.若随机变量X 与Y 满足关系23X Y =-,则X 与Y 的相关系数X Y ρ=( ). 10.设二维随机变量)0,4,3,2,1(~),(N Y X ,则=-)52(Y X D ( ). 二.选择题(每小题 2分,共10 分) 1.设当事件C B 和同时发生时事件A 也发生,则有( ).

) ()()(1 )()()()(1)()()()() ()()(C B P A P d C P B P A P c C P B P A P b BC P A P a =-+≤-+≥= 2.假设事件B A 和满足1)|(=B A P ,则( ). (a ) B 是必然事件 (b )0)(=-A B P (c) B A ? (d ) 0)|(=B A P 3.下列函数不是随机变量密度函数的是( ). (a )sin 0()20 x x p x π? <=( ). 1 11() 1 () () ()4 28 a b c d 三、解答题(1-6小题每题9分,7-8小题每题8分,共70分) 1.某工厂有甲、乙、丙三车间,它们生产同一种产品,其产量之比为5:3:2, 已知三 车间的正品率分别为0.95, 0.96, 0.98. 现从全厂三个车间生产的产品中任取一件,求取到一件次品的概率。 2.设10件产品中有3件次品,从中不放回逐一取件,取到合格品为止.(1)求所需取件次数X 的概率分布 ;(2)求X 的分布函数()F x . 3.设随机变量X 的密度函数为(1) 01()0 A x x f x -<. 4.设随机变量X 的密度函数为sin 0()20 x x f x π? <

概率论自测试题

课程号: 《概率论与数理统计》自测试卷 考试形式:闭卷考试 考试时间:120分钟 专业 班号 学号 姓名 得分 注意:所有答案请写在答题纸上,写清题号,否则无效。 一、填空题(本题20分,每题5分,共4题) 1、已知P(A)=0.4,P(B)=0.5, 若A 与B 互不相容,则P(AUB)= __0.9 ; 2、某国奥队前锋在4次射门中至少命中1次的概率为 15 16 ,则此前锋在一次射门中进球的概率为 12; 3、设随机变量X 服从参数为λ的Poisson 分布, 已知E(X)+ D(X) =5,则参数λ等于 _2.5 ; 4、假设来自正态总体(,100)N μ 的容量为100的样本,样本均值为5x =,则总体均值μ的置信度为0.95 的双侧置信区间为(已知分位点0.025Z =1.96) (3.04, 6.96) . 【解答】 1、 已知P(A)=0.4,,P(B)=0.5, 若A 与B 互不相容,则由有限可加性有P(AUB)=0.4+0.5=0.9 2、 某国奥队前锋在4次射门中至少命中1次的概率为 1516,则1516 =1-4 (1)p -,从而此射手在一次射击中命中的概率为p= 1 2 。 3、 由Poisson 分布数学期望和方差的性质有E(X)+ D(X) =5 即λλλ+==25,从而,λ=2.5. 4、来自正态总体(,100)N μ 的容量为100的样本,样本均值为5x =,则总体均值μ的置信度为0.95 的 双侧置信区间为(已知分位点0.025Z =1.96 )在方差已知的条件下是??± ?X ,代入数据得置信区间(5-1.96, 5+1.96) =(3.04, 6.96) 。 二、选择题(本题20分,每题5分,共4题) 1、一酒鬼带着n 把钥匙回家,只有一把是门钥匙。他随手摸1把,总共摸了n 次,(提示:酒鬼的特征是失忆即无记忆性,每次可能重复摸到任何一把钥匙)。设随机变量X 为摸到门钥匙的总次数,则X 服从的分布为____C______

概率与统计初步

1.满足每个个体被抽到的机会是均等的抽样称为随机抽样.共有三种经常采用的随机抽样方法: 简单随机抽样; 系统抽样(适用于大规模的抽样调查,由于抽样间隔相等,又被称为等距抽样); 分层抽样(总体由有明显差别的几部分组成). 2.一般地,设样本的元素为1x ,2x ,…,n x , 样本的平均数12n x x x x n ++= , 样本方差222 2 12()()()n x x x x x x s n -+-+ +-= , 方差正的平方根称为标准差s . <教师备案> 本讲分成两小节,第一节是统计,第二节是概率初步,各三道例题.例1涉及到随机抽样、频率分布直方图;例2是茎叶图的题,以及利用茎叶图求数据或比较数据的均值与方差,这是统计这一块的热点.例3是样本数据的数字特征.本节没有涉及到线性回归的内容,这部分内容考查非常少,可以结合知识点提及一下即可. 知识网络 知识结构图 14.1统计 第14讲 概率 与统计初步

尖子班学案1 【铺1】 ⑴(东城二模文11)将容量为n 的样本中的数据分成6组.若第一组至第六组数据的频 率之比为234641∶∶∶∶∶,且前三组数据的频数之和等于27,则n 等于_____ ⑵(西城一模文10)某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[)13,14,[)14,15,[)15,16,[)16,17,[]17,18,得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1:3:7:6:3,那么成绩在[]16,18的学生人数是_____. 【解析】 ⑴ 60 ⑵ 54 考点:随机抽样、频率分布直方图 【例1】 ⑴(四川文3) 交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为( ) A .101 B .808 C .1212 D .2012 ⑵ 某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是 .若用分层抽样方法,则40岁以下年龄段应抽取 人. ⑶ 某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率 分布直方图,其中产品净重的范围是[96106],,样本数据分组为[)9698,,[)98100,,[)100102,,[)102104, ,[104106],.已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是( ) A .90 B .75 C .60 D .45 经典精讲

概率与统计单元测试题

《概率与统计》单元测试题 时量:120分钟,总分:100分 一、选择题(本大题共12个小题,每小题 3分,满分36分。) 1?给出下列四对事件:①某人射击一次, “射中7环”与“射中8环”;②甲、乙两人各射击一次, “甲射中7环”与“乙射中8环”;③甲、乙两人各射击一次, 有射中目标”;④甲乙两人各射击一次,“至少有一人射中目标” 目标”。其中属于互斥事件的有 A.1对 B.2对 C.3对 2. 把三枚硬币一起抛出,出现两枚正面向上和一枚反面向上的概率是 A - B.丄 C.-3 D.丄 . 8 4 8 2 3. 如图所示的电路,有 A 、 B 、 C 三个开关,每个开关开与关的概率都是 0.5, 那么用电器能正常 工作的概率是 “两人均射中目标”与“两人均没 与"甲射中目标, 但乙没有射中 D.4对 B.4 C.8 D.2 8 2 4. 甲乙两人下棋,甲获胜的概率是 A.82 % B.41 % 5. 某人罚篮的命中率为 0.6,连续进行 A.0.432 B.0.288 6. (文)一个试验仅有四个互斥的结果: 且是相互独立的, 8.(文)某班有50名同学,现在采用逐一抽取的方法从中抽取 5名同学参加夏令营,学生甲最后 个去抽,则他被选中的概率为 A.0.1 B.0.02 C.0 或 1 (理)设~B(n,p),已知E = 3, D(2 +1) = 9,贝U n 与p 的值分别为 A.12 与 4 B.12 与三 C.24 与-1 4 4 4 D.以上都不对 D.24与弓 9.有4所学校共有20000名学生,且这4所学校的学生人数之比为 3 : 2.8 : 2.2 : 2,现用分层抽 样的方法抽取一个容量为 200的样本,则这4所学校分别应抽取的人数为: A.40、44、56、60 B.60、56、44、40 C.6000、5600、4400、400 D.50、50、50、50 10.标准正态总体在区间(一1.98,1.98)内取值的概率为 A.0.9762 B.0.9706 C.0.9412 11. 平均数为0的正态总 体的概率密度函数为 f (x ),则f (x ) 一 定是 A.奇函数 C.既是奇函数,又是偶函数 12. 一个电路如图所示, 关出故障的概率都是 B.偶函数 D.既不是奇函数,也不是偶函数 A 、 B 、 C 、 D 、 E 、 F 为六个开关,每个开 0.5,且是相互独立的,则线路正常的概率是 C.」 8 D.0.9524 E 18%,乙获胜的概率是 C.59 % 3次罚篮,则恰好有 C.0.144 23 %,则甲不输的概率是 D.77 % 2次命中的概率为 D.0.096 A 、 B 、 C 、 D ,检查下面各组概率允许的一组是 A. P (A) = 0.31 , P(B) = 0.27, P(C) = 0.28, P(D) = 0.35; B. P (A) = 0.32, P(B) = 0.27, P(C) = - 0.06, P(D) = 0.47; C. P (A) = 1 , P(B) = -1,P(C) = 1 , P(D)= 2 4 8 D. P (A) = , P(B) = 1 , P(C) = 1 , P(D) 18 6 3 (理)下面表示某个随机变量的分布列的是 丄. 16 ; 2。 9 7.大、中、小三个盒子中分别装有同种产品 个容量为25的样本,较为恰当的抽样方法是 A.分层抽样 B.简单随机抽样 120个、60个、20个,现在需从这三个盒子中抽取一 C.系统抽样 D.以上三种均可 A 」 B.戲 .64 64 二、填空题(本大题共 13.(文)若以连续掷两次骰子分别得到的点数 (m,n )作为点P 的坐标,则P 落在圆x 2 + y 2= 16内的概 率是 4个小题,每小题 3分,满分12分。) (理)随机变量是一个用来表示 ____________ 的变量;若对随机变量可能取的一切值,我们都 可以按一定次序一一列出,则这样的随机变量叫做 ______________ ;而连续型随机变量的取值 可以是 ___________________ 。 14.某中学要向一所大学保送一批学生, 条件是在数理化三科竞赛中均获得一等奖, 已知该校学生 获数学一等奖的概率是 0.02,获物理一等奖的概率是 0.03,获化学一等奖的概率是 0.04,则该中 学某学生能够保送的概率为 ______ 。 15. 从含有503个体的总体中,按系统抽样,抽取容量为 50的样本,则间隔为 _______ 。 16. 某县农民年均 收入服从 J = 500元,二=20元的正态分布,则此县农民年均收入在 500~520元 之间的人数的百分比为 ______ 。 三、解答题(本大题共6个小题,满分52分。) 17. (本题满分8分) 有一摆地摊的非法赌主把 8个白球和8个黑球放入一个袋中,并规定,凡愿摸彩者,每人次交费 1元就可以从袋中摸出 5个球,中奖情况为:摸出 5个白的中20元,摸出4个白的中2元;摸出 3个白的中价值5角的纪念品一件,其它无任何奖励。试计算: (1)中20元彩金的概率(精确到0.0001); ⑵中2元彩金的概率(精确到0.0001)。

概率论与数理统计第一章测试题

第一章 随机事件和概率 一、选择题 1.设A, B, C 为任意三个事件,则与A 一定互不相容的事件为 (A )C B A ?? (B )C A B A ? (C ) ABC (D ))(C B A ? 2.对于任意二事件A 和B ,与B B A =?不等价的是 (A )B A ? (B )A ?B (C )φ=B A (D )φ=B A 3.设A 、B 是任意两个事件,A B ?,()0P B >,则下列不等式中成立的是( ) .A ()()P A P A B < .B ()()P A P A B ≤ .C ()()P A P A B > .D ()()P A P A B ≥ 4.设()01P A <<,()01P B <<,()()1P A B P A B +=,则( ) .A 事件A 与B 互不相容 .B 事件A 与B 相互独立 .C 事件A 与B 相互对立 .D 事件A 与B 互不独立 5.设随机事件A 与B 互不相容,且()(),P A p P B q ==,则A 与B 中恰有一个发生的概率等于( ) .A p q + .B p q pq +- .C ()()11p q -- .D ()()11p q q p -+- 6.对于任意两事件A 与B ,()P A B -=( ) .A ()()P A P B - .B ()()()P A P B P AB -+ .C ()()P A P AB - .D ()()() P A P A P AB +- 7.若A 、B 互斥,且()()0,0P A P B >>,则下列式子成立的是( ) .A ()()P A B P A = .B ()0P B A > .C ()()()P AB P A P B = .D ()0P B A = 8.设()0.6,()0.8,()0.8P A P B P B A ===,则下列结论中正确的是( ) .A 事件A 、B 互不相容 .B 事件A 、B 互逆

基础模块概率与统计初步数学单元测试卷

第十章单元测试试卷 一、选择题(10*3分=30分) 1. 从5名男生和5名女生中任选1人参加校合唱队,那么不同的选法有( ). A .1种 B . 5种 C .10种 D .25种 2. 下列事件中,概率为1的是( ). A .随机事件 B .必然事件 C .不可能事件 D .对立事件 3.下列现象不是随机现象的是( ). A .掷一枚硬币着地时反面朝上 B .明天下雨 ~ C .三角形的内角和为180° D .买一张彩票中奖 4. 先后抛掷两枚硬币,出现“一正一反”的概率是( ). A .41 B . 31 C .21 D .4 3 5.书架上有语文、英语、数学、物理、化学共5本不同的书,现从中任抽一本,则没 有抽到物理书的概率是( ). A .51 B . 52 C .53 D .5 4 6. 某职业学校高一有15个班,为了了解学生的课外兴趣爱好,对每班的5号进行问卷 调查.这里运用的抽样方法是( ). A .分层抽样 B . 抽签法 C .随机数表法 D .系统抽样 7. 从全班45名学生中抽取5名学生进行体能测试,下列说法正确的是( ). # A .总体是45 B .个体是每个学生 C .样本是5名学生 D .样本 容量是5 8. 一个样本的容量为n ,分组后某一组的频数和频率分分别是40,,则n 是( ). A .10 B . 40 C .100 D .160 9. 已知一组数据x 1,x 2,…,x n 的平均值是2,则x 1+1,x 2+1,…,x n +1的平均值是( ). A .2 B .3 C .4 D .5 10.在对100个数据进行整理后的频数分布表中,各组的频率之和和频数之和分别是 ( ). A .100,1 B . 100,100 C .1,100 D .1,1 二、填空题(10*2分=20分) ~

《统计与概率》练习题

《统计与概率》练习题 说明:本卷练习时间120分钟,总分150分 班级 座号 姓名 成绩 一、填空题(每小题3分,共36分) 1. 在2.0012.0022..0032.0042.0052. 006的数字串中,2的频率是__________. 2. 为了解某校初三年级300名学生的身高状况,从中抽查了50名学生, 所获得的样本容量是______________. 3. 若1000张奖券中有200张可以中奖,则从中任抽1张能中奖的概率为_________. 4. 一射击运动员在一次射击练习中打出的成绩(单位:环)是: 7,8,9,8,6,8,10,7,这组数据的众数是_____ ____. 5. 一口袋中放有3只红球和4只黄球, . 随机从口袋中任取一只球,取到黄球的概率是6. 如果一组数据3,x,1,7的平均数是4,则x=__________. 7. 某班的联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果, 标于一个转盘的相应区域上(转盘被均匀等分为四个区域,如图). 转盘可以自由转动。参与者转动转盘,当转盘停止时,指针落在哪一区域, 就获得哪种奖品,则获得钢笔的概率为____________. 8. 下表给出了某市2005年5月28日至6月3日的最高气温, 则这些最高气温的极差是___________℃ 9. 掷一枚各面分别标有1,2,3,4,5,6的普通的正方体骰子, (第7题)

掷出的数字为偶数的概率是_______________. 10. 某学生在一次考试中,语文、数学、英语三门学科的平均成绩是80分,物理、 化学两门学科的平均成绩为85分,则该学生这五门学科的平均成绩是___________分. 11. 对甲、乙两台机床生产的零件进行抽样测量,其平均数、方差计算结果如下: 机床甲:x 甲=10,2S 甲 =0.02;机床乙:x 乙 =10,2S 乙 =0.06, 由此可知:________(填甲或乙)机床性能好. 12. 掷一枚均匀的硬币两次,两次正面都朝上的概率是__________. 二、选择题(每小题4分,共24分) 13. 六个学生进行投篮比赛,投进的个数分别为2、3、10、5、13、3, 这六个数的中位数为() (A)3 (B)4 (C)5 (D)6 14. 下列事件中,为必然事件是(). (A)打开电视机,正在播广告. (B)从一个只装有白球的缸里摸出一个球,摸出的球是白球. (C)从一定高度落下的图钉,落地后钉尖朝上. (D)今年5月1日,泉州市的天气一定是晴天. 15. 下列调查方式合适的是() (A)了解炮弹的杀伤力,采用普查的方式. (B)了解全国中学生的睡眠状况,采用普查的方式. (C)了解人们保护水资源的意识,采用抽样调查的方式. (D)对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式.

“概率论与数理统计”测试题参考答案

“概率论与数理统计”测试题参考答案 1.设A , B 是两个随机事件,已知P (A ) = 0.6,P (B ) = 0.8,P (A B )=0.2,求:(1))(B A P ;(2))(B A P . 解:(1) )(A P =)(1A P -= 0.4 )(B A P = )(A P )(A B P =0.4 ?0.2 = 0.08 (2) )(B A P =1-)(B A P = 1 - ) ()(B P B A P =1-8 .008.0= 0.9 2.罐中有12颗围棋子,其中8颗白子,4颗黑子.若从中任取3颗,求:(1)取到3颗棋子中至少有一颗黑子的概率;(2)取到3颗棋子颜色相同的概率. 解:设1A =“取到3颗棋子中至少有一颗黑子”,2A =“取到的都是白子”,3A =“取到的都是黑子”,B =“取到3颗棋子颜色相同”,则 (1))(1)(1)(211A P A P A P -=-= 745.0255.0113 12 3 8=-=- =C C . (2))()()()(3232A P A P A A P B P +=+= 273.0018.0255.0255.0312 3 4=+=+ C C . 3.两台车床加工同样的零件,第一台废品率是1%,第二台废品率是2%,加工出来的零件放在一起。已知第一台加工的零件是第二台加工的零件的3倍,求任意取出的零件是合格品的概率. 解:设A i :“是第i 台车床加工的零件”(,)i =12,B :“零件是合格品”.由全概公式有 P B P A P B A P A P B A ()()()()()=+1122 显然4 3)(1= A P ,4 1)(2= A P ,99.0)(1=A B P ,P B A ().2098=,故 9875.098.04 199.04 3)(=?+ ?= B P 4.一袋中有9个球,其中6个黑球3个白球.今从中依次无放回地抽取两个,求第2次抽取出的是白球的概率. 解:设如下事件:

概率与统计初步测试题3份

测试一 一、填空题:(每空4分,共32分) 1.设,表示两个随机事件,,分别表示它们对立事件,用,和,表示, 恰有一个发生的式子为_________. 2.从一批乒乓球中任取4只检验,设表示“取出的4只至少有1只是次品”,则对立事件 表示________. 3.甲、乙两人同时各掷一枚硬币观察两枚硬币哪面向上。这个随机试验的样本空间为 ________. 4.掷一颗骰子,出现4点或2点的概率等于________. 5.甲、乙两个气象合同时作天气预报,如果它们预报准确的概率分别是0.8和0.7,那么在一次预报中,两个气象台都预报准确的概率是________(设两台独立作预报). 6.标准正态变量(0,1)在区间(-2,2)内取值的概率为________. 7.作统计推断时,首先要求样本为随机样本,要得到简单随机样本,必须遵从的条件是 ________. 8.已知随机变量的分布列为 则()=________. 二、选择题:(每小题5分,共25分) 9.在掷一颗骰子的试验中,下列事件和事件为互斥事件的选项是(). (A)={1,2} ={1,3,5} (B)={2,4,6}={1} (C)={1,5} ={3,5,6} (D)={2,3,4,5}={1,2} 10.下面给出的表,可以作为某一随机变量的分布列的是

11.对某项试验,重复做了次,某事件出现了次,则下列说法正确的一个是(). (A)就是 (B)当很大时,与有较大的偏差 (C)随着试验次数的增大,稳定于 (D)随着试验次数的无限增大,与的偏差无限变小。 12.总体期望的无偏估计量是(). (A)样本平均数(B)样本方差(C)样本标准差(D)样本各数据之和 13.表示随机变量取值的平均水平的指标是(). (A)样本平均数(B)数学期望(C)方差(D)标准差 三、解答题: 14.(7分)某射手在相同的条件下对同一目标进行射击5次,已知每次中靶的概率为0.4,求5次射击恰有2次中靶的概率?

高中数学统计与概率测试题

高中数学统计与概率测试题 一选择题 1.某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是( ) A.1000名学生是总体 B.每名学生是个体 C.每名学生的成绩是所抽取的一个样本 D.样本的容量是100 2.某班级在一次数学竞赛中为全班同学生设置了一等奖、二等奖、三等奖以及参与奖,各个奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元,参与奖2元,获奖人数的分配情况如图,则以下说法不正确的是() A.获得参与奖的人数最多 B.各个奖项中三等奖的总费用最高 C.购买奖品的费用平均数为9.25元 D.购买奖品的费用中位数为2元 3.滴滴公司为了调查消费者对滴滴打车出行的真实评价,采用系统抽样方法从2000人中抽取100人做问卷调查,为此将他们随机编号1,2,?,2000,适当分组后在第一组采用 [1,820]的人做问卷简单随机抽样的方法抽到的号码为9,抽到的100人中,编号落入区间 A,编号落入区间[821,1520]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C 的人数为() A. 23 B. 24 C. 25 D. 26 4.为了解城市居民的环保意识,某调查机构从一社区的120名年轻人、80名中年人、60名老年人中,用分层抽样方法抽取了一个容量为n的样本进行调查,其中老年人抽取3名,则n=( ) A.13 B.12 C.10 D.9 A B C D四位妈妈相约各带一个小孩去观看花卉展,她们选择共享电动车出行,每辆车 5 ,,, 只能带一大人和一小孩,其中孩子们表示都不坐自己妈妈的车,则A的小孩坐C妈妈或

《概率论》期末考试试题及答案

07级《概率论》期末考试试题B 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则(1)“第一卷出现在旁边”的概率为 5 2 。 5 2 !5!422=?= p 2.设,)(,)(,)(r AB P q B P p A P ===则=)(B A P r p - 。性质 r p AB P A P AB A P B A P B A P -=-=-=-=)()()][)()( 3.设随机变量ξ的密度函数为() 0 3,其它 ?? ?>=-x ce x x ?则c= 3 . 33 )(130 =?= ==-+∞ +∞ ∞ -? ? c c dx e c dx x x ? 4. 设ξ、η为随机变量,且D (ξ+η)=7,D (ξ)=4,D (η)=1, 则Cov(ξ,η)= 1 . 1 21 472)(),cov() ,cov(2)(=--=--+=++=+ηξηξηξηξηξηξD D D D D D 5.设随机变量ξ服从两点分布) 1 ,1(B ,其分布律为 则ξ的特征函数为= )(t f ξit e 3 132+。 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件恰好一个发生”为( ②. ). ① C B A ??. ② C B A C B A C B A ++ ③ ABC -Ω. ④ C B A C B A C B A C B A +++ 2.设随机变量ξ的分布函数为

00)(2 2 <≥?? ???+=-x x B Ae x F x 则其中常数为(① )。 ①A=-1,B=1 ②A=1,B=-1 ③ A=1,B=1 ④ A=-1,B =-1 B A B e A x F B B e A x F x x x x x x +=+===+==-→→- +∞ →+∞ →++2 2 22lim )(lim 0lim )(lim 1 解得1,1=-=B A 3设随机变量ξ的分布列为.,2,1,2 1 )2)1(( ==-=k k P k k k ξ则ξE ( ④ ) ①等于1. ② 等于2ln ③等于2ln - ④ 不存在 445111 =?==∑ ∞ =C C C i i ∑∑+∞=+∞ =+=?-11 1 1 4545) 1(i i i i i i i ,由调和级数是发散的知,EX 不存在 4.对于任意两个随机变量ξ与η,下面(④ )说法与0),cov(=ηξ不等价。 ①相关系数0,=Y X ρ ② )()()(ηξηξD D D +=+ ③ ηξξηE E E ?=)( ④ ξ 与η相互独立 5.设随机变量ξ服从二项分布)2 1 ,4(B ,由车贝晓夫不等式有 ( ② ). ①.31 )32(≤ ≥-ξP ②.91 )32(≤≥-ξP ③ 3 1 )32(≥<-ξP . ④ 9 1)32(≥ <-ξP 因为9 1 )32(,1,2≤≥-==ξξξP D E 三、(满分20分) (1)两人相约7点到8点在某地会面,试求一人要等另一人半小时以上的概率。 解:

概率统计测试题

1. 某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一 个容量为45的样本,则应抽取的男生人数为_______. 2. 甲、乙、丙、丁四人排成一行,则甲、乙都不在两端的概率为( ) A.1 12B. 1 6 C.1 24D. 1 4 3. 已知x、y的取值如下表所示: x0134 y0.9 1.9 3.2 4.4 从散点图分析,y与x线性相关,且y^=0.8x+a,则a=( ) A.0.8 B.1 C.1.2 D.1.5 4. 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图所示; 若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7 人,则其中成绩在区间[139,151]上的运动员人数为( ) A、3 B、4 C、5 D、6 5. 为了解某校高三学生身体状况,用分层抽样的方法抽取部分男生和女 生的体重,将男生体重数据整理后,画出了频率分布直方图,已知图中 从左到右前三个小组频率之比为1:2:3,第二小组频数为12,若全校 男、女生比例为3:2,则全校抽取学生数为________. 6.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( ) (A)1 10(B)1 8 (C)1 6 (D)1 5

7.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点 D 在函数1,0()1 1,02 x x f x x x +≥?? =?-+

相关主题
文本预览
相关文档 最新文档