当前位置:文档之家› 典型时间序列模型分析(可打印修改) (2)

典型时间序列模型分析(可打印修改) (2)

典型时间序列模型分析(可打印修改) (2)
典型时间序列模型分析(可打印修改) (2)

1. 产生样本函数,并画出波形

2. 题目中的AR 过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。

clear all;

b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数

h=impz(b,a,20); % 得到系统的单位冲激函数,在20 点处已经可以认为值是0

randn('state',0);

w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2

x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2 阶AR 过程

plot(x,'r');

ylabel('x(n)');

title('邹先雄——产生的AR 随机序列');

grid on;

得到的输出序列波形为:

2. 估计均值和方差

可以首先计算出理论输出的均值和方差,得到

x

m

,对于方差可以先求出理论自相

关输出,然后取零点的值。

并且,,带入有

在最大值处输出的功率,也就是方差,为

对实际数据进行估计,均值为mean(x)=-0.0703,而方差为var(x)=5.2795,两者合理论值吻合得比较好。

程序及运行结果图如下,其中y_mean表示均值,y_var表示方差。

3.画出理论的功率谱密度曲线

理论的功率谱为,

用下面的语句产生:

delta=2*pi/1000;

w_min=-pi;

w_max=pi;

Fs=1000;

w=w_min:delta:w_max; % 得到数字域上的频率取样点,范围是[-pi,pi]

Gx=4*(abs(1./(1+0.3*exp(-i*w)+0.5*exp(-2*i*w))).^2); % 计算出理论值

Gx=Gx/max(Gx); % 归一化处理

f=w*Fs/(2*pi); % 转化到模拟域上的频率

plot(f,Gx);

title('邹先雄——理论功率谱密度曲线');

grid on;

得到的图形为:

可以看出,这个系统是带通系统。

4. 估计自相关函数和功率谱密度

用实际数据估计自相关函数和功率谱的方法前面已经讨论过,在这里仅给出最后的仿真图形。

Mlag=20; % 定义最大自相关长度

Rx=xcorr(x,Mlag,'coeff');

m=-Mlag:Mlag;

stem(m,Rx,'r.');

title('邹先雄——自相关函数');

最终的值为

可以看出,它和上面的理论输出值吻合程度很好。实际的功率谱密度可以用类似于上面的方法进行估计,

window=hamming(20); % 采用hanmming 窗,长度为20

noverlap=10; % 重叠的点数

Nfft=512; % 做FFT 的点数

Fs=1000; % 采样频率,为1000Hz

b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数

h=impz(b,a,20); % 得到系统的单位冲激函数,在20 点处已经可以认为值是0

randn('state',0);

w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2

x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2 阶AR 过程

[Px,f]=pwelch(x,window,noverlap,Nfft,Fs, 'onesided'); % 估计功率谱密度

f=[-fliplr(f) f(1:end)]; % 构造一个对称的频率,范围是[-Fs/2, Fs/2]

Py=[-fliplr(Px) Px(1:end)]; % 对称的功率谱

plot(f,10*log10(Py),'b');

title('邹先雄——实际的功率谱密度曲线');

估计出来的功率谱密度为,

将两幅图画在一起,可以看到拟合的情况比较好(两者相位刚好相反,但是基本波形相似):

代码如下:

clear all;

delta=2*pi/1000;

w_min=-pi;

w_max=pi;

Fs=1000;

w=w_min:delta:w_max; % 得到数字域上的频率取样点,范围是[-pi,pi]

Gx=4*(abs(1./(1+0.3*exp(-i*w)+0.5*exp(-2*i*w))).^2); % 计算出理论值

Gx=Gx/max(Gx); % 归一化处理

f=w*Fs/(2*pi); % 转化到模拟域上的频率结束

plot(f,Gx,'r');

hold on;

title('邹先雄——理论和实际的功率谱密度曲线拟合');

window=hamming(20); % 采用hanmming 窗,长度为20

noverlap=10; % 重叠的点数

Nfft=512; % 做FFT 的点数

Fs=1000; % 采样频率,为1000Hz

b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数

h=impz(b,a,20); % 得到系统的单位冲激函数,在20 点处已经可以认为值是0

randn('state',0);

w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2

x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2 阶AR 过程

[Px,f]=pwelch(x,window,noverlap,Nfft,Fs, 'onesided'); % 估计功率谱密度

f=[-fliplr(f) f(1:end)]; % 构造一个对称的频率,范围是[-Fs/2, Fs/2]

Py=[-fliplr(Px) Px(1:end)]; % 对称的功率谱

Py=-10*log10(Py);

Py=Py/max(Py);

Py=-Py;Py=3*Py;Py=Py+2.6;%用来归一处理,使两者吻合

plot(f,Py,'b');

legend('实际值','理论值');

grid on;

ARMA 模型分析

设有ARMA(2,2)模型,

X(n)+0.3X(n-1)-0.2X(n-2)=W(n)+0.5W(n-1)-0.2W(n-2)

W(n)是零均值正态白噪声,方差为4。

(1)用MATLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形

(2)用产生的500 个观测点估计X(n)的均值和方差

(3)画出理论的功率谱

(4)估计X(n)的相关函数和功率谱

【分析】给定(2,2) 的ARMA 过程,也可以用递推公式得出最终的输出序列。或者按照一个白噪声通过线性系统的方式得到,这个系统的传递函数为:

对于功率谱,可以这样得到,

对于ARMA 过程,当模型的所有极点均落在单位圆内时,才是一个渐进平稳的随机过程。

这个过程的自相关函数不能简单地写成Yule-Walker 方程形式,它于模型的参数具有高度的

非线性关系。

1. 产生样本函数,并画出波形

题目中的ARMA 过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照

上面的方法进行描述。

clear all;

b=[1 0.5 -0.2]; a=[1 0.3 -0.2]; % 由描述的差分方程,得到系统传递函数

h=impz(b,a,10); % 得到系统的单位冲激函数,在10点处已经可以认为值是0

randn('state',0);

w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2

x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的(2,2)阶ARMA过程

plot(x,'r');

title('邹先雄——输出的AR 随机序列');

得到的输出序列波形为:

2. 估计均值和方差

可以首先计算出理论输出的均值和方差,得到

x

m

,对于方差可以先求出理论自相

关输出,然后取零点的值。

并且,,带入有

在最大值处就是输出的功率,也就是方差,为

对实际数据进行估计,均值为mean(x)= -0.0547,而方差为var(x)=3.8,两者和理论值吻合的比较好。

附代码及运行结果截图如下:

3. 画出理论的功率谱密度曲线

理论的功率谱为,

用下面的语句产生:

delta=2*pi/1000;w_min=-pi;w_max=pi;Fs=1000;

w=w_min:delta:w_max; % 得到数字域上的频率取样点,范围是[-pi,pi] NS=1+0.5*exp(-i*w)-0.2*exp(-2*i*w); % 分子

DS=1+0.3*exp(-i*w)-0.2*exp(-2*i*w); % 分母

Gx=4*(abs(NS./DS).^2); % 计算出理论值

Gx=Gx/max(Gx);f=w*Fs/(2*pi); % 转化到模拟域上的频率

plot(f,Gx,'b');

title('邹先雄——理论的功率谱密度曲线');

grid on;

4. 估计相关函数和功率谱密度曲线

用实际数据估计自相关函数和功率谱的方法前面已经讨论过,在这里仅给出仿真图形。% 计算理论和实际的自相关函数序列

Mlag=20; % 定义最大自相关长度

Rx=xcorr(x,Mlag,'coeff');

m=-Mlag:Mlag;

stem(m,Rx,'r.');

title('邹先雄——估计自相关函数');

最终的值为

实际的功率谱密度可以用类似于上面的方法进行估计,

window=hamming(20); % 采用hanmming窗,长度为20

noverlap=10; % 重叠的点数

Nfft=512; % 做FFT的点数

Fs=1000; % 采样频率,为1000Hz

b=[1 0.5 -0.2]; a=[1 0.3 -0.2]; % 由描述的差分方程,得到系统传递函数

h=impz(b,a,10); % 得到系统的单位冲激函数,在10点处已经可以认为值是0 randn('state',0);

w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2

x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的(2,2)阶ARMA过程[Px,f]=pwelch(x,window,noverlap,Nfft,Fs, 'onesided'); % 估计功率谱密度

f=[-fliplr(f) f(1:end)]; % 构造一个对称的频率,范围是[-Fs/2, Fs/2]

Py=[fliplr(Px) Px(1:end)]; % 对称的功率谱

plot(f,10*log10(Py),'b');

title('邹先雄——实际的功率谱密度曲线');

估计出来的功率谱密度为

把两幅图画在一起,可以得到下面的图形,可以看出两者的吻合度比较高。delta=2*pi/1000;w_min=-pi;w_max=pi;Fs=1000;

w=w_min:delta:w_max; % 得到数字域上的频率取样点,范围是[-pi,pi]

NS=1+0.5*exp(-i*w)-0.2*exp(-2*i*w); % 分子

DS=1+0.3*exp(-i*w)-0.2*exp(-2*i*w); % 分母

Gx=4*(abs(NS./DS).^2); % 计算出理论值

Gx=Gx/max(Gx);f=w*Fs/(2*pi); % 转化到模拟域上的频率

plot(f,Gx,'r');

title('邹先雄——理论和实际的功率谱密度曲线的拟合');

hold on;

window=hamming(20); % 采用hanmming窗,长度为20

noverlap=10; % 重叠的点数

Nfft=512; % 做FFT的点数

Fs=1000; % 采样频率,为1000Hz

b=[1 0.5 -0.2]; a=[1 0.3 -0.2]; % 由描述的差分方程,得到系统传递函数

h=impz(b,a,10); % 得到系统的单位冲激函数,在10点处已经可以认为值是0 randn('state',0);

w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2

x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的(2,2)阶ARMA过程[Px,f]=pwelch(x,window,noverlap,Nfft,Fs, 'onesided'); % 估计功率谱密度

f=[-fliplr(f) f(1:end)]; % 构造一个对称的频率,范围是[-Fs/2, Fs/2]

Py=[fliplr(Px) Px(1:end)]; % 对称的功率谱

Py=10*log10(Py);

Py=Py/max(Py);

Py=-Py;Py=3*Py;Py=Py+4;%用来归一处理,使两者吻合

plot(f,Py,'b');

legend('实际值','理论值');

grid on;

3、实验内容

1、熟悉实验原理,将实验原理上的程序应用matlab 工具实现;

2、设有MA(2)模型,

W(n)是零均值正态白噪声,方差为4。

(1)用MATLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形(2)用产生的500 个观测点估计X(n)的均值和方差

(3)画出理论的功率谱

(4)估计X(n)的相关函数和功率谱

完成4个问题的源代码如下

clear all;

%产生样本函数,并画出波形

b=[1 -0.3 0.2]; a=[1]; % 由描述的差分方程,得到系统传递函数

h=impz(b,a,10); % 得到系统的单位冲激函数,在10点处已经可以认为值是0 randn('state',0);

w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2

x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的(2,2)阶ARMA过程figure(1);

plot(x,'r');

title('邹先雄——样本函数');

Py_mean=mean(x)

Py_var=var(x)

%画出理论的功率谱密度曲线

delta=2*pi/1000;w_min=-pi;w_max=pi;Fs=1000;

w=w_min:delta:w_max; % 得到数字域上的频率取样点,范围是[-pi,pi]

NS=1-0.3*exp(-i*w)+0.2*exp(-2*i*w); % 分子

DS=1; % 分母

Gx=4*(abs(NS./DS).^2); % 计算出理论值

Gx=Gx/max(Gx);f=w*Fs/(2*pi); % 转化到模拟域上的频率

figure(2);

plot(f,Gx,'b');

title('邹先雄——理论的功率谱密度曲线');

%估计相关函数

Mlag=20; % 定义最大自相关长度

Rx=xcorr(x,Mlag,'coeff');

m=-Mlag:Mlag;

figure(3);

stem(m,Rx,'r.');

title('邹先雄——估计相关函数');

%画出估计的功率谱密度曲线

window=hamming(20); % 采用hanmming窗,长度为20

noverlap=10; % 重叠的点数

Nfft=512; % 做FFT的点数

Fs=1000; % 采样频率,为1000Hz

[Px,f]=pwelch(x,window,noverlap,Nfft,Fs, 'onesided'); % 估计功率谱密度

f=[-fliplr(f) f(1:end)]; % 构造一个对称的频率,范围是[-Fs/2, Fs/2]

Py=[fliplr(Px) Px(1:end)]; % 对称的功率谱

figure(4);

plot(f,10*log10(Py),'b');

title('邹先雄——估计的功率谱密度曲线');

%对实际和估计两功率谱密度曲线进行拟合

delta=2*pi/1000;w_min=-pi;w_max=pi;Fs=1000;

w=w_min:delta:w_max; % 得到数字域上的频率取样点,范围是[-pi,pi]

NS=1-0.3*exp(-i*w)+0.2*exp(-2*i*w); % 分子

DS=1; % 分母

Gx=4*(abs(NS./DS).^2); % 计算出理论值

Gx=Gx/max(Gx);f=w*Fs/(2*pi); % 转化到模拟域上的频率

figure(5);

plot(f,Gx,'r');

title('邹先雄——实际和估计两功率谱密度曲线的拟合');

hold on;

window=hamming(20); % 采用hanmming窗,长度为20

noverlap=10; % 重叠的点数

Nfft=512; % 做FFT的点数

Fs=1000; % 采样频率,为1000Hz

b=[1 -0.3 0.2]; a=[1]; % 由描述的差分方程,得到系统传递函数

h=impz(b,a,10); % 得到系统的单位冲激函数,在10点处已经可以认为值是0 randn('state',0);

w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2

x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的(2,2)阶ARMA过程[Px,f]=pwelch(x,window,noverlap,Nfft,Fs, 'onesided'); % 估计功率谱密度

f=[-fliplr(f) f(1:end)]; % 构造一个对称的频率,范围是[-Fs/2, Fs/2]

Py=[fliplr(Px) Px(1:end)]; % 对称的功率谱

Py=10*log10(Py);

Py=Py/max(Py);

Py=-Py;Py=3*Py;Py=Py+4;%用来归一处理,使两者吻合

plot(f,Py,'b');

legend('实际值','理论值');

grid on;

样本函数波形为:

理论功率谱密度曲线为:

估计相关函数波形为:

估计功率谱密度曲线为:

实际和估计两功率谱密度曲线的拟合截图如下:

附程序运行后得到的均值与方差的截图,其中y_mean为均值,大小为-0.1127;y_var为方差,大小为3.9324:

4.实验总结:

通过实验,让我更加的了解了随机序列的均值、方差、功率谱密度以及自相关函数。

通过软件的编程运行结果,加深了对书上理论知识的理解与掌握。

首先第一个实验中两个随机序列的练习让我更容易着手于本次的实验。通过实验,我

对matlab有了更深的认识,在使用matlab的过程中,经常产生问题、发现问题并解决问题,这让我对matlab使用的更加熟练。这次统计信号实验并不是我第一次接触matlab,以前对matlab的应用让我有了一些基础,这次的实验更是让我学到了不少东西,从选题到做题,

让我学到了以前没有接触过的matlab知识。比如要在一幅图中显示多条曲线时,可以使用hold on语句来实现,或者在画图函数中的参数进行设定(如:plot(f,(Py),'r',f,Gy,'b');),这在以前没有学过。

应用时间序列分析习题答案解析整理

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列 LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .02110211212112011φρφρφρφρρφφρφρφρ 解得:???==15/115 /72 1φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0 2212122 ) 1)(1)(1(1)(σφφφφφφ-+--+-= t x Var 2) 15.08.01)(15.08.01)(15.01() 15.01(σ+++--+= =1.98232σ ?????=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ?? ? ??=-====015.06957.033222111φφφρφ

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

《时间序列分析》案例

《时间序列分析》案例案例名 称:时间序列分析在经济预测中的应用内容要 求:确定性与随机性时间序列之比较设计作 者:许启发,王艳明 设计时 间:2003年8月

案例四:时间序列分析在经济预测中的应用 一、案例简介 为了配合《统计学》课程时间序列分析部分的课堂教学,提高学生运用统计分析方法解决实际问题的能力,我们组织了一次案例教学,其内容是:对烟台市的未来经济发展状况作一预测分析,数据取烟台市1949—1998年国内生产总值(GDP)的年度数据,并以此为依据建立预测模型,对1999年和2000年的国内生产总值作出预测并检验其预测效果。国内生产总值是指一个国家或地区所有常住单位在一定时期内生产活动的最终成果,是反映国民经济活动最重要的经济指标之一,科学地预测该指标,对制定经济发展目标以及与之相配套的方针政策具有重要的理论与实际意义。在组织实施时,我们首先将数据资料印发给学生,并讲清本案例的教学目的与要求,明确案例所涉及的教学内容;然后给学生一段时间,由学生根据资料,运用不同的方法进行预测分析,并确定具体的讨论日期;在课堂讨论时让学生自由发言,阐述自己的观点;最后,由主持教师作点评发言,取得了良好的教学效果。 经济预测是研究客观经济过程未来一定时期的发展变化趋势,其目的在于通过对客观经济现象历史规律的探讨和现状的研究,求得对未来经济活动的了解,以确定社会经济活动的发展水平,为决策提供依据。 时间序列分析预测法,首先将预测目标的历史数据按照时间的先后顺序排列,然后分析它随时间的变化趋势及自身的统计规律,外推得到预测目标的未来取值。它与回归分析预测法的最大区别在于:该方法可以根据单个变量的取值对其自身的变动进行预测,无须添加任何的辅助信息。 本案例的最大特色在于:它汇集了统计学原理中的时间序列分析这一章节的所有知识点,通过本案例的教学,可以把不同的时间序列分析方法进行综合的比较,便于学生更好地掌握本章的内容。 二、案例的目的与要求 (一)教学目的 1.通过本案例的教学,使学生认识到时间序列分析方法在实际工作中应用的必要性和可能性; 2.本案例将时间序列分析中的水平指标、速度指标、长期趋势的测定等内容有机的结合在一起,以巩固学生所学的课本知识,深化学生对课本知识的理解; 3.本案例是对烟台市的国内生产总值数据进行预测,通过对实证结果的比较和分析,使学生认识到对同一问题的解决,可以采取不同的方法,根据约束条件,从中选择一种合适的预测方法; 4.通过本案例的教学,让学生掌握EXCEL软件在时间序列分析中的应用,对统计、计量分析软件SPSS或Eviews等有一个初步的了解; 5.通过本案例的教学,有助于提高学生运用所学知识和方法分析解决问题的能力、合作共事的能力和沟通交流的能力。 (二)教学要求 1.学生必须具备相应的时间序列分析的基本理论知识; 2.学生必须熟悉相应的预测方法和具备一定的数据处理能力; 3.学生以主角身份积极地参与到案例分析中来,主动地分析和解决案例中的问题; 4.在提出解决问题的方案之前,学生可以根据提供的样本数据,自己选择不同的统计分析方法,对这一案例进行预测,比较不同预测方法的异同,提出若干可供选择的方案; 5.学生必须提交完整的分析报告。分析报告的内容应包括:选题的目的及意义、使用数据的特征及其说明、采用的预测方法及其优劣、预测结果及其评价、有待于进一步改进的思路或需要进一步研究的问题。 三、数据搜集与处理 时间序列数据按照不同的分类标准可以划分为不同的类型,最常见的有:年度数据、季度数据、月度数据。本案例主要讨论对年度数据如何进行预测分析。考虑到案例设计时的侧重点,本案例只是对烟

时间序列分析资料报告——ARMA模型实验

基于ARMA模型的社会融资规模增长分析 ————ARMA模型实验

第一部分实验分析目的及方法 一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。 第二部分实验数据 2.1数据来源 数据来源于中经网统计数据库。具体数据见附录表5.1 。 2.2所选数据变量 社会融资规模指一定时期(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。 本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。 第三部分 ARMA模型构建 3.1判断序列的平稳性 首先绘制出M的折线图,结果如下图:

图3.1 社会融资规模M曲线图 从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。 为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下: 图3.2 lm曲线图

对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图 表3.1 lm的自相关图 上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下: 表3.2 单位根输出结果 Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic Prob.*

典型时间序列模型分析

实验1典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型: AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对 对上述三种模型进行统计特性分析,通过对2阶模型的仿真分析,探讨几种模型的适用范围, 并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有AR(2)模型, X( n)=-0.3X( n-1)-0.5X( n-2)+W( n) 其中:W(n)是零均值正态白噪声,方差为 4。 (1 )用MATLAB 模拟产生X(n)的500观测点的样本函数,并绘出波形 (2) 用产生的500个观测点估计X(n)的均值和方差 (3) 画出理论的功率谱 (4) 估计X(n)的相关函数和功率谱 【分析】给定二阶的 AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, 可以看出, FX w 完全由两个极点位置决定。 对于AR 模型的自相关函数,有下面的公式: \(0) 打⑴ 匚⑴… ^(0) ■ 1' G 2 W 0 JAP) 人9-1)… 凉0) _ 这称为Yule-Walker 方程,当相关长度大于 p 时,由递推式求出: r (r) + -1) + -■ + (7r - JJ )= 0 这样,就可以求出理论的 AR 模型的自相关序列。 H(z) 二 1 1 0.3z , P x w +W 1 1 a 才 a 2z^

1. 产生样本函数,并画出波形 2. 题目中的AR过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为 2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2阶AR过程 plot(x,'r'); ylabel('x(n)'); title(' 邹先雄——产生的AR随机序列'); grid on; 得到的输出序列波形为: 邹先雄——产生的AR随机序列 2. 估计均值和方差 可以首先计算出理论输出的均值和方差,得到m x =0 ,对于方差可以先求出理论自相 关输出,然后取零点的值。

时间序列分析及VAR模型

Lecture 6 6. Time series analysis: Multivariate models 6.1Learning outcomes ?Vector autoregression (VAR) ?Cointegration ?Vector error correction model (VECM) ?Application: pairs trading 6.2Vector autoregression (VAR)向量自回归 The classical linear regression model assumes strict exogeneity; hence, there is no serial correlation between error terms and any realisation of any independent variable (lead or lag). As we discovered, serial correlation (or autocorrelation) is very common in financial time series and panel data. Furthermore, we assumed a pre-defined relation of causality: explanatory variable affect the dependent variable? 传统的线性回归模型假设严格的外主性,误差项与可实现的独立变量之间没有序列相关性。金融时间序列及面板数据往往都有很强的自相关性,假定解释变量影响因变量。 We now relax bo什]assumptions using a VAR model. VAR models can be regarded as a generalisation of AR(p) processes by adding additional time series. Hence, we enter the field of multivariate time series analysis. VAR模型可以'"l作是在一般的自回归过程中加入时间序列。 Lefs look at a standard AR(p) process for hvo variables (y( and xj? (1)%= Ql + 琅]仇『一 +仏 (2)x t = a2 + - + £2t The next step is to allow that lagged values of xt can affect y( and vice versa. This means that we obtain a system of equations for two dependent variables(y(and xj?Both dependent variables are influenced by past realisations of y(and x t. By doing that, we violate strict exogeneity (see Lecture 2); however, we can use a more relaxed concept, namely weak exogeneity?As we use lagged values of bodi dependent variables, we can argue that these lagged values are known to us, as we observed them in the previous period? We call these variables predetermined? Predetermined (lagged) variables fulfil weak exogeneity in the sense that they have to be uncorrelated with the contemporaneoiis error term in t? We can still use OLS to estimate the following system of equations, which is called a VAR in reduced form. (3)+y 仇1化_丫+sr=i ^12 +£it (4)X t = a2+2X1021”—, + _i + f2t

Eviews时间序列分析实例

Eviews 时间序列分析实例 时间序列是市场预测中经常涉及的一类数据形式, 绍。通过第七章的学习,读者了解了什么是时间序列, 、指数平滑法实例 所谓指数平滑实际就是对历史数据的加权平均。它可以用于任何一种没有明显函数规 律,但确实存在某种前后关联的时间序列的短期预测。 由于其他很多分析方法都不具有这种 特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。 (―)一次指数平滑 一次指数平滑又称单指数平滑。它最突出的优点是方法非常简单, 甚至只要样本末期的 平滑值,就可以得到预测结果。 一次指数平滑的特点是: 能够跟踪数据变化。 这一特点所有指数都具有。 预测过程中添 加最新的样本数据后, 新数据应取代老数据的地位, 老数据会逐渐居于次要的地位, 直至被 淘汰。这样,预测值总是反映最新的数据结构。 一次指数平滑有局限性。第一,预测值不能反映趋势变动、季节波动等有规律的变动; 第二,这种方法多适用于短期预测, 而不适合作中长期的预测;第三, 由于预测值是历史数 据的均值,因此与实际序列的变化相比有滞后现象。 指数平滑预测是否理想,很大程度上取决于平滑系数。 Eviews 提供两种确定指数平滑 系数的方法:自动给定和人工确定。 选择自动给定,系统将按照预测误差平方和最小原则自 动确定系数。如果系数接近 1,说明该序列近似纯随机序列,这时最新的观测值就是最理想 的预测值。 出于预测的考虑,有时系统给定的系数不是很理想, 用户需要自己指定平滑系数值。平 滑系数取什么值比较合适呢? 一般来说,如果序列变化比较平缓,平滑系数值应该比较小, 比如小于0.1; 如果序列变化比较剧烈, 平滑系数值可以取得大一些, 如0.3?0.5。若平滑系 数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预 测。 [例1]某企业食盐销售量预测。现在拥有最近连续 30个月份的历史资料(见表 I ), 试预测下一月份销售量。 表 某企业食盐销售量 单位:吨 解:使用对数据进行分析,第一步是建立工作文件和录入数据。有关操作在本 理和一些分析实例。本节的主要内容是说明如何使用 Eviews 软件进行分析。 本书第七章对它进行了比较详细的介 并接触到有关时间序列分析方法的原

实验五-用EXCEL进行时间序列分析

实验五 用E X C E L 进行时间序列分析 一、实验目的 利用Excel 进行时间序列分析 二、实验内容 1.测定发展水平和平均发展水平 2. 测定增长量和平均增长量 3. 测定发展速度、增长速度和平均发展速度 4. 计算长期趋势 5. 计算季节变动 三、实验指导 时间序列分析常用的方法有两种:指标分析法和构成因素分析法。 指标分析法,通过计算一系列时间序列分析指标,包含发展水平、平均发展水平、增长量、平均增长量、发展速度、平均发展速度等来揭示现象的发展状况和发展变化程度。 构成因素分析法,是将时间序列看做由长期趋势、季节变动、循环变动、不规则变动四种因素构成,将各影响因素分别从时间序列中分离出去并加以测定、对未来发展做出预测的过程。 发展水平: 发展水平是指某一经济现象在各个时期达到的实际水平。 在时间序列中,各指标数值就是该指标所反映的社会经济现象在所属时间的发展水平。在时间序列中,我们用y 表示指标值,t 表示时间,则t y (t=0,1,2,3,…,n)表示各个时期的指标值。 平均发展水平: 平均发展水平又称“序时平均数”、“动态平均数”,是时间序列中各项发展水平的平均数,反映现象在一段时期中发展的一般水平。 增长量: 增长量是指某一经济现象在一定时期增长或减少的绝对量。它是报告期发展水平减基期发展水平之差。 平均增长量:平均增长量是时间序列中的逐期增长量的序时平均数,它表明现象在一定时段内平均每期增加(减少)的数量。公式表示如下: 发展速度:发展速度是说明事物发展快慢程度的动态相对数。它等于报告期水平对基期水平之比。发展速度有两种:分为环比发展速度和定基发展速度。 1.环比发展速度:也称逐期发展速度,是报告期发展水平与前一期发展水平之比。 2.定基发展速度:是报告期水平与固定基期水平之比。 平均发展速度:平均发展速度是动态数列中各期环比发展速度或各期定基发展速度中的环比发展速度的序时平均数。它说明在一定时期内发展速度的一般水平。 平均发展速度的计算方法有几何法和方程法。 1.几何法计算平均发展速度:实际动态数列各期环比发展速度连乘积等于理论动态数列中各期平均发展速度的连乘积 2.方程法计算平均发展速度:方程法平均发展速度的特点是实际动态数列各项之和等于理论动态数列各项之和,所以称为“累积法” (1)测定发展水平和平均发展水平 在时间i t 上的观察值i Y ,就是该时间点的发展水平。 平均发展水平是现象在时间i t (i=1,2,…,n )上各期观察值i Y 的平均数。 ①时期序列的序时平均数计算

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

Eviews时间序列分析实例.

Eviews时间序列分析实例 时间序列是市场预测中经常涉及的一类数据形式,本书第七章对它进行了比较详细的介绍。通过第七章的学习,读者了解了什么是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。本节的主要内容是说明如何使用Eviews软件进行分析。 一、指数平滑法实例 所谓指数平滑实际就是对历史数据的加权平均。它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期预测。由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。 (-)一次指数平滑 一次指数平滑又称单指数平滑。它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到预测结果。 一次指数平滑的特点是:能够跟踪数据变化。这一特点所有指数都具有。预测过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。这样,预测值总是反映最新的数据结构。 一次指数平滑有局限性。第一,预测值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期预测,而不适合作中长期的预测;第三,由于预测值是历史数据的均值,因此与实际序列的变化相比有滞后现象。 指数平滑预测是否理想,很大程度上取决于平滑系数。Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。选择自动给定,系统将按照预测误差平方和最小原则自动确定系数。如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的预测值。 出于预测的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。平滑系数取什么值比较合适呢?一般来说,如果序列变化比较平缓,平滑系数值应该比较小,比如小于0.l;如果序列变化比较剧烈,平滑系数值可以取得大一些,如0.3~0.5。若平滑系数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预测。 [例1]某企业食盐销售量预测。现在拥有最近连续30个月份的历史资料(见表l),试预测下一月份销售量。 表1 某企业食盐销售量单位:吨 解:使用Eviews对数据进行分析,第一步是建立工作文件和录入数据。有关操作在本

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

[课程]Eviews时间序列分析实例

[课程]Eviews时间序列分析实例 Eviews时间序列分析实例 时间序列是市场预测中经常涉及的一类数据形式,本书第七章对它进行了比较详细的介绍。通过第七章的学习,读者了解了什么是时间序列,并接触到有关时间序列分析方法的原理和一些分析实例。本节的主要内容是说明如何使用Eviews软件进行分析。 一、指数平滑法实例 所谓指数平滑实际就是对历史数据的加权平均。它可以用于任何一种没有明显函数规律,但确实存在某种前后关联的时间序列的短期预测。由于其他很多分析方法都不具有这种特点,指数平滑法在时间序列预测中仍然占据着相当重要的位置。 (,)一次指数平滑 一次指数平滑又称单指数平滑。它最突出的优点是方法非常简单,甚至只要样本末期的平滑值,就可以得到预测结果。 一次指数平滑的特点是:能够跟踪数据变化。这一特点所有指数都具有。预测过程中添加最新的样本数据后,新数据应取代老数据的地位,老数据会逐渐居于次要的地位,直至被淘汰。这样,预测值总是反映最新的数据结构。 一次指数平滑有局限性。第一,预测值不能反映趋势变动、季节波动等有规律的变动;第二,这种方法多适用于短期预测,而不适合作中长期的预测;第三,由于预测值是历史数据的均值,因此与实际序列的变化相比有滞后现象。 指数平滑预测是否理想,很大程度上取决于平滑系数。Eviews提供两种确定指数平滑系数的方法:自动给定和人工确定。选择自动给定,系统将按照预测误差平方和最小原则自动确定系数。如果系数接近1,说明该序列近似纯随机序列,这时最新的观测值就是最理想的预测

值。 出于预测的考虑,有时系统给定的系数不是很理想,用户需要自己指定平滑系数值。平滑系数取什么值比较合适呢,一般来说,如果序列变化比较平缓,平滑系数值应该比较小,比如小于0.l;如果序列变化比较剧烈,平滑系数值可以取得大一些,如0.3,0.5。若平滑系数值大于0.5才能跟上序列的变化,表明序列有很强的趋势,不能采用一次指数平滑进行预测。 〔例1〕某企业食盐销售量预测。现在拥有最近连续30个月份的历史资料(见表l),试预测下一月份销售量。 表1 某企业食盐销售量单位:吨 解:使用Eviews对数据进行分析,第一步是建立工作文件和录入数据。有关操作在本章第一节中已经阐明,这里不再赘述。假设已经建立工作文件,并生成了一个样本期为l,30的序列,命名为SALES。序列SALES中包含例1中需要分析的数据。 第二步,绘制序列图形。在序列对象窗口中,点击View?Line Graph。 屏幕显示图1所示图形。 图1 某企业近30个月的销售量动态图 从图1中可以看出,这个企业近30个月的销售量并不存在明显的趋势,并且没有明显的季节趋势。因此,从直观上判断可以采用一次指数平滑法对企业下个月的销售量进行预测。 第三步,扩大样本期。本例要求对下一个月的销售量进行预测,而工作文件的样本期是1,30,在Eviews中要求先更改样本期。更改样本期的操作在本章第一节已经讲过,这里将样本期改为l,31。

现代时间序列分析模型

现代时间序列分析模型§1 时间序列平稳性和单位根检验§2 协整与误差修正模型经典时间序列分析模型: MA、AR、ARMA 平稳时间序列模型分析时间序列自身的变化规律现代时间序列分析模型:分析时间序列之间的关系单位根检验、协整检验现代宏观计量经济学§1 时间序列平稳性和单位根检验一、时间序列的平稳性二、单整序列三、单位根检验一、时间序列的平稳性 Stationary Time Series ⒈问题的提出经典计量经济模型常用到的数据有:时间序列数据(time-series data ;截面数据cross-sectional data 平行/面板数据(panel data/time-series cross-section data 时间序列数据是最常见,也是最常用到的数据。经典回归分析暗含着一个重要假设:数据是平稳的。数据非平稳,大样本下的统计推断基础――“一致性”要求――被破怀。数据非平稳,往往导致出现“虚假回归”(Spurious Regression)问题。表现为两个本来没有任何因果关系的变量,却有很高的相关性。例如:如果有两列时间序列数据表现出一致的变化趋势(非平稳的),即使它们没有任何有意义的关系,但进行回归也可表现出较高的可决系数。 2、平稳性的定义假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列 Xt (t 1, 2, …)的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:均值E Xt ?是与时间t 无关的常数;方差Var Xt ?2是与时间t 无关的常数;协方差Cov Xt,Xt+k ?k 是只与时期间隔k有关,与时间t 无关的常数;则称该随机时间序列是平稳的(stationary ,

数学建模时间序列分析

基于Excel的时间序列预测与分析 1 时序分析方法简介 1.1时间序列相关概念 1.1.1 时间序列的内涵以及组成因素 所谓时间序列就是将某一指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。如经济领域中每年的产值、国民收入、商品在市场上的销量、股票数据的变化情况等,社会领域中某一地区的人口数、医院患者人数、铁路客流量等,自然领域的太阳黑子数、月降水量、河流流量等等,都形成了一个时间序列。人们希望通过对这些时间序列的分析,从中发现和揭示现象的发展变化规律,或从动态的角度描述某一现象和其他现象之间的内在数量关系及其变化规律,从而尽可能多的从中提取出所需要的准确信息,并将这些知识和信息用于预测,以掌握和控制未来行为。 时间序列的变化受许多因素的影响 ,有些起着长期的、决定性的作用 ,使其呈现出某种趋势和一定的规律性;有些则起着短期的、非决定性的作用,使其呈现出某种不规则性。在分析时间序列的变动规律时,事实上不可能对每个影响因素都一一划分开来,分别去作精确分析。但我们能将众多影响因素,按照对现象变化影响的类型,划分成若干时间序列的构成因素,然后对这几类构成要素分别进行分析,以揭示时间序列的变动规律性。影响时间序列的构成因素可归纳为以下四种: (1)趋势性(Trend),指现象随时间推移朝着一定方向呈现出持续渐进地上升、下降或平稳的变化或移动。这一变化通常是许多长期因素的结果。 (2)周期性(Cyclic),指时间序列表现为循环于趋势线上方和下方的点序列并持续一年以上的有规则变动。这种因素是因经济多年的周期性变动产生的。比如,高速通货膨胀时期后面紧接的温和通货膨胀时期将会使许多时间序列表现为交替地出现于一条总体递增 地趋势线上下方。 (3)季节性变化(Seasonal variation),指现象受季节性影响 ,按一固定周期呈现出的周期波动变化。尽管我们通常将一个时间序列中的季节变化认为是以1年为期的,但是季节因素还可以被用于表示时间长度小于1年的有规则重复形态。比如,每日交通量数据表现出为期1天的“季节性”变化,即高峰期到达高峰水平,而一天的其他时期车流量较小,从午夜到次日清晨最小。

居民消费价格指数的时间序列分析

居民消费价格指数的时间序列分析 摘要: 时间序列分析是一种根据动态数据揭示系统动态结构和规律的统计方法。本文以我国2007年1月至2011年4月居民消费价格指数为研究对象,基于居民消费价格指数存在明显的非平稳性和季节性特征,运用自回归移动平均季节模型进行建模分析,并利用SPSS建立了居民消费价格指数时间序列的相关关系模型,并对其进行预测,取得较好的效果。 关键词: 居民消费价格指数 SPSS软件时间序列分析预测 一、引言

(一)问题的基本情况及背景 居民消费价格指数的调查范围和内容是居民用于日常生活消费品的全部商品和服务项目价格。包括食品、烟酒及用品、衣着、家庭设备用品及维修服务、和个人用品、交通和通讯、娱乐教育文化用品及服务、居住等八大类商品及服务项目价格。既包括居民从商店、工厂、集市所购买的价格,也包括从购买的价格。该指数以实际调查的综合平均单价和根据住户调查有关资料确定的权数,按加权算术平均公式计算。 全国居民消费价格指数是反映居民家庭购买生活消费品和支出服务项目费用价格变动趋势和程度的相对数。其目的在于观察居民生活消费品及服务项目价格的变动对城乡居民生活的影响,为各级党政领导掌握居民消费状况,研究和制定居民消费价格政策、工资政策以及为新国民经济核算体系中有消除价格变动因素的不变价格核算提供科学依据。居民消费价格指数还是反映通货膨胀的重要指标。当居民消费价格指数上升时,表明通货膨胀率上升,消费者的生活成本提高,货币的购买能力减弱;相反,当居民消费价格指数下降时,表明通货膨胀率下降,亦即消费者的生活成本降低,货币的购买能力增强。 居民消费价格指数的高低直接影响居民的生活水平,因此,准确的分析并及时的对居民消费价格指数做出合理的预测,对国家制定相应的经济政策,实行宏观调控,稳定物价,保证经济的增长平稳发展具有重要意义。 (二)问题的提出 时间序列是指同一种现象在不同时间上的相继观察值排列而成的一组数字序列。时间序列预测方法的基本思想是:预测一个现象的未来变化时,

《时间序列分析》案例04

《时间序列分析》案例 案例名称:时间序列分析在经济预测中应用内容要求:确定性与随机性时间序列之比较设计作者:许启发,王艳明 设计时间:2003年8月

案例四:时间序列分析在经济预测中应用 一、案例简介 为了配合《统计学》课程时间序列分析部分课堂教学,提高学生运用统计分析方法解决实际问题能力,我们组织了一次案例教学,其内容是:对烟台市未来经济发展状况作一预测分析,数据取烟台市1949—1998年国内生产总值(GDP)年度数据,并以此为依据建立预测模型,对1999年和2000年国内生产总值作出预测并检验其预测效果。国内生产总值是指一个国家或地区所有常住单位在一定时期内生产活动最终成果,是反映国民经济活动最重要经济指标之一,科学地预测该指标,对制定经济发展目标以及与之相配套方针政策具有重要理论与实际意义。在组织实施时,我们首先将数据资料印发给学生,并讲清本案例教学目与要求,明确案例所涉及教学内容;然后给学生一段时间,由学生根据资料,运用不同方法进行预测分析,并确定具体讨论日期;在课堂讨论时让学生自由发言,阐述自己观点;最后,由主持教师作点评发言,取得了良好教学效果。 经济预测是研究客观经济过程未来一定时期发展变化趋势,其目在于通过对客观经济现象历史规律探讨和现状研究,求得对未来经济活动了解,以确定社会经济活动发展水平,为决策提供依据。 时间序列分析预测法,首先将预测目标历史数据按照时间先后顺序排列,然后分析它随时间变化趋势及自身统计规律,外推得到预测目标未来取值。它与回归分析预测法最大区别在于:该方法可以根据单个变量取值对其自身变动进行预测,无须添加任何辅助信息。 本案例最大特色在于:它汇集了统计学原理中时间序列分析这一章节所有知识点,通过本案例教学,可以把不同时间序列分析方法进行综合比较,便于学生更好地掌握本章内容。 二、案例目与要求 (一)教学目 1.通过本案例教学,使学生认识到时间序列分析方法在实际工作中应用必要性和可能性; 2.本案例将时间序列分析中水平指标、速度指标、长期趋势测定等内容有机结合在一起,以巩固学生所学课本知识,深化学生对课本知识理解; 3.本案例是对烟台市国内生产总值数据进行预测,通过对实证结果比较和分析,使学生认识到对同一问题解决,可以采取不同方法,根据约束条件,从中选择一种合适预测方法; 4.通过本案例教学,让学生掌握EXCEL软件在时间序列分析中应用,对统计、计量分析软件SPSS或Eviews等有一个初步了解; 5.通过本案例教学,有助于提高学生运用所学知识和方法分析解决问题能力、合作共事能力和沟通交流能力。 (二)教学要求 1.学生必须具备相应时间序列分析基本理论知识; 2.学生必须熟悉相应预测方法和具备一定数据处理能力; 3.学生以主角身份积极地参与到案例分析中来,主动地分析和解决案例中问题; 4.在提出解决问题方案之前,学生可以根据提供样本数据,自己选择不同统计分析方法,对这一案例进行预测,比较不同预测方法异同,提出若干可供选择方案; 5.学生必须提交完整分析报告。分析报告内容应包括:选题目及意义、使用数据特征及其说明、采用预测方法及其优劣、预测结果及其评价、有待于进一步改进思路或需要进一步研究问题。 三、数据搜集与处理 时间序列数据按照不同分类标准可以划分为不同类型,最常见有:年度数据、季度数据、月度

2016时间序列分析论文

雄起市1978-2015年GDP时间序列模型分析预测 摘要: 本文以雄起市1978-2015年二十年间的每年GDP为原始数据,利用EVIEWS 软件判断该序列为平稳序列且为非白噪声序列,通过对数据一系列的处理,建立ARIMA模型拟合时间序列,由于时间序列之间的相关关系和历史数据对未来的发展有一定的影响,对我市的GDP进行了短期预测,阐述GDP时间序列所表现的变化规律。 关键字:雄起市GDP;时间序列;ARIMA模型;预测 引言 一、理论准备 时间序列分析是按照时间顺序的一组数字序列。时间序列分析就是利用这组数列,应用数理统计方法加以处理,以预测未来事物的发展。 时间序列分析是定量预测方法之一。 基本原理: 1.承认事物发展的延续性。应用过去数据,就能推测事物的发展趋势。 2.考虑到事物发展的随机性。任何事物发展都可能受偶然因素影响,为此要利用统计分析中加权平均法对历史数据进行处理。该方法简单易行,便于掌握,但准确性差,一般只适用于短期预测。 时间序列分析是根据系统观测得到的时间序列数据,通过曲线拟合和参数估计来建立数学模型的理论和方法。 二、基本思想 1. 拿到一个观测值序列之后,首先判断它的平稳性,通过平稳性检验,判断序列是平稳序列还是非平稳序列。 2.若为非平稳序列,则利用差分变换成平稳序列。 3.对平稳序列,计算相关系数和偏相关系数,确定模型。 4.估计模型参数,并检验其显著性及模型本身的合理性。 5.检验模型拟合的准确性。 6.根据过去行为对将来的发展做出预测。 三、背景知识 国内生产总值(GDP=Gross Domestic Product)是指一个国家(国界范围内)所有常驻单位在一定时期内生产的所有最终产品和劳务的市场价值。GDP是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况重要指标指标。上世纪80年代初,中国开始研究联合国国民经济核算体系的国内生产总值

相关主题
文本预览
相关文档 最新文档