当前位置:文档之家› 导数练习题及答案:函数的极值

导数练习题及答案:函数的极值

导数练习题及答案:函数的极值
导数练习题及答案:函数的极值

利用导数求函数的极值

例 求下列函数的极值:

1.x x x f 12)(3-=;2.x e x x f -=2)(;3..21

2)(2-+=x x x f 分析:按照求极值的基本方法,首先从方程0)(='x f 求出在函数)(x f 定义域内所有可能的极值点,然后按照函数极值的定义判断在这些点处是否取得极值.

解:1.函数定义域为R .).2)(2(3123)(2-+=-='x x x x f

令0)(='x f ,得2±=x .

当2>x 或2-'x f ,

∴函数在()2,-∞-和()+∞,2上是增函数;

当22<<-x 时,0)(<'x f ,

∴函数在(-2,2)上是减函数.

∴当2-=x 时,函数有极大值16)2(=-f ,

当2=x 时,函数有极小值.16)2(-=f

2.函数定义域为R .x x x e x x e x xe x f ----=-=')2(2)(2

令0)(='x f ,得0=x 或2=x .

当0x 时,0)(<'x f ,

∴函数)(x f 在()0,∞-和()+∞,2上是减函数;

当20<'x f ,

∴函数)(x f 在(0,2)上是增函数.

∴当0=x 时,函数取得极小值0)0(=f ,

当2=x 时,函数取得极大值2

4)2(-=e f .

3.函数的定义域为R . .)

1()1)(1(2)1(22)1(2)(22222++-=+?-+='x x x x x x x x f

令0)(='x f ,得1±=x .

当1-x 时,0)(<'x f ,

∴函数)(x f 在()1,-∞-和()+∞,1上是减函数;

当11<<-x 时,0)(>'x f ,

∴函数)(x f 在(-1,1)上是增函数.

∴当1-=x 时,函数取得极小值3)1(-=-f ,

当1=x 时,函数取得极大值.1)1(-=f

说明:思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件 综合运用,方可实现解题的正确性.解答本题时应注意0)(0='x f 只是函数)(x f 在0x 处有极值的必要条件,如果再加之0x 附近导数的符号相反,才能断定函数在0x 处取得极值.反映在解题上,错误判断极值点或漏掉极值点是学生经常出现的失误.

复杂函数的极值

例 求下列函数的极值:

1.)5()(32-=x x x f ;2..6)(2--=x x x f

分析:利用求导的方法,先确定可能取到极值的点,然后依据极值的定义判定.在函数)(x f 的定义域内寻求可能取到极值的“可疑点”,除了确定其导数为零的点外,还必须确定函数定义域内所有不可导的点.这两类点就是函数)(x f 在定义内可能取到极值的全部“可疑点”.

解:1..3)2(533)5(2)5(32

)(33323x

x x x x x x x x f -=+-=+-=' 令0)(='x f ,解得2=x ,但0=x 也可能是极值点.

当0x 时,0)(>'x f ,

∴函数)(x f 在()0,∞-和()+∞,2上是增函数;

当20<

∴函数)(x f 在(0,2)上是减函数.

∴当0=x 时,函数取得极大值0)0(=f ,

当2=x 时,函数取得极小值343)2(-=f .

2.?????<<-++-≥-≤--),

32(,6),32(,6)(22x x x x x x x x f 或 ∴??

???=-=<<-+->-<-').32(,),32(,12),32(,12)(x x x x x x x x f 或不存在或

令0)(='x f ,得21=

x . 当2-

1<

当3>x 或2

12<<-x 时,0)(>'x f , ∴函数)(x f 在()+∞,3和??? ??-21,2上是增函数.

∴当2-=x 和3=x 时,函数)(x f 有极小值0, 当21=x 时,函数有极大值4

25. 说明:在确定极值时,只讨论满足0)(0='x f 的点附近的导数的符号变化情况,确定极值是不全面的.在函数定义域内不可导的点处也可能存在极值.本题1中0=x 处,2中2-=x 及3=x 处函数都不可导,但)(x f '在这些点处左右两侧异号,根据极值的判定方法,函数)(x f 在这些点处仍取得极值.从定义分析,极值与可导无关.

根据函数的极值确定参数的值

例 已知)0()(23≠++=a cx bx ax x f 在1±=x 时取得极值,且1)1(-=f .

1.试求常数a 、b 、c 的值;

2.试判断1±=x 是函数的极小值还是极大值,并说明理由.

分析:考察函数)(x f 是实数域上的可导函数,可先求导确定可能的极值点,再通过极值点与导数的关系,即极值点必为0)(='x f 的根建立起由极值点1±=x 所确定的相关等

式,运用待定系数法求出参数a 、b 、c 的值.

解:1.解法一:c bx ax x f ++='23)(2.

1±=x 是函数)(x f 的极值点,

∴1±=x 是方程0)(='x f ,即0232=++c bx ax 的两根,

由根与系数的关系,得

???????-==-)()(2 ,131 ,032a

c a b 又1)1(-=f ,∴1-=++c b a , (3)

由(1)、(2)、(3)解得2

3,0,21-===c b a . 解法二:由0)1()1(='=-'f f 得

023=++c b a , (1)

023=+-c b a (2)

又1)1(-=f ,∴1-=++c b a , (3)

解(1)、(2)、(3)得2

3,0,21-===

c b a . 2.x x x f 2321)(3-=,∴).1)(1(232323)(2+-=-='x x x x f 当1-x 时,0)(>'x f ,当11<<-x 时,.0)(<'x f

∴函数)(x f 在()1,-∞-和()+∞,1上是增函数,在(-1,1)上是减函数.

∴当1-=x 时,函数取得极大值1)1(=-f ,

当1=x 时,函数取得极小值1)1(-=f .

说明:解题的成功要靠正确思路的选择.本题从逆向思维的角度出发,根据题设结构进行逆向联想,合理地实现了问题的转化,使抽象的问题具体化,在转化的过程中充分运用了已知条件确定了解题的大方向.可见出路在于“思想认识”.在求导之后,不会应用0)1(=±'f 的隐含条件,因而造成了解决问题的最大思维障碍.

函数的极值与导数教案完美版

《函数的极值与导数》教案 §1.3.2函数的极值与导数(1) 【教学目标】 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤. 【教学重点】极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】对极大、极小值概念的理解及求可导函数的极值的步骤. 【内容分析】 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号. 【教学过程】 一、复习引入: 1. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内/ y >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数. 2.用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间.③令f ′(x )<0解不等式,得x 的范围,就是递减区间. 二、讲解新课: 1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有f(x)<f(x 0),就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点. 2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有f(x)>f(x 0).就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点. 3.极大值与极小值统称为极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f . (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,) (0x f

高中数学:导数与函数的极值、最值练习

高中数学:导数与函数的极值、最值练习 (时间:30分钟) 1.函数f(x)=ln x-x在区间(0,e]上的最大值为( B ) (A)1-e (B)-1 (C)-e (D)0 解析:因为f′(x)=-1=,当x∈(0,1)时,f′(x)>0;当x∈(1,e]时, f′(x)<0,所以f(x)的单调递增区间是(0,1),单调递减区间是(1,e],所以当x=1时,f(x)取得最大值ln 1-1=-1. 2.(豫南九校第二次质量考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( C ) (A)4 (B)2或6 (C)2 (D)6 解析:因为f(x)=x(x-c)2, 所以f′(x)=3x2-4cx+c2, 又f(x)=x(x-c)2在x=2处有极小值, 所以f′(2)=12-8c+c2=0,解得c=2或6, c=2时,f(x)=x(x-c)2在x=2处有极小值; c=6时,f(x)=x(x-c)2在x=2处有极大值; 所以c=2. 3.函数f(x)=3x2+ln x-2x的极值点的个数是( A ) (A)0 (B)1 (C)2 (D)无数 解析:函数定义域为(0,+∞),且f′(x)=6x+-2=,不妨设g(x)=6x2-2x+1. 由于x>0,令g(x)=6x2-2x+1=0,则Δ=-20<0, 所以g(x)>0恒成立,故f′(x)>0恒成立, 即f(x)在定义域上单调递增,无极值点. 4.(银川模拟)已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax(a>),当x∈(-2,0)时,f(x)的最小值为1,则a的值等于( D ) (A)4 (B)3 (C)2 (D)1 解析:由题意知,当x∈(0,2)时,f(x)的最大值为-1. 令f′(x)=-a=0,得x=,

导数题型总结(12种题型)

导数题型总结 1.导数的几何意义 2.导数四则运算构造新函数 3.利用导数研究函数单调性 4.利用导数研究函数极值和最值 5.①知零点个数求参数范围②含参数讨论零点个数 6.函数极值点偏移问题 7.导函数零点不可求问题 8.双变量的处理策略 9.不等式恒成立求参数范围 10.不等式证明策略 11.双量词的处理策略 12.绝对值与导数结合问题 导数专题一导数几何意义 一.知识点睛 导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。 二.方法点拨: 1.求切线 ①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导

数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0). ②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。 2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上 三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习 1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是 2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.3 3.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= 4.(2014江西)若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是 5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2 + x b (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=2 1e x 上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B. 2(1-ln2) C.1+ln2 D.2(1+ln2) 7.若存在过点(1,0)的直线与曲线y=x 3 和y=ax 2 + 4 15 x-9都相切,则a 等于 8.抛物线y=x 2 上的点到直线x-y-2=0的最短距离为 A. 2 B.8 27 C. 2 2 D. 1

高中数学人教版选修2-2(理科)第一章导数及其应用1.3.2函数的极值与导数同步练习C卷

高中数学人教版选修2-2(理科)第一章导数及其应用 1.3.2函数的极值与导数同 步练习C卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共7题;共14分) 1. (2分)点是曲线上任意一点,则点到直线的距离的最小值是() A . 1 B . C . 2 D . 2. (2分)下面说法正确的是() A . 若不存在,则曲线在点处没有切线 B . 若曲线在点处有切线,则必存在 C . 若不存在,则曲线在点处的切线斜率不存在 D . 若曲线在点处没有切线,则有可能存在 3. (2分)函数有(). A . 极大值5,极小值-27; B . 极大值5,极小值-11; C . 极大值5,无极小值; D . 极小值-27,无极大值

4. (2分)已知函数f(x)=ax+4,若,则实数a的值为() A . 2 B . -2 C . 3 D . -3 5. (2分)已知函数在x=1处的导数为1,则() A . 3 B . C . D . 6. (2分)已知f(x)为R上的可导函数,且对?x∈R,均有f(x)>f′(x),则有() A . e2016f(﹣2016)<f(0),f(2016)<e2016f(0) B . e2016f(﹣2016)>f(0),f(2016)>e2016f(0) C . e2016f(﹣2016)<f(0),f(2016)>e2016f(0) D . e2016f(﹣2016)>f(0),f(2016)<e2016f(0) 7. (2分)若f(x)=x4﹣4x+m在区间[0,2]上任取三个数a,b,c,都存在f(a),f(b),f(c)为边长的三角形,则m的取值范围是() A . m>3 B . m>6 C . m>8

导数与函数的极值、最值考点与题型归纳

导数与函数的极值、最值考点与题型归纳 考点一 利用导数研究函数的极值 考法(一) 已知函数的解析式求函数的极值点个数或极值 [例1] 已知函数f (x )=x -1+a e x (a ∈R ,e 为自然对数的底数),求函数 f (x )的极值. [解] 由f (x )=x -1+a e x ,得f ′(x )=1-a e x . ①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0, 得e x =a ,即x =ln a , 当x ∈(-∞,ln a )时,f ′(x )<0; 当x ∈(ln a ,+∞)时,f ′(x )>0, 所以函数f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增,故函数f (x )在x =ln a 处取得极小值且极小值为f (ln a )=ln a ,无极大值. 综上,当a ≤0时,函数f (x )无极值; 当a >0时,函数f (x )在x =ln a 处取得极小值ln a ,无极大值. [例2] 设函数f (x )=ln(x +1)+a (x 2-x ),其中a ∈R.讨论函数f (x )极值点的个数,并说明理由. [解] f ′(x )=1 x +1+a (2x -1)=2ax 2+ax -a +1x +1(x >-1). 令g (x )=2ax 2+ax -a +1,x ∈(-1,+∞). ①当a =0时,g (x )=1,f ′(x )>0,函数f (x )在(-1,+∞)上单调递增,无极值点. ②当 a >0时,Δ=a 2-8a (1-a )=a (9a -8). 当0<a ≤8 9时,Δ≤0,g (x )≥0,f ′(x )≥0, 函数f (x )在(-1,+∞)上单调递增,无极值点. 当a >8 9 时,Δ>0, 设方程2ax 2+ax -a +1=0的两根为x 1,x 2(x 1<x 2),

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

高中数学选修2-2精品教案 3.2 函数的极值与导数

§1.3.2函数的极值与导数(1课时) 【学情分析】: 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。 【教学目标】: (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】: 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】: 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 教学 环节 教学活动设计意图 创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数() h t在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数() h t的图像,如图3.3-9.可以看出() h a ';在t a =,当t a <时,函数() h t单调递增,()0 h t'>;当t a >时,函数() h t单调递减,()0 h t'<;这就说明,在t a =附近,函数值先增(t a <,()0 h t'>)后减(t a >,()0 h t'<).这样,当t在a的附近从小到大经过a时,() h t'先正后负,且() h t'连续变化,于是有()0 h a '=. 对于一般的函数() y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号

第三十九讲:函数的极值最值与导数

第三十九讲 函数的极值、最值与导数 一、引言 1.用导数求函数的极大(小)值,求函数在连续区间上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为高考试题的又一热点. 2.考纲要求:了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值和极小值,能求出最大值和最小值;会利用导数解决某些实际问题. 3.考情分析:2010年高考预测对本专题内容的考查将继续以解答题形式与解析几何、不等式、平面向量等知识结合,考查最优化问题,加强了能力考查力度,使试题具有更广泛的实际意义,更体现了导数作为工具分析和解决一些函数性质问题的方法. 二、考点梳理 1.函数的极值: 一般地,设函数()y f x =在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说()0f x 是函数()y f x =的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说()y f x =是函数()y f x =的一个极小值.极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 理解极值概念要注意以下几点: (1)极值是一个局部概念.由定义可知,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (2)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值.如下图所示,1x 是极大值点,4x 是极小值点,而4()f x >)(1x f . 2.函数极值的判断方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

(完整word版)高考导数题型归纳

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例 已知函数f (x )=x 3﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 练习 1. 已知曲线x x y 33 -= (1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。答案:(03=+y x 或027415=--y x ) (2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。 2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1) 题型3 求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x );

(完整版)导数与极值、最值练习题

三、知识新授 (一)函数极值的概念 (二)函数极值的求法:(1)考虑函数的定义域并求f'(x); (2)解方程f'(x)=0,得方程的根x (可能不止一个) (3)如果在x 0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x )是 极大值;反之,那么f(x )是极大值 题型一图像问题 1、函数() f x的导函数图象如下图所示,则函数() f x在图示区间上() (第二题图) A.无极大值点,有四个极小值点 B.有三个极大值点,两个极小值点 C.有两个极大值点,两个极小值点 D.有四个极大值点,无极小值点 2、函数() f x的定义域为开区间() a b ,,导函数() f x '在() a b ,内的图象如图所示,则函数() f x在 开区间() a b ,内有极小值点() A.1个 B.2个 C.3个 D.4个 3、若函数2 () f x x bx c =++的图象的顶点在第四象限,则函数() f x '的图象可能为() D. C. B. A. 4、设() f x '是函数() f x的导函数,() y f x ' =的图象如下图所示,则() y f x =的图象可能是() C. A.

5、 已知函数 () f x 的导函数 () f x '的图象如右图所示,那么函数()f x 的图象最有可能的是( ) -1 1 f '(x ) y x O 6、()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是( ) 2x O 22D. C. B. A. O x O x x O x y 7、如果函数 () y f x =的图象如图,那么导函数()y f x '=的图象可能是( ) y y y x x x y x D C A x y y=f(x)

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

函数的极值与导数-复习课导学案(可编辑修改word版)

f(a) O a x y f ( b) O b x 【学习目标】: 函数的极值与导数(复习学案) 1.回顾函数极值的概念. 2.总结掌握函数极值的四种类型题型. 3.培养分析问题、解决问题的能力. 【温故知新】: 极值的概念: 一般地,设函数f(x)在点x0附近有意义,如果对x0附近的所有的点,都有f(x)<f(x0),则f(x0)是函数f(x)的,其中x0叫作函数的. 如果对x0附近的所有的点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个,其中x0叫作函数的. 【类型1】:函数y=f(x)的图象与函数极值 【针对训练1】 1.图3 中的极大值点有;极小值点有. 2.观察函数在X2 与X6 的极值,能发现什么? 【类型2】导数y=f(x)的图象与函数极值 1.由图3 分析极值与导数的关系

x0是函数f(x)的极值点f(x0) =0 f(x0) =0 x0是函数f(x)的极值点 总结:f(x0)=0 是函数取得极值的条件. 2.利用导数判别函数的极大(小)值: 一般地,当函数f(x)在点x0处连续时,且f ' (x0)=0,判别f(x0)是极大(小)值的方法是: (1)如果在x0附近的左侧f '(x)>0,右侧f '(x)<0,那么,f(x0)是; ⑵如果在x0附近的左侧f '(x)<0,右侧f '(x)>0,那么,f(x0)是;【针对训练2】 导函数y=f’(x)的图像如图,试找出函数y=f(x)的极值点, 并指出那些是极大值点,那些是极小值点? 【针对训练3】 导函数y=f’(x)的图像如图,在标记的点中哪一点处 (1)导函数y=f’(x)有极大值? (2)导函数y=f’(x)有极小值? (3)函数y=f(x)有极大值? (4)函数y=f(x)有极小值? 【类型3】求函数y=f(x)的极值 求函数极值(极大值,极小值)的一般步骤: (1) (2) (3) (4) (5)

(完整版)导数--函数的极值练习题

导数--函数的极值练习题 一、选择题 1.下列说法正确的是( ) A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值 B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值 C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值 D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2.下列四个函数,在x =0处取得极值的函数是 ( ) ①y =x 3 ②y =x 2+1 ③y =|x | ④y =2x A.①② B.②③ C.③④ D.①③ 3.函数y = 2 16x x +的极大值为( ) A.3 B.4 C.2 D.5 4.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为( )A.0 B.1 C.2 D.4 5.y =ln 2x +2ln x +2的极小值为( ) A.e - 1 B.0 C.-1 D.1 6.y =2x 3-3x 2+a 的极大值为6,那么a 等于( ) A.6 B.0 C.5 D.1 7.对可导函数,在一点两侧的导数异号是这点为极值点的 A.充分条件 B.必要条件 C.充要条件 D.既不充分又不必要条件 8.下列函数中, 0=x 是极值点的函数是( ) A.3 x y -= B.x y 2 cos = C.x x y -=tan D.x y 1= 9.下列说法正确的是( ) A. 函数在闭区间上的极大值一定比极小值大; B. 函数在闭区间上的最大值一定是极大值; C. 对于12)(2 3+++=x px x x f ,若6||< p ,则)(x f 无极值; D.函数)(x f 在区间),(b a 上一定存在最值. 10.函数2 2 3 )(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为( ) A.)3,3(- B.)11,4(- C. )3,3(-或)11,4(- D.不存在 11.函数|6|)(2--=x x x f 的极值点的个数是( ) A. 0个 B. 1个 C. 2个 D.3个 12.函数x x x f ln )(= ( ) A.没有极值 B.有极小值 C. 有极大值 D.有极大值和极小值 二.填空题: 13.函数x x x f ln )(2 =的极小值是 14.定义在]2,0[π上的函数4cos 2)(2-+=x e x f x 的极值情况是 15.函数)0(3)(3 >+-=a b ax x x f 的极大值为6,极小值为2,则)(x f 的减区间是 16.下列函数①3 2x y =,②x y tan =,③|1|3++=x x y ,④x xe y =,其中在其定义区间上存在极值点的函 数序号是 17.函数f (x )=x 3-3x 2+7的极大值为___________. 18.曲线y =3x 5-5x 3共有___________个极值. 19.函数y =-x 3+48x -3的极大值为___________;极小值为___________. 20.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a =___________,b =___________. 三.解答题 21.已知函数f (x )=x 3+ax 2+bx +c ,当x =-1时,取得极大值7;当x =3时,取得极小值.求这个极小值及a 、b 、c 的值. 22.函数f (x )=x +x a +b 有极小值2,求a 、b 应满足的条件. 23.已知函数f(x)=x 3+ax 2+bx+c 在x =2处有极值,其图象在x =1处的切线垂直于直线y =3 1x -2 (1)设f(x)的极大值为p ,极小值为q ,求p-q 的值; (2)若c 为正常数,且不等式f(x)>mx 2在区间(0,2)内恒成立,求实数m 的取值范围。

导数与函数的极值专题

导数与函数的极值专题 1.函数的极值 (1)函数的极小值: 函数y=f (x )在点x=a 的函数值f (a )比它在点x=a 附近其他点的函数值都 ;,f ' (a )= ;而且在点x=a 附近的左侧 ,右侧 ,则 叫作函数y=f (x )的极小值点, 叫作函数y=f (x )的极小值. (2)函数的极大值: 函数y=f (x )在点x=a 的函数值f (a )比它在点x=a 附近其他点的函数值都 ;,f ' (a )= ;而且在点x=a 附近的左侧 ,右侧 ,则 叫作函数y=f (x )的极大值点, 叫作函数y=f (x )的极大值. 极小值点、极大值点统称为极值点,极大值和极小值统称为极值. 2、利用导数求函数极值的一般步骤: (1) 求导函数f /(x); (2) 求解方程f /(x)=0; (3)检查f /(x)在方程f /(x)=0的根的左右的符号,并根据符号确定极大值与极小值 题型1:极值与导数的关系: 1、已知定义在R 的函数f(x),则“0x 是函数 f(x)的极值点”是“0)(0='x f ”的( ) A. 充分不必要条件 B.必要不充分条件 C.充要条件 D.以上都不对 2、已知定义在R 的可导函数f(x),则“0x 是函数 f(x)的极值点”是“0)(0='x f ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.以上都不对 3、已知函数f (x )=2e f '(e)ln x e x -(e 是自然对数的底数),则f (x )的极大值为( ) A .2e -1 B .e 1- C .1 D .2ln 2 4、设f (x )=12x 2-x+cos(1-x ),则函数f (x ) ( ) A .有且仅有一个极小值 B .有且仅有一个极大值 C .有无数个极值 D .没有极值

函数的极值与导数(教案

1.3.2 函数的极值与导数(教案) 一、教学目标 1 知识与技能 〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值 2过程与方法 结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。 3情感与价值 感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。 二、重点:利用导数求函数的极值 难点:函数在某点取得极值的必要条件与充分条件 三、教学基本流程 四、教学过程 〈一〉、创设情景,导入新课 1、通过上节课的学习,导数和函数单调性的关系是什么?

(提高学生回答) 2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数 ()h t =-4.9t 2 +6.5t+10的图象,回答 以下问题 (1)当t=a 时,高台跳水运动员距水面的高度最大,那么函数()h t 在t=a 处的导数是多少呢? (2)在点t=a 附近的图象有什么特点? (3)点t=a 附近的导数符号有什么变化规律? 共同归纳: 函数h(t)在a 点处h /(a)=0,在t=a 的附近,当t <a 时,函数()h t 单调递增, ()'h t >0;当t >a 时,函数()h t 单调递减, ()'h t <0,即当t 在a 的附近从小到大经过a 时, ()'h t 先正后负,且()'h t 连续变化,于是h /(a)=0. 3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢? <二>、探索研讨 1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题: a o h t

函数极值与导数练习(基础)

函数极值与导数(基础) 1.下列说法正确的是 A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值 B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值 C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值 D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2、函数()f x 的定义域为开区间()a b ,,导函数()f x '在()a b ,内的图象如图所示,则函数()f x 在开区间()a b ,内有极小值点( ) A .1个 B .2个 C .3个 D .4个 3、函数3()13f x x x =+-有( ) A .极小值-1,极大值1 B .极小值-2,极大值3 C .极小值-2,极大值2 D .极小值-1,极大值3 4、如果函数()y f x =的导函数的图象如图所示,给出下列判断: ①函数()y f x =在区间13,2?? -- ?? ?内单调递增; ②函数()y f x =在区间1,32?? - ??? 内单调递减; ③函数()y f x =在区间(4,5)内单调递增; ④当4x =时,函数()y f x =有极小值; ⑤当12 x =-时,函数()y f x =有极大值; 则上述判断中正确的是___________. 5、函数3223y x x a =-+的极大值是6,那么实数a 等于_______ 6、函数x x x f ln 1 )(+= 的极小值等于_______. 7、求下列函数的极值: (1).x x x f 12)(3-=;(2).2()x f x x e =;(3)..21 2)(2-+= x x x f 8、已知)0()(23≠++=a cx bx ax x f 在1±=x 时取得极值,且1)1(-=f . (1).试求常数a 、b 、c 的值; (2).试判断1±=x 是函数的极小值还是极大值,并说明理由. 9、已知函数()()3220f x x ax x a =+++>的极大值点和极小值点都在区间()1,1-内, 则实数a 的取值范围是.

人教版 高中数学 选修2-2 1.3.2函数的极值与导数练习

人教版高中数学精品资料 高中数学 1.3.2函数的极值与导数练习 新人 教A 版选修2-2 一、选择题 1.(2015·吉林实验中学高二期中)已知函数y =f (x )在定义域内可导,则函数y =f (x )在某点处的导数值为0是函数y =f (x )在这点处取得极值的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 [答案] B [解析] 根据导数的性质可知,若函数y =f (x )在这点处取得极值,则f ′(x )=0,即必要性成立;反之不一定成立,如函数f (x )=x 3 在R 上是增函数,f ′(x )=3x 2 ,则f ′(0)=0,但在x =0处函数不是极值,即充分性不成立. 故函数y =f (x )在某点处的导数值为0是函数y =f (x )在这点处取得极值的必要不充分条件,故选B. 2.函数y =14x 4-13x 3 的极值点的个数为( ) A .0 B .1 C .2 D .3 [答案] B [解析] y ′=x 3 -x 2 =x 2 (x -1),由y ′=0得x 1=0,x 2=1. 当x 变化时,y ′、y 的变化情况如下表 3.已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3 的极大值点坐标为(b ,c ),则 ad 等于( ) A .2 B .1 C .-1 D .-2 [答案] A

[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc , 又(b ,c )为函数y =3x -x 3 的极大值点, ∴c =3b -b 3 ,且0=3-3b 2, ∴? ?? ?? b =1, c =2,或? ?? ?? b =-1, c =-2.∴a d =2. 4.已知f (x )=x 3 +ax 2 +(a +6)x +1有极大值和极小值,则a 的取值范围是( ) A .-16 D .a <-1或a >2 [答案] C [解析] f ′(x )=3x 2 +2ax +a +6, ∵f (x )有极大值与极小值, ∴f ′(x )=0有两不等实根, ∴Δ=4a 2 -12(a +6)>0,∴a <-3或a >6. 5.已知函数f (x )=x 3 -px 2 -qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( ) A.4 27 ,0 B .0,4 27 C .-4 27,0 D .0,-4 27 [答案] A [解析] f ′(x )=3x 2 -2px -q , 由f ′(1)=0,f (1)=0得, ? ?? ?? 3-2p -q =0,1-p -q =0,解得? ?? ?? p =2, q =-1,∴f (x )=x 3-2x 2 +x . 由f ′(x )=3x 2 -4x +1=0得x =13或x =1, 易得当x =13时f (x )取极大值4 27. 当x =1时f (x )取极小值0. 6.函数f (x )=-x e x (a f (b ) D .f (a ),f (b )的大小关系不能确定

导数--函数的极值练习题

司老师在这节课上将抽象的知识通俗化、枯燥的内容生动化,是一节成功的公开课。司老师语言简练,言简意赅,教学思路清晰,教学过程设计合理,由浅入深,循序渐进,符合学生的认知规律。 教学中突出了“零点的概念”这个重点内容。教师能够围绕函数零点的本质,设置了一系列的问题串,不断启发学生发现问题,引导学生参与学习过程,最终得出函数零点的概念,很好的解决了本节课的学习重难点。 本节课容量大,内容丰富,对问题的发生和对典型例题的评讲,十分重视渗透“由特殊到一般”,“数形结合”等数学思想方法,取得了很好的教学效果。如,将方程有实根这个代数问题,转化为对应函数的图像与x 轴的交点问题,函数图像与x 轴的交点的判定又通过计算函数值来实现。这样就将方程、函数、图像三者融为一体。 高三第三章导数--函数的极值练习题 一、选择题(本大题共6小题,每小题3分,共18分) 1.下列说法正确的是 A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值 B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值 C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值 D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2.下列四个函数,在x =0处取得极值的函数是 ①y =x 3 ②y =x 2+1 ③y =|x | ④y =2x A.①② B.②③ C.③④ D.①③ 3.函数y =216x x 的极大值为 A.3 B.4 C.2 D.5 4.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为 A.0 B.1 C.2 D.4 5.y =ln 2x +2ln x +2的极小值为 A.e -1 B.0 C.-1 D.1 6.y =2x 3-3x 2+a 的极大值为6,那么a 等于

相关主题
文本预览
相关文档 最新文档