当前位置:文档之家› 判断点是否在多边形内的5种方法

判断点是否在多边形内的5种方法

判断点是否在多边形内的5种方法
判断点是否在多边形内的5种方法

判断点是否在多边形内(凸包和任意多边形分类讨论)

/*

POJ 1548:判断是否为凸包,判断点(圆是否在凸包内),其中判定点是否在多边形内是主要部分

Sample Input

5 1.5 1.5 2.0

1.0 1.0

2.0 2.0

1.75

2.0

1.0 3.0

0.0 2.0

5 1.5 1.5 2.0

1.0 1.0

2.0 2.0

1.75

2.5

1.0 3.0

0.0 2.0

1

Sample Output

HOLE IS ILL-FORMED

PEG WILL NOT FIT

*/

//法1、2:叉积判定、面积法判定(适用于凸包)。

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

#include

using namespace std;

#define maxn 10005

#define eps 1e-8

#define max(x,y) (x>y?x:y)

#define min(x,y) (x

int Fabs(double d) //重点:精度控制,如果d精度很高,如-0.00000000001即使是小于0,但也当做是0,关系到后面数据处理

{

if(fabs(d)

else return d>0?1:-1;

}

struct point

{

double x,y;

bool operator == (const point& p)

{

return Fabs(x-p.x)==0&&Fabs(y-p.y)==0;

}

}p[maxn];

int n;

double pegx,pegy,pegr,max_x,max_y;

double x_multi(point p1,point p2,point p3)

{

return (p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y);

}

bool point_is_inside() //叉积判断点在凸包内部!只针对于凸多边形。圆心连接每一条边的端点得到的叉积必须同向。以此可以延伸出面积法判定点是否在凸包内部。这两种方法都局限于在凸多边形

{

point p1;

p1.x=pegx,p1.y=pegy;

int i,flag=1;

double tmp1=0.0,tmp2;

for(i=0;i

{

tmp2=Fabs(x_multi(p1,p[i],p[(i+1)%n]));

if(tmp1*tmp2<-eps)

{

flag=0;

break;

}

tmp1=tmp2;

}

return flag;

}

double Len_ab(point p1,point p2)

{

return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));

}

bool circle_is_inside() //判断圆是否在凸包内

{

if(pegr==0.0)

return true;

int i;

double ans;

point peg,t;

peg.x=pegx,peg.y=pegy;

for(i=0;i

{

t=peg;

t.x+=p[i].y-p[(i+1)%n].y;

t.y+=p[(i+1)%n].x-p[i].x;

if(Fabs(x_multi(peg,t,p[i])*x_multi(peg,t,p[(i+1)%n]))==1) //如果垂足不在线段上则选择到线段两个端点距离较小的

ans=Fabs(Len_ab(peg,p[i])-Len_ab(peg,p[(i+1)%n]))==-1?Len_ab(peg,p[i]):Len_ab(peg,p[(i +1)%n]);

else

ans=fabs(x_multi(peg,p[(i+1)%n],p[i]))/Len_ab(p[i],p[(i+1)%n]); // 否则利用面积/底边得到最小距离

if(ans-pegr<-eps)

return false;

}

return true;

}

int main()

{

int i,j;

while(scanf("%d",&n)&&n>=3)

{

scanf("%lf%lf%lf",&pegr,&pegx,&pegy);

for(i=0;i

scanf("%lf%lf",&p[i].x,&p[i].y);

double tmp1=0.0,tmp2;

bool flag=true;

for(i=0;i

{

tmp2=Fabs(x_multi(p[i],p[(i+1)%n],p[(i+2)%n])); //精度控制,否则一直wrong

if(tmp1*tmp2<-eps)

{

flag=false;

break;

}

tmp1=tmp2;

}

if(!flag)

{

puts("HOLE IS ILL-FORMED");

continue;

}

if(!point_is_inside()||!circle_is_inside()) //判断圆是否在凸多边形内

{

puts("PEG WILL NOT FIT");

continue;

}

puts("PEG WILL FIT");

}

return 0;

}

//法3:射线法判定点是否在多边形内部(适用于任意多边形):做一条水平射线计算与多边形的交点个数num,如果num&1则表示在多边形内,否则在多边形外。其中射线正好交与多边形端点或者与多边形的边平行需要特判。。

bool Onsegment(point p1,point p2,point p3)

{

double min_x=min(p1.x,p2.x);

double min_y=min(p1.y,p2.y);

double max_x=max(p1.x,p2.x);

double max_y=max(p1.y,p2.y);

if(p3.x>=min_x&&p3.x<=max_x&&p3.y>=min_y&&p3.y<=max_y)

return true;

return false;

}

bool Is_intersected(point p1,point p2,point p3,point p4) //线段相交

{

double d1=x_multi(p1,p2,p3);

double d2=x_multi(p1,p2,p4);

double d3=x_multi(p3,p4,p1);

double d4=x_multi(p3,p4,p2);

if(d1*d2<0.0&&d3*d4<0.0)

return true;

// if(d1==0.0&&Onsegment(p1,p2,p3)) //由于前面的特判,低处的交点不作为计算// return true;

if(d2==0.0&&Onsegment(p1,p2,p4))

return true;

if(d3==0.0&&Onsegment(p3,p4,p1))

return true;

if(d4==0.0&&Onsegment(p3,p4,p2))

return true;

return false;

}

double Dot(point p1,point p2,point p3) //点积

{

return (p2.x-p1.x)*(p3.x-p1.x)+(p2.y-p1.y)*(p3.y-p1.y);

}

int pointonsegment(point p0,point p1,point p2) //判断点是否在线段上

{

return Fabs(x_multi(p0,p1,p2))==0&&Fabs(Dot(p0,p1,p2))<=0;

}

bool point_is_inside()

{

int i,num=0;

point p1,peg,p2,p3;

p1.x=999999999.0,p1.y=pegy,peg.x=pegx,peg.y=pegy; //p1坐为在射线极远处的一个点,可以将射线看做线段

for(i=0;i

{

if(p[i].y==p[(i+1)%n].y) //如果和多边形的边平行,则判断起点是否在多边形的该边上,避免了和边重合算作无数多个点

{

if(pointonsegment(peg,p[i],p[(i+1)%n])) //判断点是否在线段上

return true;

}

else

{

p2=p[i],p3=p[(i+1)%n];

if(p2.y>p3.y) //画图知在与多边形端点相交的时候直接计算交的次数都无法直接判定是否在多边形的内外。一条线段的端点有高低之分,此时规定高点的交点为有效交点

swap(p2,p3);

if(Is_intersected(peg,p1,p2,p3))

num++;

}

}

return num%2==1;

}

//法4:角度和判定法,适用于任意多边形。如果点在多边形内则点连接多边形每条边的到的角度*叉积和为360. 在边上的话为180.

double x_multi(point p1,point p2,point p3)

{

return (p2.x-p1.x)*(p3.y-p1.y)-(p3.x-p1.x)*(p2.y-p1.y);

}

double Len_ab(point p1,point p2)

{

return sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y));

}

double Dot(point p1,point p2,point p3)

{

return (p2.x-p1.x)*(p3.x-p1.x)+(p2.y-p1.y)*(p3.y-p1.y);

}

int pointonsegment(point p1,point p2,point p3)

{

return Fabs(x_multi(p1,p2,p3))==0&&Fabs(Dot(p1,p2,p3))<=0;

}

bool point_is_inside()

{

int i;

double sum=0.0;

for(i=0;i

{

if(p0==p[i]) //点在多边形端点上

return true;

if(p[i]==p[(i+1)%n]) //去重点

continue;

if(pointonsegment(p0,p[i],p[(i+1)%n])) //点在多边形边上

return true;

double a=Len_ab(p0,p[i]);

double b=Len_ab(p0,p[(i+1)%n]);

double c=Len_ab(p[i],p[(i+1)%n]);

sum+=Fabs(x_multi(p0,p[i],p[(i+1)%n]))*acos((a*a+b*b-c*c)/(2.0*a*b)); //计算角度和,叉积大于0则加上,小于0则减去

}

sum=fabs(sum);

if(Fabs(sum-2.0*pi)==0)

return true;

return false;

}

/法5:改进弧长法(适用于任意多边形)——权威算法!精度很高!以下对于该算法的解析摘自https://www.doczj.com/doc/5b6870050.html,/zhuangxie1013/item/7b7e1443abde1a9e833ae1ae

该算法只需O(1)的附加空间,时间复杂度为O(n),系数很小;最大的优点是具有很高的精度,只需做乘法和减法,若针对整数坐标则完全没有精度问题.而且实现起来也非常简单,比转角法和射线法都要好写且不易出错.

有关"弧长法"的介绍:"弧长法要求多边形是有向多边形,一般规定沿多边形的正向,边的左侧为多边形的内侧域.以被测点为圆心作单位圆,将全部有向边向单位圆作径向投影,并计算其中单位圆上弧长的代数和,若代数和为0,则点在多边形外部;若代数和为2π,则点在多边形内部;若代数和为π,则点在多边形上."

根据上面的介绍,其实弧长法就是转角法,但它的改进方法比较比较厉害:将坐标原点平移到被测点P,这个新坐标系将平面划分为4个象限,对每个多边形顶点P,只考虑其所在的象限,然后按邻接顺序访问多边形的各个顶点P,分析P[i]和P[i+1],有下列三种情况:

(1) P[i+1]在P[i]的下一象限,此时弧长和加π/2;

(2)P[i+1]在P[i]的上一象限,此时弧长和减π/2;

(3)P[i+1]在P[i]的相对象限,首先计算f=p[i+1].y*p[i].x-p[i+1].x*p[i].y(叉积),若f=0,则点在多边形上;若f<0,弧长和减π;若f>0,弧长和加π.最后对算出的代数和和上述的情况一样判断即可.

实现的时候还有两点要注意:

1> 若P的某个坐标为0时,一律当正号处理;

2> 若被测点和多边形的顶点重合时要特殊处理.

还有一个问题那就是当多边形的某条边在坐标轴上而且两个顶点分别在原点的两侧时会出错,如边(3,0)……>(-3,0),按以上的处理,象限分别是第一和第二,这样会使代数和加π/2,有可能导致最后结果是被测点在多边形外,而实际上被测点是在多边形上(该边穿过该点).

对于这点,处理办法是:每次计算P[i]和P[i+1]时,就计算叉积和点积,判断该点是否在该边上,是则判断结束,否则继续上述过程,这样牺牲了时间,但保证了正确性.

具体实现的时候,由于只需知道当前点和上一点的象限位置,所以附加空间只需O(1).实现的时候可以把上述的"π/2"改成1,"π"改成2,这样便可以完全使用整数进行计算,不必考虑顶点的顺序,逆时针和顺时针都可以处理,只是最后的代数和符号不同而已

int get_tmp(point p0)

{

return p0.x>=0?(p0.y>=0?0:3):(p0.y>=0?1:2);

}

bool point_is_inside()

{

int tmp1,tmp2,sum=0,i;

point p0,p1;

p0.x=pegx,p0.y=pegy;

p1.x=p[0].x-p0.x,p1.y=p[0].y-p0.y;

tmp1=get_tmp(p1);

for(i=0;i

{

if(p[i]==p0)

break;

int t0=Fabs(x_multi(p0,p[i],p[(i+1)%n]));

int t1=Fabs((p[i].x-p0.x)*(p[(i+1)%n].x-p0.x));

int t2=Fabs((p[i].y-p0.y)*(p[(i+1)%n].y-p0.y));

if(!t0&&t1<=0&&t2<=0) //被测点在多边形边上break;

p1.x=p[(i+1)%n].x-p0.x,p1.y=p[(i+1)%n].y-p0.y;

tmp2=get_tmp(p1); //计算象限

switch((tmp2-tmp1+4)%4)

{

case 1:{ sum++; break; }

case 2:

{

if(t0>0) sum+=2;

else sum-=2;

break;

}

case 3: { sum--; break; }

}

tmp1=tmp2;

}

if(i

return false;

}

极值点偏移问题专题.(精选)

极值点偏移问题专题(0)——偏移新花样(拐点偏移) 例1已知函数()22ln f x x x x =++,若正实数1x ,2x 满足()()12+=4f x f x , 求证:122x x +≥。 证明:注意到()1=2f ,()()()12+=21f x f x f ()()()12+=21f x f x f ()2 =+210f x x x '+> ()22 =2f x x ''-+,()1=0f '',则(1,2)是()f x 图像的拐点,若拐点(1,2)也是()f x 的 对称中心,则有12=2x x +,证明122x x +≥则说明拐点发生了偏移,作图如下 想到了“极值点偏移”,想到了“对称化构造”,类似地,不妨将此问题命名为“拐点偏移”,仍可用“对称化构造”来处理. 不妨设1201x x <≤≤,要证 ()() 1221212 212x x x x f x f x +≥?≥-≥?≥- ()() ()() 11114242f x f x f x f x ?-≥-?≥+- ()()()2F x f x f x =+-,(]0,1x ∈,则 ()()()()222212212F x f x f x x x x x '''=--????=++-+-+ ? ?-????

() ( ) 1 4110 2 x x x ?? =--≥ ? ? - ?? , 得() F x在(]0,1上单增,有()()() 1214 F x F ≤=+=,得证。 2、极值点偏移PK拐点偏移常规套路 1、极值点偏移(()00 f x '=) 二次函数()() 12120 2 f x f x x x x =?+= 2、拐点偏移() () f x ''= ()()() 12 0120 22 f x f x f x x x x +=?+= 极值点偏移问题专题(1)——对称化构造(常规套路) 例1(2010 天津)已知函数()e x f x x- =. (1)求函数() f x的单调区间和极值; (2)已知函数() g x的图像与() f x的图像关于直线1 x=对称,证明:当1 x>时, ()() 12201 120 2 2 f x f x x x x x x x =?>- ?+> ()()() 120201 120 22 2 f x f x f x x x x x x x +=?>- ?+>

极值点偏移问题

极值点偏移问题总结 一、 判定方法 1、极值点偏移的定义 对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程0)(=x f 的解分别为 21x x 、,且b x x a <<<21, (1)若 02 12x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移; (2) 若0212 x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0 x 左偏; (3)若02 12 x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0 x 右偏。 2、极值点偏移的判定定理 证明:(1)因为可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,则函数)(x f y =的单调递增(减)区间为),(0x a ,单调递减(增)区间为),(0b x ,又 b x x a <<<21,有 ),(221b a x x ∈+由于0)2('21>+x x f ,故),(2 02 1x a x x ∈+,所以02 1)(2 x x x ><+,即函数极大(小)值点0x 右(左)偏。

证明:(1)因为对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,则函数)(x f y =的单调递增(减)区间为),(0x a ,单调递减(增)区间为),(0b x ,又 b x x a <<<21,有01x x <,且0202x x x <-,又)2()(201x x f x f -<,故2012)(x x x -><,所以 02 1)(2 x x x ><+,即函数极大(小)值点0x 右(左)偏. 结论(2)证明略。 二、 运用判定定理判定极值点偏移的方法 1.方法概述: (1)求出函数()f x 的极值点; (2)构造一元差函数00()()()F x f x x f x x =+-- (3)确定函数()F x 的单调性; (4)结合(0)0F =,判断()F x 的符号,从而确定00(),()f x x f x x -+的大小关系。 2.抽化模型 答题模板:若已知函数()f x 满足12()()f x f x =,0x 为()f x 的极值点,求证:1202x x x +< (1)讨论函数()f x 的单调性并求出()f x 的极值点0x ; 假设此处()f x 在()0,x -∞上单调递减,在()0,x +∞ 上单调递增。 (2)构造00()()()F x f x x f x x =+--;

品质管理七大手法

品质管理七大手法 一.介绍品质管理 二.品质管理模式 (一)PDCA (PLAN——DO——CHECK——ACTION) (二)七步法(现状把握→设定改善目标→要因解析→研讨对策→计划实施→效果确认→效果巩固) 三.检查表 (一)定义——将原始测量、检查的数据及项目毫无遗漏的又极其方便的记录下来所用的表格 (二)用途——①用于记录②用于点检③用于调查 (三)制图要点 ①制作检查表的目的明确(WHAT——做什么?) ②检查对象(项目)要正确,与工作相符合(WHY——为什么?) ③检查之频率恰当(WHEN——什么时候,隔多长时间?) ④WHO——检查人员的确定 ⑤HOW——检查之方法标准化、正确、合适 ⑥WHERE——检查区域要明确标示(制程别、检验点) ⑦检查表达格式要明确、记录方法要确定(如正、、Ⅰ、Ⅱ、△、○、√) ⑧对检查表项目要不断推准更正 ⑨数据跟踪要明确 ⑩传递途径的明确、谁要了解、向谁报告 (四)举例(线上物品不良记录表) (五)练习 欲知某生产线之不良数:8:00-10:00有划痕16PCS、生锈11PCS、凹凸不平5PCS、有纤维5PCS、变形3PCS、其它不良3PCS,10:00-12:00有划痕15PCS、生锈10PCS、凹凸不平5PCS、有纤维3PCS、其它不良2PCS,13:00-15:00有划痕10PCS、生锈10PCS、凹凸不平5PCS、有纤维1PCS、变形1PCS、其它不良1PCS,15:00-17:00有划痕10PCS、生锈5PCS、有纤维1PCS、变形1PCS、其它不良1PCS。要求每两小时进行统计一次所有不良项目的不良数,一天下来再统计出所有不良项目的总不良数。

反馈的概念及判断方法,负反馈放大电路的四种基本组态

1.反馈与反馈通路 放大电路输出量的一部分或全部通过一定的方式引回到输入回路,影 响输入,称为反馈。 基本放大电路的放大倍数 ' i o X X A =;反馈系数 o f X X F = 反馈放大电路的放大倍数 i o f X X A = 利用PPT演示方块图 基本放大电路主要功能为 放大信号,反馈网络的主 要功能为传输反馈信号。 o X 输出量 ' i X 静输入量 i X 输入量 f X 反馈量 f i ' i X X X - = 2、反馈的形式 (1)正反馈和负反馈 从反馈的结果来判断,凡反馈的结果使输出量的变化减小的为负反 馈,否则为正反馈;凡反馈的结果使净输入量减小的为负反馈,否则为正 反馈 利用PPT演示图2.4.2b, 重温 e R引入的负反馈作 用 (2)直流反馈和交流反馈 仅在直流通路中存在的反馈称为直流反馈,仅在交流通路中存在的反馈称 为交流反馈。 直流反馈的作用主要用于 稳定放大电路的静态工作 点 f R上既有直流反馈也有 交流反馈, 引入直流负反馈的目的: 稳定静态工作点; 引入交流负反馈的目的: 改善放大电路的性能

(3)局部反馈和级间反馈 (重点研究级间反馈或称总体反馈) PPT 上演示此图 只对多级放大电路中某一级起反馈作用的称为局部反馈3R 支路,将多级放大电 路的输出量引回到其输入级的输入回路的称为级间反馈4R 支路。 二、交流负反馈的组态 1.电压反馈与电流反馈 描述放大电路和反馈网络在输出端的连接方式 按取样方式划分——从输出端看 (PPT 上演示下图) 电压反馈:对交流信号而言,若基本放大电路、反馈回路、负载在取样端是并联连接,则称为并联取样。由于在这种取样方式下,f X 正比与输出电压, f X 反映的是输出电压的变化,所以又称为电压反馈。 稳定输出电压 电流反馈:对交流信号而言,若基本放大电路、反馈回路、负载在取样端是串联连接,则称为串联取样。由于在这种取样方式下,f X 正比与输出电流,f X 反映的是输出电流的变化,所以又称为电流反馈。 稳定输出电流 2. 串联反馈和并联反馈 描述放大电路和反馈网络在输入端的连接方式 按比较方式划分——从输入端看 (PPT 上演示下图) 串联反馈:对交流信号而言,信号源、基本放大电路、反馈网络在比较端是串联连接,则为串联反馈,反馈信号和输入信号以电压的形式进行叠加,产生净输入量。 f i i u u u -=' 减少净输入电压

极值点偏移的判定方法

极值点偏移的判定方法和运用策略 一、判定方法 1、极值点偏移的定义 对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,(1)若02 12 x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2) 若 02 12 x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏; (3)若02 1 2 x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏。 2、极值点偏移的判定定理 判定定理1 对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,(1)若0)2 ( '2 1>+x x f ,则02 1)(2 x x x ><+,即函数)(x f y =在区间),(21x x 上极大(小)值点0x 右(左)偏;(2)0若0)2('21<+x x f ,则021)(2 x x x <>+,即函数)(x f y =在区间),(21x x 上极大(小)值点0x 左(右)偏。 证明:(1)因为可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,则函数)(x f y =的单调递增(减)区间为),(0x a ,单调递减(增)区间为),(0b x ,又 b x x a <<<21,有 ),(221b a x x ∈+由于0)2('21>+x x f ,故),(2 021x a x x ∈+,所以02 1)(2 x x x ><+,即函数极大(小)值点0x 右(左)偏。 结论(2)证明略。 判定定理2 对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,(1)若)2()(201x x f x f -<,则 02 1)(2x x x ><+, 即函数)(x f y =在区间),(21x x 上极大(小)值点0x 右(左)偏;(2)若)2()(201x x f x f ->,则 02 1)(2x x x <>+, 即函数)(x f y =在区间),(21x x 上极大(小)值

判断反馈类型的好方法

摘要:反馈类型的判别是电子电路基础的一个重点和难点,如何才能更好地达到教学目的?在多年的教学实践中,针对近年来技校学生文化理论和专业基础普遍较差的特点,笔者总结出一种简单的直观判 别法有助于学生理解和接受。 关键词:反馈类型、判别方法、直观判别法 电子电路是电子、电工专业和电气维修等专业的专业基础课程。学好电子电路能很好地为今后学习专业课打好基础。而反馈部分是电子电路中的一个重点和难点。特别是反馈类型的判别是技校学生在学习 过程中的难点之一! 在多年的教学实践中,笔者摸索出一套克服有关反馈类型的判别知识难点的方法:借助多媒体辅助教学,将学生已学过的晶体三极管的各电极间的相对相位关系和电工基础的串并联电路及电容器导电性能等知识应用进来,并尽可能地使判别方法简单直观化,最后归纳总结,巧记关键知识要点。现将反馈类型的 直观判别方法逐一分析如下: 一、辨认电路中的反馈元件 一个电路是否存在反馈,要看该电路有没有反馈元件。要判别反馈类型,也首先要找到反馈元件的位置。因此,准确辨认电路中的反馈元件是十分重要的。 任何同时连接着输出回路和输入回路,并且影响着输入回路的元件,都是反馈元件。所以可以通过直接观察电路的方法,很快地辨认出电路的反馈元件。例如课件图1所示,图a)中电阻Rf是反馈元件;而图b)中电阻Rf就不是反馈元件,因为它只连接到输入端的接地点,并没有对输入端起到任何影响。 二、正反馈与负反馈的判别 首先,明确正反馈与负反馈的概念。 根据反馈极性的不同,可将反馈分为正反馈与负反馈。使放大器净输入量增大的反馈,称为正反馈; 反之称为负反馈。 考虑到技校学生的文化理论和专业基础都较差,为了方便学生的理解和判别,笔者把这一概念简单直观化,即通过课件图2,向学生形象地介绍:当反馈信号与输入信号加在放大器输入端的同一个电极时,

极值点偏移个人方法

方法一、指数对数不等式 适用范围:仅用于简单的对数与幂函数,指数与幂函数 优点:计算简单,一般几步就搞定 缺点:复杂的函数难以处理,一般不用此法,灵活性强,要注意加法与乘法之间的相互转换 常用结论: 2 21212121212 1212121212121212 21 12 2121212 ln 22)(ln ln 2 2 1)(2ln ln ) (ln ln ln ln ln ,ln 2ln ln e x x x x a a x x a x x a x x x x a x x a x x x x x x x x x x a x x ax x ax x e x x x x ax x a x x b a e e b a b a b a ab b a >?∴>∴=? >+=+∴>+∴+<=--∴+<--+=+==>?=>?--<+<--< 两式相加得 证:,证明:,有两个不同解例:则将乘法转化为加法 某常数技巧:若要证明 已知函数()()x f x xe x R -=∈ ,如果12x x ≠,且12()()f x f x = , 证明:12 2. x x +>

例2.已知函数x ae x x f -=)(有两个不同的零点12,x x ,求证:221>+x x . 3:设函数()x f x e ax a =-+ ()a R ∈,其图象与x 轴交于()()12,0,0A x B x 两点,且12x x <. 证明:0f ' < 【拓展提高】 4、已知函数()x f x e ax =-有两个零点12x x <,则下列说法错误的是( ) A. a e > B.122x x +>

(完整版)极值点偏移问题专题.docx

极值点偏移问题专题(0 )——偏移新花样(拐点偏移) 例 1 已知函数f x2ln x x2x ,若正实数x1,x2满足 f x1 +f x2 =4 ,求证 : x1x2 2 。 证明:注意到 f1=2 , f x1 +f x2=2f 1 f x1 +f x2=2f1 f x =2 10 +2x x f x =2 2 , f 1 =0 ,则(1,2)是 f x 图像的拐点,若拐点(1,2)也是 f x 的x2 对称中心,则有x1x2 =2 ,证明 x1x2 2 则说明拐点发生了偏移,作图如下 想到了“极值点偏移”,想到了“对称化构造”,类似地,不妨将此问题命名为“拐点偏移”,仍可用“对称化构造”来处理. 不妨设 0 x11x2,要证 x1x22 x22x11 f x2f 2 x1 4f x1f2x1 4f x1f2x1 F x f x f2x, x0,1 ,则 F x f x f2x 2 2x12 2 2x 1 x2x

1 , 4 1 x 1 0 x 2x 得 F x 在 0,1上单增,有 F x F 1 2 1 4 ,得证。 2 、极值点偏移PK 拐点偏移常规套路 1 、极值点偏移( f x00 ) 二次函数 f x1 f x2x1x22x0f x 1 f x 2 x 2 2x x 1 x1x22x0 2 、拐点偏移 f x00 f x1 f x2 2 f x0 f x1 f x2 2 f x0x2 2x0 x1 x1 x2 2x0 x2 2x0 x1 极值点偏移问题专题( 1 )——对称化构造(常规套路) 例 1 ( 2010 天津)已知函数 f x xe x. (1)求函数f x的单调区间和极值; (2)已知函数g x的图像与f x的图像关于直线x 1对称,证明:当x 1时,

极值点偏移定义及判定定理

极值点偏移定义及判定定理 所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速度不同,使得函数图像没有对称性。若函数在处取得极值,且函数与直线()f x 0x x =()y f x =y b =交于,两点,则的中点为,而往往.如下图1(,)A x b 2(,)B x b AB 12( ,)2x x M b +1202 x x x +≠所示. 极值点没有偏移 一、极值点偏移判定方法 1、极值点偏移的定义 对于函数在区间内只有一个极值点,方程的解分别为)(x f y =),(b a 0x 0)(=x f ,且,(1)若 ,则称函数在区间上极21x x 、b x x a <<<210212x x x ≠+)(x f y =),(21x x 值点偏移;(2) 若,则函数在区间上极值点左偏,简0x 0212 x x x >+)(x f y =),(21x x 0x 称极值点左偏; (3)若,则函数在区间上极值点右0x 0212 x x x <+)(x f y =),(21x x 0x 偏,简称极值点右偏。 0x 2、极值点偏移的判定定理 判定定理: 对于可导函数,在区间上只有一个极大(小)值点 )(x f y =),(b a ,方程的解分别为,且,(1)若,则0x 0)(=x f 21x x 、b x x a <<<210)2('21>+x x f ,即函数在区间上极大(小)值点右(左)偏;(2)0021)(2 x x x ><+)(x f y =),(21x x 0x 若,则,即函数在区间上极大(小)值点0)2('21<+x x f 021)(2 x x x <>+)(x f y =),(21x x 左(右)偏。 0x

表示商品品质的方法教案

货物品质的表示方法 一、表示商品品质的方法: (一)以样品表示商品品质 1.看货买卖 多用于寄售、拍卖和展卖业务中 2.凭样品买卖(Sale by sample ) (1)凭卖方样品成交(Sale by seller’s Sample) 由卖方提供样品作为交货的品质依据。 卖方提供的样品要具有代表性 卖方向买方寄出样品时,要保留“复样”(Duplicate Sample)或“留样”(Keep Sample) (2)凭买方样品成交(来样成交或来样制作) 由买方提供样品作为交货的品质依据。 卖方要制作“对等样品”(Counter Sample)或“确认样品”(Confirming Sample)或“回样”(Return Sample) 卖方根据买方提供的样品加工复制出一个类似的样品交买方确认,这个经确认的样品叫对等样。 对工业产权问题做出规定 (3)凭样品成交需注意的问题: 案例分析:我与越南某客商凭样品成交达成一笔出口镰刀的交易。合同中规定复验有效期为货物到达目的港后的60天。货物到目的港经越商复验后,未提出任何异议。但事隔半年,越商来电称:镰刀全部生锈,只能降价出售,越商因此要求我方按成交价格的40%赔偿其损失。我方接电后立即查看我方留存的复样,也发现类似情况。 问:我方应否同意对方的要求,为什么 (二)凭文字说明表示商品质量 1.凭规格买卖(Sale by specification) 凭规格买卖的技巧:卖方只需在合同中列入主要指标,而对商品品质不起重大影响的次要指标不要过多罗列。 例:我国出口大豆的规格:水分(max)15%,含油量(min)17%,杂质(max)1%,不完善粒(max)7% 2.凭等级买卖(Sale by grade) 卖方应按规定等级交货,不能以次充好,也不能以好充次 3.凭标准买卖(Sale by standard) 援引某个标准时,应载明采用的版本年份 FAQ(Fair Average Quality)良好平均品质: 某年度内的中等货或某季度、某装船月份的中等货,俗称“大路货”。(适用于农副

(完整版)极值点偏移问题的两种常见解法之比较

极值点偏移问题的两种常见解法之比较 浅谈部分导数压轴题的解法 在高考导数压轴题中,不断出现极值点偏移问题,那么,什么是极值点偏移问题?参考陈宽宏、邢友宝、赖淑明等老师的文章,极值点偏移问题的表述是:已知函数()y f x =是连续函数,在区间12(,)x x 内有且只有一个极值点0x ,且 12()()f x f x =,若极值点左右的“增减速度”相同,常常有极值点12 02 x x x += ,我们称这种状态为极值点不偏移;若极值点左右的“增减速度”不同,函数的图象不具有对称性,常常有极值点12 02 x x x +≠ 的情况,我们称这种状态为“极值点偏移”. 极值点偏移问题常用两种方法证明:一是函数的单调性,若函数()f x 在区间(,)a b 内单调递增,则对区间(,)a b 内的任意两个变量12x x 、, 1212()()f x f x x x . 二是利用“对数平均不等式”证明,什么是“对数平均”?什么又是“对数平均不等式”? 两个正数a 和b 的对数平均数定义:,,(,)ln ln ,,a b a b L a b a b a a b -?≠? =-??=? 对数平均数与算术平均数、 (,)2 a b L a b +≤≤,(此式记为对数平均不等式) 下面给出对数平均不等式的证明: i )当0a b =>时,显然等号成立 ii )当0a b ≠>时,不妨设0a b >>, ① ln ln a b a b -< -, ln ln a b a b --, 只须证:ln a b <, 1x =>,只须证:1 2ln ,1x x x x ≤-> 设1 ()2ln ,1f x x x x x =-+>,则222 21(1)()10x f x x x x -'=--=-<,所以()f x

极值点偏移定义及判定定理

1极值点偏移定义及判定定理 所谓极值点偏移问题,是指对于单极值函数,由于函数极值点左右的增减速 度不同,使得函数图像没有对称性。若函数()f x 在0x x =处取得极值,且函数 ()y f x =与直线y b =交于1(,)A x b ,2(,)B x b 两点,则AB 的中点为12(,)2 x x M b +,而往往1202 x x x +≠.如下图所示. 极值点没有偏移 一、极值点偏移判定方法 1、极值点偏移的定义 对于函数)(x f y =在区间),(b a 内只有一个极值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,(1)若 0212x x x ≠+,则称函数)(x f y =在区间),(21x x 上极值点0x 偏移;(2) 若0212 x x x >+,则函数)(x f y =在区间),(21x x 上极值点0x 左偏,简称极值点0x 左偏; (3)若0212 x x x <+,则函数)(x f y =在区间),(21x x 上极值点0x 右偏,简称极值点0x 右偏。 2、极值点偏移的判定定理 判定定理,对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,方程0)(=x f 的解分别为21x x 、,且b x x a <<<21,(1)若0)2( '21>+x x f ,则021)(2 x x x ><+,即函数)(x f y =在区间),(21x x 上极大(小)值点0x 右(左)偏;(2)0若0)2('21<+x x f ,则021)(2 x x x <>+,即函数)(x f y =在区间),(21x x 上极大(小)值点0x 左(右)偏。

国际贸易中商品品质的不同表示方法

读书破万卷,下笔如有神 国际贸易中商品品质的不同表示方法 用文字说明表示商品品质即以文字、图表、相片等方式来说明商品品质,包括: (1)凭等级买卖。指同类商品因规格不同,而用文字、数码或符号进行分类,以此来确定商品品质的交易。如2002 中国绿茶,特珍一级。 (2)凭规格买卖。指用反映商品品质的指标,如成分、含量、性能等来确定商品品质的交易。如:“统一”鲜橙多鲜橙汁饮料,鲜橙原汁含量10%。(3)凭说明书和图样买卖。对于某些工业制成品,如电器、仪表等,很难用几个简单的指标来反映其品质,而需要凭说明书、照片或图样来具体地描述其内部构造及性能,按此方式交易,称为凭说明书和图样买卖。 (4)凭标准买卖。指以政府机关或工商团体统一制定的标准来确定商品品质的交易。如美国的UL 是其电器电子产品的国家检验标准。在买卖农副产品时,还有两种常见的标准:FAQ“良好平均品质”(Fair average quality)和 GMQ“良好可销品质”(Good merchantable quality)。 (5)凭产地名称买卖。有些商品,尤其是农副土特产品,其品质因产地而异,交易中仅凭产地就可说明商品品质好坏,即凭产地名称买卖。如四川涪陵榨菜、浙江金华火腿、山东龙口粉丝等。 (6)凭商标或牌号买卖。指对某些质量稳定且在市场上有着良好声誉的商品,买卖双方在磋商和签订合同时,直接采用这些商品的商标或牌号来作为商品品质表示,按此方式交易,称为凭商标或牌号买卖。如“张小泉”剪刀、“海尔”家用电器、“Software”软件等。 以实物表示商品品质以作为交易对象的商品的实际品质或以代表商品品质的样品来表示商品品质,包括: 好记性不如烂笔头

质量管理五大工具、七大手法知识点总结

质量管理五大工具、七大手法知识点总结 五大工具 APQP APQP(Advanced Product Quality Planning)即产品质量先期策划,是一种结构化的方法,用来确定和制定确保某产品使顾客满意所需的步骤。 产品质量策划的目标是促进与所涉及的每一个人的联系,以确保所要求的步骤按时完成。有效的产品质量策划依赖于公司高层管理者对努力达到使顾客满意这一宗旨的承诺。 产品质量策划有如下的益处: 引导资源,使顾客满意; 促进对所需更改的早期识别; 避免晚期更改; 以最低的成本及时提供优质产品。 FMEA FMEA(Potential Failure Mode and Effects Analysis)即潜在的失效模式及后果分析,是在产品/过程/服务等的策划设计阶段,对构成产品的各子系统、零部件,对构成过程,服务的各个程序逐一进行分析,找出潜在的失效模式,分析其可能

的后果,评估其风险,从而预先采取措施,减少失效模式的严重程序,降低其可能发生的概率,以有效地提高质量与可靠性,确保顾客满意的系统化活动。 FMEA种类: 按其应用领域常见FMEA有设计FMEA(DFMEA)和过程FMEA(PFMEA),其它还有系统FMEA,应用FMEA,采购FMEA,服务FMEA。 MSA MSA(Measurement System Analysis)即MSA测量系统分析,它使用数理统计和图表的方法对测量系统的误差进行分析,以评估测量系统对于被测量的参数来说是否合适,并确定测量系统误差的主要成份。 PPAP PPAP(Production part approval process) 即生产件批准程序,是对生产件的控制程序,也是对质量的一种管理方法。

(完整版)导数压轴题分类(2)---极值点偏移问题(含答案)

导数压轴题分类(2)---极值点偏移问题 极值点偏移问题常见的处理方法有⑴构造一元差函数()()()x x f x f F --=02x 或者 ()()()x x f x x f x F --+=00。其中0x 为函数()x f y =的极值点。⑵利用对数平均不等式。 2 ln ln ab b a b a b a +< --< 。⑶变换主元等方法。 任务一、完成下面问题,总结极值点偏移问题的解决方法。 1.设函数2 2 ()ln ()f x a x x ax a R =-+-∈ (1)试讨论函数()f x 的单调性; (2)()f x m =有两解12,x x (12x x <),求证:122x x a +>. 解析:(1)由2 2 ()ln f x a x x ax =-+-可知 2222(2)()()2a x ax a x a x a f x x a x x x --+-'=-+-== 因为函数()f x 的定义域为(0,)+∞,所以 ① 若0a >时,当(0,)x a ∈时,()0f x '<,函数()f x 单调递减, 当(,)x a ∈+∞时,()0f x '>,函数()f x 单调递增; ② 若0a =时,当()20f x x '=>在(0,)x ∈+∞内恒成立,函数()f x 单调递增; ③ 若0a <时,当(0,)2 a x ∈-时,()0f x '<,函数()f x 单调递减, 当(,)2 a x ∈- +∞时,()0f x '>,函数()f x 单调递增; (2)要证122x x a +>,只需证12 2 x x a +>, (x)g =22 2(x)2,g (x)20(x)(x)a a f x a g f x x '''=-+-=+>∴=则为增函数。 只需证:12 x x ( )()02 f f a +''>=,即证()2121221212221+0+0a x x a x x a x x x x a -+->?-+->++(*) 又2222 111222ln ,ln ,a x x ax m a x x ax m -+-=-+-=两式相减整理得:

极值点偏移 极值点偏移定理

极值点偏移1-2---极值点偏移判定定理 一、极值点偏移的判定定理 对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,方程0)(=x f 的解分别为21,x x ,且b x x a <<<21, (1)若)2()(201x x f x f -<,则021)(2x x x ><+,即函数)(x f y =在区间),(21x x 上极(小)大值点0x 右(左)偏; (2)若)2()(201x x f x f ->,则 021)(2x x x <>+,即函数)(x f y =在区间),(21x x 上极(小)大值点0x 右(左)偏. 证明:(1)因为对于可导函数)(x f y =,在区间),(b a 上只有一个极大(小)值点0x ,则函数)(x f 的单调递增(减)区间为),(0x a ,单调递减(增)区间为),(0b x ,由于b x x a <<<21,有01x x <,且0202x x x <-,又)2()(201x x f x f -<,故2012)(x x x -><,所以 021)(2 x x x ><+,即函数极(小)大值点0x 右(左)偏; (2)证明略. 左快右慢(极值点左偏221x x m +?)

左快右慢(极值点左偏221x x m +?) 二、运用判定定理判定极值点偏移的方法 1、方法概述: (1)求出函数)(x f 的极值点0x ; (2)构造一元差函数)()()(00x x f x x f x F --+=; (3)确定函数)(x F 的单调性; (4)结合0)0(=F ,判断)(x F 的符号,从而确定)(0x x f +、)(0x x f -的大小关系. 口诀:极值偏离对称轴,构造函数觅行踪;四个步骤环相扣,两次单调紧跟随. 2、抽化模型 答题模板:若已知函数)(x f 满足)()(21x f x f =,0x 为函数)(x f 的极值点,求证:0212x x x <+. (1)讨论函数)(x f 的单调性并求出)(x f 的极值点0x ; 假设此处)(x f 在),(0x -∞上单调递减,在),(0+∞x 上单调递增. (2)构造)()()(00x x f x x f x F --+=; 注:此处根据题意需要还可以构造成)2()()(0x x f x f x F --=的形式. (3)通过求导)('x F 讨论)(x F 的单调性,判断出)(x F 在某段区间上的正负,并得出)(0x x f +与)(0x x f -的大小关系; 假设此处)(x F 在),0(+∞上单调递增,那么我们便可得出0)()()()(000=-=>x f x f x F x F ,从而得到:0x x >时,)()(00x x f x x f ->+. (4)不妨设201x x x <<,通过)(x f 的单调性,)()(21x f x f =,)(0x x f +与)(0x x f -的大小关系得出结论;

放大电路中反馈的基本概念与类型判断方法

页脚内容壹 放大电路中反馈的基本概念与类型判断方法(教案) 反馈在电路中的应用十分广泛,特别是在精度、稳定性等方面要求较高的场合,往往通过引入含有负反馈的放大电路,以达到提高输出信号稳定度、改善电路工作性能(例如,提高放大倍数的稳定性、改善波形失真、增加频带宽度、改变放大电路的输入电阻和输出电阻等)的目的。 反馈是指将电路输出信号(电压或电流)的一部分或全部,通过一定形式的反馈网络送回到输入回路,使得净输入信号发生变化从而影响输出信号的过程。 引入反馈的放大电路称为反馈放大电路,它由基本放大电路A 和反馈网络F 构成,如图所示。 图1 反馈放大电路的组成框图 反馈放大电路中,i x 是反馈放大电路的原输入信号,o x 为输出信号,f x 是反馈信号,id x 是基本放大电路的净输入信号。基本放大电路A 实现信号的正向传输,反馈网络F 则将部分或全部输出信号反向传输到输入端。 判断一个放大电路中是否存在反馈的方法是:观察放大电路中有无反馈通路,即观察放大电路输出回路与输入回路之间是否有电路元件起桥梁作用。若有,则存在反馈通路,即电路为反馈放大电路;反之,则无反馈通路,即电路为开环放大电路。

根据反馈信号与原输入信号的合成类型(相加或相减,反馈极性),可将反馈电路分为正反馈与反馈;根据反馈信号中所含成分的不同,可将反馈电路分为直流反馈与交流反馈;根据反馈信号与原输入信号在放大电路输入端合成方式的不同,可将反馈电路分为串联反馈与并联反馈;根据输出信号反馈端采样方式的不同,可将反馈电路分为电压反馈与电流反馈。为了正确分析反馈对电路性能的影响,首先必须知道如何来区别和判断反馈的类型。 1.直流反馈与交流反馈的判断 仅在放大电路直流通路中存在的反馈称为直流反馈。直流反馈影响放大电路的直流性能,如直流负反馈能稳定静态工作点。 仅在放大电路交流通路中存在的反馈称为交流反馈。交流反馈影响放大电路的交流性能,如增益、输入电阻、输出电阻及带宽等。 在放大电路交直流通路中均存在的反馈,称为交直流反馈。 例: 图2 直流反馈放大电路 页脚内容贰

高考数学压轴题归纳总结及解题方法专题讲解3---不含参数的极值点偏移问题

高考数学压轴题归纳总结及解题方法专题讲解 函数的极值点偏移问题,其实是导数应用问题,呈现的形式往往非常简洁,涉及函数的双零点,是一个多元数学问题,不管待证的是两个变量的不等式,还是导函数的值的不等式,解题的策略都是把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数. 例.(2010天津理)已知函数()()x f x xe x R ?=∈ ,如果12x x ≠,且12()()f x f x =. 证明:12 2.x x +> 构造函数()(1)(1),(0,1]F x f x f x x =+??∈, 则0)1()1(')1(')('21>?=??+=+x x e e x x f x f x F , 所以()F x 在(0,1]x ∈上单调递增,()(0)0F x F >=, 也即(1)(1)f x f x +>?对(0,1]x ∈恒成立.

由1201x x <<<,则11(0,1]x ?∈, 所以11112(1(1))(2)(1(1))()()f x f x f x f x f x +?=?>??==, 即12(2)()f x f x ?>,又因为122,(1,)x x ?∈+∞,且()f x 在(1,)+∞上单调递减, 所以122x x ?<,即证12 2.x x +> 法三:由12()()f x f x =,得1212x x x e x e ??=,化简得2121x x x e x ?=… , 不妨设21x x >,由法一知,1201x x <<<. 令21t x x =?,则210,t x t x >=+,代入 式,得11 t t x e x += , 反解出11t t x e =?,

放大电路中反馈类型的判断技巧

放大电路中反馈类型的判断技巧 【摘要】反馈是电子线路中的重要内容,反馈的类型判断包括交、直流反馈的判断,正、负反馈的判断,电压、电流反馈的判断,串联、并联反馈的判断,迅速,准确判断反馈的类型,有利于我们正确的分析电路的功能,有利于我们在电路设计中利用反馈来改善电路的性能。 【关键词】电子线路;反馈;判断;反馈类型 负反馈在电子电路中的应用非常广泛,引入负反馈后,虽然放大倍数降低了,但是换来很多好处,在很多方面改善了放大电路的性能。例如,提高了放大倍数的稳定性;改善了波形失真;尤其是通过选用不同类型的负反馈,来改变放大电路的输入电阻和输出电阻,以适应实际的需要。在电子技术的教学中,负反馈的判断一直是一个重点和难点内容。以下为反馈类型的判断方法。 1.判断反馈回路的元件 电路的放大部分就是晶体管或运算放大器的基本电路。而反馈是把放大电路输出端信号的一部分或全部引回到输入端的一条回路。这条回路通常是由电阻和电容构成。寻找这条回路时,要特别注意不能直接经过电源端和接地端,例如图1如果只考虑极间反馈则放大通路是由T1的基极到T1的集电极再经过T2的基极到T2的集电极;而反馈回路是由T2的集电极经R1至T1的发射极。反馈信号Uf=Ve1影响净输入电压信号ube1。 任何同时连接着输出回路和输入回路,并且影响着输入回路的元件,都是反馈元件。所以可以通过直接观察电路的方法,很快地辨认出电路的反馈元件。例如课件图2所示,图2a)中电阻Rf是反馈元件;而图2b)中电阻Rf就不是反馈元件,因为它只连接到输入端的接地点,并没有对输入端起到任何影响。 2.反馈类型的判断 2.1 交直流的判断 根椐电容“隔直通交”的特点,我们可以判断出反馈的交直流特性。如果反馈回路中有电容接地,则为直流反馈,其作用为稳定静态工作点;如果回路中串联电容,则为交流反馈,改善放大电路的动态特性;如果反馈回路中只有电阻或只有导线,则反馈为交直流共存。如图3所示: 2.2 正负反馈的判断 正负反馈的判断使用瞬时极性法。瞬时极性是一种假设的状态,它假设在放大电路的输入端引入一瞬时增加的信号。这个信号通过放大电路和反馈回路回到输入端。反馈回来的信号如果使引入的信号增加则为正反馈,否则为负反馈。在

品质7大手法

品管七大手法 七大手法:检查表、层别法、柏拉图、因果图、散布图、直方图、控制图 一、检查表 检查表就是将需要检查的内容或项目一一列出,然后定期或不定期的逐项检查,并将问题点记录下来的方法,有时叫做查检表或点检表。 例如:点检表、诊断表、工作改善检查表、满意度调查表、考核表、审核表、5S 活动检查表、工程异常分析表等。 1、组成要素 ①确定检查的项目;②确定检查的频度;③确定检查的人员。 2、实施步骤 ①确定检查对象; ②制定检查表; ③依检查表项目进行检查并记录; ④对检查出的问题要求责任单位及时改善; ⑤检查人员在规定的时间内对改善效果进行确认; ⑥定期总结,持续改进。 二、层别法 层别法就是将大量有关某一特定主题的观点、意见或想法按组分类,将收集到的大量的数据或资料按相互关系进行分组,加以层别。层别法一般和柏拉图、直方图等其它七大手法结合使用,也可单独使用。 例如:抽样统计表、不良类别统计表、排行榜等。 实施步骤: ①确定研究的主题; ②制作表格并收集数据; ③将收集的数据进行层别; ④比较分析,对这些数据进行分析,找出其内在的原因,确定改善项目。 三、柏拉图 柏拉图的使用要以层别法为前提,将层别法已确定的项目从大到小进行排列,再加上累积值的图形。它可以帮助我们找出关键的问题,抓住重要的少数及有用的多数,适用于记数值统计,有人称为ABC图,又因为柏拉图的排序识从大到小,故又称为排列图。 1、分类 1)分析现象用柏拉图:与不良结果有关,用来发现主要问题。 A品质:不合格、故障、顾客抱怨、退货、维修等; B成本:损失总数、费用等; C交货期:存货短缺、付款违约、交货期拖延等; D安全:发生事故、出现差错等。 2)分析原因用柏拉图:与过程因素有关,用来发现主要问题。 A操作者:班次、组别、年龄、经验、熟练情况等; B机器:设备、工具、模具、仪器等; C原材料:制造商、工厂、批次、种类等; D作业方法:作业环境、工序先后、作业安排等。

负反馈及类型的判断方法

放大电路中负反馈及类型的判断方法 段东兴 负反馈在电子电路中的应用非常广泛,引入负反馈后,虽然放大倍数降低了,但是换来很多好处,在很多方面改善了放大电路的性能。例如,提高了放大倍数的稳定性;改善了波形失真;尤其是通过选用不同类型的负反馈,来改变放大电路的输入电阻和输出电阻,以适应实际的需要。 在电子技术的教学中,负反馈的判断一直是一个重点和难点内容。学生对于这一部分内容较难理解。经过长期的教学实践,总结出以下的判断方法。该方法系统地给出了反馈的判别步骤,在教学中证明简单易学,易于理解。 1.反馈回路的判断 电路的放大部分就是晶体管或运算放大器的基本电路。而反馈是把放大电路输出端信号的一部分或全部引回到输入端的电路,则反馈回路就应该是从放大电路的输出端引回到输入端的一条回路。这条回路通常是由电阻和电容构成。寻找这条回路时,要特别注意不能直接经过电源端和接地端,这是初学者最容易犯的问题。例如图1如果只考虑极间反馈则放大通路是由T1的基极到T1的集电极再经过T2的基极到T2的集电极;而反馈回路是由T2的集电极经R f至T1的发射极。反馈信号u f=v e1影响净输入电压信号u be1。 图1 电压串联负反馈 2.交直流的判断 根据电容“隔直通交”的特点,我们可以判断出反馈的交直流特性。如果反馈回路中有电容接地,则为直流反馈,其作用为稳定静态工作点;如果回路中串连电容,则为交流反馈,

改善放大电路的动态特性;如果反馈回路中只有电阻或只有导线,则反馈为交直流共存。图1种的反馈即为交直流共存。 3.正负反馈的判断 正负反馈的判断使用瞬时极性法。瞬时极性是一种假设的状态,它假设在放大电路的输入端引入一瞬时增加的信号。这个信号通过放大电路和反馈回路回到输入端。反馈回来的信号如果使引入的信号增加则为正反馈,否则为负反馈。在这一步要搞清楚放大电路的组态,是共发射极、共集电极还是共基极放大。每一种组态放大电路的信号输入点和输出点都不一样,其瞬时极性也不一样。如图2所示。相位差1800则瞬时极性相反,相位差00则瞬时极性相同。运算放大器电路也同样存在反馈问题。运算放大器的输出端和同相输入端的瞬时极性相同,和反相输入端的瞬时极性相反。 图2 不同组态放大电路的相位差 依据以上瞬时极性判别方法,从放大电路的输入端开始用瞬时极性标识,沿放大电路、反馈回路再回到输入端。这时再依据负反馈总是减弱净输入信号,正反馈总是增强净输入信号的原则判断出反馈的正负。 在晶体管放大电路中,若反馈信号回到输入极的瞬时极性与原处的瞬时极性相同则为正反馈,相反则为负反馈。其中注意共发射极放大电路的反馈有时回到公共极——发射极,此时反馈回到发射极的瞬时极性与基极的瞬时极性相同则为负反馈,相反则为正反馈。图1中的瞬时极性判断顺序如下:T1基极(+)→T1集电极(-)→T2基极(-)→T2集电极(+)→经R f至T1发射极(+),此时反馈回到发射极的瞬时极性与基极的瞬时极性相同所以电路为负反馈。在运算放大器反馈电路中,若反馈回来的瞬时极性与同一端的原瞬时极性相同则为正反馈,相反则为负反馈;若反馈回来的瞬时极性与另一端的原瞬时极性相同则为负反馈,相反则为正反馈。 4.反馈类型的判断 反馈类型是特指电路中交流负反馈的类型,所以只有判断电路中存在交流负反馈才判断反馈的类型。反馈是取出输出信号(电压或电流)的全部或一部分送回到输入端并以某种形

相关主题
文本预览
相关文档 最新文档