当前位置:文档之家› 高考数学专题:导数恒成立问题(含答案)

高考数学专题:导数恒成立问题(含答案)

高考数学专题:导数恒成立问题(含答案)
高考数学专题:导数恒成立问题(含答案)

1、设函数f(x)=1

3x

3-

a

2x

2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.

(1)求b,c的值;

(2)若a>0,求函数f(x)的单调区间;

(3)设函数g(x)=f(x)+2x,且g(x)在区间(-2,-1)内存在单调递减区间,求实数a的取值范围.

2、已知函数f(x)=e x-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.

(1)求a的值及函数f(x)的极值;

(2)证明:当x>0时,x2

(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2

3、设函数f(x)=a e x ln x+b e x-1

x,曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2.

(1)求a,b;

(2)证明:f(x)>1.

4、已知函数f(x)=ax2-(a+2)x+ln x,其中a∈R.

(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;

(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围;

(3)若?x1,x2∈(0,+∞),且x1

5、若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是( ) A.(-∞,0) B.(-∞,4] C.(0,+∞) D.[4,+∞)

答案: B 2x ln x≥-x2+ax-3,则a≤2ln x+x+3

x.设h(x)=2ln x+x+

3

x

(x>0),则h′(x)=(x+3)(x-1)

x2.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时

,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4.所以a≤h(x)min=4.

故a的取值范围是(-∞,4].

6、已知函数f(x)=1

2x

2-a ln x(a∈R).

(1)若函数f(x)的图象在x=2处的切线方程为y=x+b,求a,b的值;

(2)若函数f(x)在(1,+∞)上为增函数,求a的取值范围.

7、已知函数f (x )=a ln x -ax -3(a ∈R ).

(1)求函数f (x )的单调区间;

(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·???

?

??f ′(x )+m 2在区间(t ,3)内总不是单调函数,求m 的取值范围.

8、已知a ∈R ,函数f (x )=4x 3-2ax +a .

(1)求f (x )的单调区间;

(2)证明:当0≤x ≤1时,f (x )+|2-a |>0.

9、已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.

(1)证明:f (x )是R 上的偶函数;

(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围; (3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)

+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.

答案:

1、

解:(1)f ′(x )=x 2-ax +b , 由题意得???f (0)=1,f ′(0)=0,即???c =1,

b =0.

(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.

所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,

依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时, a

所以满足要求的a 的取值范围是(-∞,-22).

2、【解析】 (1)由f (x )=e x -ax ,得f ′(x )=e x -a .

又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.

当x ln 2时,f ′(x )>0,f (x )单调递增.

所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值. (2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x , 由(1)得g ′(x )=f (x )≥f (ln 2)>0,

故g (x )在R 上单调递增.又g (0)=1>0, 因此,当x >0时,g (x )>g (0)>0,即x 20时,x 20时,x 2

取x 0=0,当x ∈(x 0,+∞)时,恒有x 2

②若0

c >1,要使不等式x 2kx 2成立. 而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2

x .

所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增. 取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增, 又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k ,

易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16

c ,当x ∈(x 0,+∞)时,恒有x 2

综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2

, 由(2)知,当x >0时,e x >x 2, 所以e x

=e x 2·e x 2>? ????x 22? ??

??

x 22

当x >x 0时,e x

>? ????x 22? ????x 22>4c ? ??

??x 22=1c x 2

因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2

3x 3

令h (x )=1

3x 3-e x ,则h ′(x )=x 2-e x . 由(2)知,当x >0时,x 2

从而h ′(x )<0,h (x )在(0,+∞)内单调递减, 所以h (x )

.

取x 0=3c ,当x >x 0时,有1c x 2<1

3x 3

因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2

3、解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x ·e x -b x 2e x -

1+b x

e x -

1.

由题意可得f (1)=2,f ′(1)=e. 故a =1,b =2.

(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2

e .

设函数g (x )=x ln x ,则g ′(x )=1+ln x .

所以当x ∈? ????0,1e 时,g ′(x )<0;当x ∈? ????

1e ,+∞时,g ′(x )>0.

故g (x )在? ????0,1e 上单调递减,在? ????1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ? ????1e =-1

e .

设函数h (x )=x e -x -2

e , 即h ′(x )=e -x (1-x ).

所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0,故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)的最大值为h (1)=-1

e .

综上,当x >0时,g (x )>h (x ), 即f (x )>1.

4、解:(1)当a =1时,f (x )=x 2

-3x +ln x (x >0),f ′(x )=2x -3+1x =2x 2-3x +1

x

,则f (1)=-2,f (1)=0.所以切线方程是y =-2.

(2)函数f (x )=ax 2-(a +2)x +ln x 的定义域是(0,+∞).

当a >0时,f ′(x )=2ax -(a +2)+1x =2ax 2-(a +2)x +1x =(2x -1)(ax -1)x

(x >0).

令f ′(x )=0,得x =12或x =1

a .

①当0<1

a ≤1,即a ≥1时,f (x )在[1,e]上单调递增,所以f (x )在[1,e]上的最小值是f (1)=-2;

②当1<1a

1a ,e 上单调递增,所以f (x )在[1,e]上的

最小值是f ? ????

1a

③当1a ≥e ,即0

e 时,

f (x )在[1,e]上单调递减,所以f (x )在[1,e]上的最小值是f (e)

不合题意,故0

e 舍去.

综上所述,a 的取值范围为[1,+∞).

(3)设g (x )=f (x )+2x ,则g (x )=f (x )+2x =ax 2-ax +ln x ,只要g (x )在(0,+∞)上单调递增,即g ′(x )≥0在(0,+∞)上恒成立即可.而g ′(x )=2ax -a +1x =2ax 2-ax +1x

(x >0).

①当a =0时,g ′(x )=1

x >0,此时g (x )在(0,+∞)上单调递增;

②当a ≠0时,因为x >0,依题意知,只要2ax 2-ax +1≥0在(0,+∞)上恒成立.记h (x )=2ax 2-ax +1,则抛物线过定点(0,1),对称轴x =1

4.

故必须???a >0,

Δ=a 2

-8a ≤0,即0

6、解:(1)因为f ′(x )=x -a

x

(x >0),

且f (x )在x =2处的切线方程为y =x +b , 所以?????2-a ln 2=2+b ,2-a 2=1,

解得a =2,b =-2ln 2.

(2)若函数f (x )在(1,+∞)上为增函数,则f ′(x )=x -a

x ≥0在(1,+∞)上恒成立,即a ≤x 2在(1,

+∞)上恒成立.所以a ≤1.

7、解:(1)f ′(x )=a (1-x )

x

(x >0),

当a >0时,f (x )的单调增区间为(0,1),减区间为[1,+∞); 当a <0时,f (x )的单调增区间为[1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数. (2)由(1)得f ′(2)=-a

2=1,即a =-2, ∴f (x )=-2ln x +2x -3, ∴g (x )=x 3+? ????

m 2+2x 2-2x ,

∴g ′(x )=3x 2+(m +4)x -2.

∵g (x )在区间(t ,3)内总不是单调函数, 即g ′(x )=0在区间(t ,3)内有变号零点. 由于g ′(0)=-2, ∴???g ′(t )<0,

g ′(3)>0.

当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,得m >-37

3. 所以-37

3

8、解:(1)由题意得f ′(x )=12x 2-2a .

当a ≤0时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(-∞,+∞). 当a >0时,f ′(x ) =12?

????x -

a 6? ??

??x +

a 6, 此时函数f (x )的单调递增区间为?

?

???-∞,-

a 6和?

???

??

a 6,+∞, 单调递减区间为???

???-a 6,

a 6. (2)证明:由于0≤x ≤1,故当a ≤2时,f (x )+|a -2|=4x 3-2ax +2

≥4x 3-4x +2.

当a >2时,f (x )+|a -2| =4x 3+2a (1-x )-2

≥4x 3+4(1-x )-2=4x 3-4x +2. 设g (x )=2x 3-2x +1,0≤x ≤1,则 g ′(x )=6x 2-2

=6?

???x -3 ???

x +3.于是

所以g (x )min =g ? ????

33=1-439>0.

所以当0≤x ≤1时,2x 3-2x +1>0. 故f (x )+|a -2|≥4x 3-4x +2>0.

9、解:(1)证明:因为对任意x ∈R ,都有f (-x )=e -

x +e

-(-x )

=e -x +e x =f (x ),

所以f (x )是R 上的偶函数.

(2)由条件知m (e x +e -

x -1)≤e -

x -1在(0,+∞)上恒成立.

令t =e x (x >0),则t >1, 所以m ≤-t -1

t 2-t +1

=-

1

t -1+1

t -1+1

对任意t >1成立. 因为t -1+

1

t -1

+1≥2(t -1)·1

t -1

+1=3,

所以-

1t -1+

1

t -1

+1≥-13,

当且仅当t =2,即x =ln 2时等号成立.

因此实数m 的取值范围是? ?

???-∞,-13.

(3)令函数g (x )=e x +1

e x -a (-x 3+3x ),

则g ′(x )=e x -1

e x +3a (x 2-1).

当x ≥1时,e x -1

e x >0,x 2-1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .

由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 3

0+3x 0)<0成立,当且仅当最小值g (1)<0,故e +e

-1

-2a <0,即a >e +e -1

2.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x .令h ′(x )=0,得x =e -1.当

x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数;

当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).

注意到h (1)=h (e)=0,所以当x ∈(1,e -1)?(0,e -1)时,h (e -1)≤h (x )

??e +e -

12,e ?(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1

1;

②当a =e 时,e a -1=a e -1;

③当a ∈(e ,+∞)?(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.

综上所述,当a ∈? ??

??

e +e -

12,e

时,e a -1a e -1

.

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题, 也是高中数学非常重要的一个模块, 不管是小题,还 是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后, a f (x )恒成立,则有a f (X )max 2. 对于双变量的恒成立问题 f(x) min g(x)min 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的, (甚至我提出这样 一个观点,所有导数的题目95%3根结底就是带参数二次函数在已知定义域上根的讨论, 3%是 ax b 与ax 3 b 这种形式根的讨论,2%!观察法得到零点,零点通常是1,-,e 之类),所以如果 e 我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一?二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知f (x ) ■ 2x2 2ax a 1定义域为R ,求a 的取值围 思考:①引入定义域(非R ) ② 参数在二次项,就需考虑是否为0 1 ③ 引入高次(3次,4次,—,I nx , e x 等等) x ④ 引入a 2, a 3等项(导致不能分离变量) f (x )恒成立,则有a f ( x) min (若是存在性问题,那么最大变最小, 最小变最大) 如:化简后我们分析得到, a,b , f (x) 0恒成立,那么只需 f ( x) min a,b ,使得 f(x) 0,那么只需f (X )max 0 如:化简后我们分析得到, X i ,X 2 a,b , f(xj g(X 2),那么只需 f (X)min g ( X) max 如:化简后我们分析得到, X i a,b , x 2 c, d 使f (xj gg ),那么只需 如:化简后我们分析得到, X i a,b ,X 2 C,d 使 f (X i ) g(X 2),那么只需 f (X)max g(x)min 还有一些情况了,这里不一一列举, 一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题, 成立问题(2014.03锡常镇一模那题特别典型) 总之一句话 (双变量的存在性与恒成立问题,都是先处理 我们往往先根据函数的单调性,去掉绝对值,再转变成恒

高考数学中的恒成立问题与存在性问题

“恒成立问题”的解法 常用方法:①函数性质法;②主参换位法;③分离参数法;④数形结合法。 一、函数性质法 1.一次函数型:给定一次函数()(0)f x ax b a =+≠,若()y f x =在[m,n]内恒有()0f x >,则根据函数 的图象(直线)可得上述结论等价于???>>0)(0)(n f m f ;同理,若在[m,n]内恒有()0f x <,则有? ??<<0)(0 )(n f m f . 例1.对满足2p ≤的所有实数p ,求使不等式2 12x px px x ++>+恒成立的x 的取值范围。 略解:不等式即为2(1)210x p x x -+-+>,设2 ()(1)21f p x p x x =-+-+,则()f p 在[2,2]-上恒大于 0,故有:???>>-)2(0)2(f f ,即??? ??>->+-0 10342 2x x x 3111x x x x ><-?或或13x x ?<->或. 2.二次函数: ①.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在R 上恒成立,则有00a >???(或0<)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。 例2. 已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少 有一个为正数,则实数m 的取值范围是( )

A .(0,2) B .(0,8) C .(2,8) D .(-∞,0) 选B 。 例3.设2 ()22f x x ax =-+,当[1,)x ∈-+∞时,都有()f x a ≥恒成立,求a 的取值范围。 解:设2 ()()22F x f x a x ax a =-=-+-, (1)当4(1)(2)0a a ?=-+≤时,即21a -≤≤时,对一切[1,)x ∈-+∞,()0F x ≥恒成立; (2)当4(1)(2)0a a ?=-+>时,由图可得以下充要条件: 0(1)021,2 f a ???>?-≥??-?-≤-?即(1)(2)0 30 1,a a a a -+>?? +≥??≤-?32a ?-≤<-;综合得a 的取值范围为[-3,1]。 例4.关于x 的方程9(4)340x x a +++=恒有解,求a 的范围。 解法:设3x t =,则0t >.则原方程有解即方程2 (4)40t a t +++=有正根。 1212 (4)040 x x a x x ?≥?? ∴+=-+>??=>?2(4)1604a a ?+-≥??<-?8a ?≤-. 3.其它函数: ()0f x >恒成立?min ()0f x >(若()f x 的最小值不存在,则()0f x >恒成立?()f x 的下界≥0) ; ()0f x <恒成立?max ()0f x <(若()f x 的最大值不存在,则()0f x <恒成立?()f x 的上界≤0). 例5.设函数3 21()(1)4243 f x x a x ax a = -+++,其中常数1a >, (1)讨论()f x 的单调性; (2)若当0x ≥时,()0f x >恒成立,求a 的取值范围。 解:(2)由(I )知,当0≥x 时,)(x f 在a x 2=或0=x 处取得最小值。 a a a a a a a f 2424)2)(1()2(3 1)2(23+?++-=a a a 24434 23++-=;a f 24)0(= -1 o x y

导数中的恒成立和存在性问题

导数中的恒成立和存在性问题

技巧传播 1.恒成立问题的转化:()a f x >恒成立max ()a f x ?>;()a f x ≤恒成立min ()a f x ?≤; 2.能成立问题的转化:()a f x >能成立min ()a f x ?>;()a f x ≤能成立max ()a f x ?≤; 3.恰成立问题的转化:()a f x >在M 上恰成立()a f x ?>的解集为R ()()a f x M M a f x C M >???≤?在上恒成立在上恒成立 ; 另一转化方法:若x D ∈,()f x A ≥在D 上恰成立,等价于()f x 在D 上的最小值min ()f x A =, 若x D ∈,()f x B ≤在D 上恰成立,则等价于()f x 在D 上的最大值max ()f x B =; 4.设函数()f x 、()g x ,对任意的1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≥,则min min ()()f x g x ≥; 5.设函数()f x 、()g x ,对任意的1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≤,则max max ()()f x g x ≤; 6.设函数()f x 、()g x ,存在1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≥,则max min ()()f x g x ≥; 7.设函数()f x 、()g x ,存在1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≤,则min max ()()f x g x ≤; 8.若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图像在函数()y g x =图像上方; 9.若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图像在函数()y g x =图像下方;

高中数学恒成立与存在性问题

高中恒成立问题总结 解决高考数学中的恒成立问题常用以下几种方法: ①函数性质法; ②主参换位法; ③分离参数法; ④数形结合法。 XXX 核心思想: 1.恒成立问题的转化: 恒成立; 2.能成立问题的转化: 能成立; 3.恰成立问题的转化: 若在D 上恰成立在D 上的最小值; 若在D 上恰成立在D 上的最大值. 4.设函数,,对任意的,存在,使得,则 ; 设函数,,对任意的,存在,使得,则 ; 设函数,,存在,存在,使得,则 ; 设函数,,存在,存在,使得,则; 5.若不等式在区间D 上恒成立,则等价于在区间D 上函数和图象在函数图象上方; 若不等式在区间D 上恒成立,则等价于在区间D 上函数和图象在函数图象下方. 6.常见二次函数 ①.若二次函数(或)在R 上恒成立,则有(或); ②.若二次函数(或)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解. ()a f x >?()max a f x >()()min a f x a f x ≤?≤恒成立()a f x >?()min a f x >()()max a f x a f x ≤?≤能成立A x f D x ≥∈)(,?)(x f A x f =)(min ,D x ∈B x f ≤)(?)(x f B x f =)(max ()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≥()()x g x f min min ≥()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≤()()x g x f max max ≤()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≥()()x g x f min max ≥()x f ()x g []b a x ,1∈[]d c x ,2∈()()21x g x f ≤()()x g x f max min ≤()()f x g x >()y f x =()y g x =()()f x g x <()y f x =()y g x =2()(0)0f x ax bx c a =++≠>0<00a >???0<

第18讲 导数的应用——利用导数研究不等式恒成立问题备战2021年新高考数学考点精讲与达标测试

《导数的应用——利用导数研究不等式恒成立(能成立)问题》 达标检测 [A 组]—应知应会 1.已知函数f (x )=x +4 x ,g (x )=2x +a ,若?x 1∈????12,1,?x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是( ) A .a ≤1 B .a ≥1 C .a ≤2 D .a ≥2 【解析】选A.由题意知f (x )min ??? ?x ∈????12,1≥g (x )min (x ∈[2,3]),因为f (x )min =5,g (x )min =4+a ,所以5≥4+a ,即a ≤1,故选A. 2.(2020·吉林白山联考)设函数f (x )=e x ????x +3x -3-a x ,若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【解析】原问题等价于存在x ∈(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min ,而g ′(x )=e x (x 2-x ).由g ′(x )>0可得x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1).据此可知,函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e. 3.(2020·西安质检)已知函数f (x )=ln x ,g (x )=x -1. (1)求函数y =f (x )的图象在x =1处的切线方程; (2)若不等式f (x )≤ag (x )对任意的x ∈(1,+∞)均成立,求实数a 的取值范围. 【解析】(1)因为f ′(x )=1 x , 所以f ′(1)=1. 又f (1)=0,所以切线的方程为y -f (1)=f ′(1)(x -1), 即所求切线的方程为y =x -1. (2)易知对任意的x ∈(1,+∞),f (x )>0,g (x )>0. ①当a ≥1时,f (x )≤g (x )≤ag (x ); ②当a ≤0时,f (x )>0,ag (x )≤0,所以不满足不等式f (x )≤ag (x ); ③当0<a <1时,设φ(x )=f (x )-ag (x )=ln x -a (x -1),则φ′(x )=1 x -a ,

高考数学不等式恒成立、能成立、恰成立问题

不等式恒成立、能成立、恰成立问题 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,?()f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A 例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值范围。 例2、已知(),22x a x x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试求实数a 的取值范围; 例3、R 上的函数()x f 既是奇函数,又是减函数,且当 ??? ??∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒 成立,求实数m 的取值范围. 例4、已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围。 2、主参换位法 例5、若不等式a 10x -<对 []1,2x ∈恒成立,求实数a 的取值范围 例6、若对于任意1a ≤,不等式2(4)420x a x a +-+->恒成立,求实数x 的取值范围 例7、已知函数323()(1)132a f x x x a x = -+++,其中a 为实数.若不等式 2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,求实数x 的取值范围. 3、分离参数法 (1) 将参数与变量分离,即化为 ()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值; (3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围。 适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。 例8、当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 . 例9、已知函数321()33f x ax bx x =+++,其中0a ≠(1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a , 且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值范围.

用导数研究函数的恒成立与存在性问题-答案

用导数研究函数的恒成立与存在问题 1.已知函数23()2ln x f x x x a = -+,其中a 为常数. (1)若1a =,求函数()f x 的单调区间; (2)若函数()f x 在区间[1,2]上为单调函数,求a 的取值范围. 2.已知函数3 2 ()4()f x x ax a R =-+-∈,'()f x 是()f x 的导函数。 (1)当2a =时,对于任意的[1,1]m ∈-,[1,1]n ∈-,求()()f m f n '+的最小值; (2)若存在0(0,)x ∈+∞,使0()f x >0,求a 的取值范围。

3.已知函数x ax x f ln )(+= )(R a ∈. (1)若2=a ,求曲线)(x f y =在点1x =处的切线方程; (2)求)(x f 的单调区间; (3)设22)(2 +-=x x x g ,若对任意1(0,)x ∈+∞,均存在[]1,02∈x ,使得)()(21x g x f <, 求实数a 的取值范围.

4.(2016届惠州二模)已知函数()22ln f x x x =-+. (Ⅰ)求函数()f x 的最大值; (Ⅱ)若函数()f x 与()a g x x x =+ 有相同极值点. ①求实数a 的值; ②对121,,3x x e ???∈???? (e 为自然对数的底数),不等式 ()() 1211 f x g x k -≤-恒成立,求实数k 的取值范围.

5.已知函数2 12 ()()ln ()f x a x x a R =-+∈. (1)当1a =时,01[,]x e ?∈使不等式0()f x m ≤,求实数m 的取值范围; (2)若在区间1(,)+∞,函数()f x 的图象恒在直线2y ax =的下方,求实数a 的取值范围.

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ (若是存在性问题,那么最大变最小,最小变最大) 1.对于单变量的恒成立问题 如:化简后我们分析得到,对[],x a b ?∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ?∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题 如:化简后我们分析得到,对[]12,,x x a b ?∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ?∈,[]2,x c d ?∈使12()()f x g x ≥,那么只需 min min ()()f x g x ≥ 如:化简后我们分析得到,[]1,x a b ?∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话(双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题(201 4.03苏锡常镇一模那题特别典型) 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,(甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是 ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是1 1,,e e 之类) ,所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一.二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知()f x =R ,求a 的取值范围 思考:① 引入定义域(非R ) ②参数在二次项,就需考虑是否为0 ③引入高次(3次,4次,1 x ,ln x ,x e 等等) ④引入2a ,3a 等项(导致不能分离变量)

2021年高考数学重难点复习:恒成立问题

2021年高考数学重难点复习 “三招”破解不等式恒成立问题 一.方法综述 不等式恒成立问题一直是高考命题的热点,把函数问题、导数问题和不等式恒成立问题交汇命制压轴题成为一个新的热点命题方向.由不等式恒成立确定参数范围问题,常见处理方法有:① 分离参数 ()a f x ≥恒成立(()max a f x ≥可)或()a f x ≤恒成立 (()min a f x ≤即可);② 数形结合(()y f x =图象在()y g x = 上方即可);③ 最值法:讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数.在诸多方 法中,构造函数并利用导数研究函数的单调性、最值等,是必须要考虑的解题门径.本专题举例说明《用好导数,“三招”破解不等式恒成立问题》. 二.解题策略 类型一 构造函数求最值 【例1】【2020·重庆南开中学期末】已知函数()ln x f x ae x x =-,其中a R ∈,e 是自然对数的底数. (1)若()f x 是()0,∞+上的增函数,求实数a 的取值范围; (2)若22a e >,证明:()0f x >. 【分析】(1)由()f x 是()0,∞+上的增函数等价于()0f x '≥恒成立,得1ln x x a e +≥ ,求()()1ln 0x x g x x e +=>的最大值,即可得到本题答案; (2)由()e 0ln 0x a f x x x >?->,证明当22a e ≥时,()()e ln 0x a F x x x x =->的最小值大于0,即可得到本题答案. 【解析】(1)()()1ln x f x ae x '=-+,()f x 是()0,∞+上的增函数等价于()0f x '≥恒成立. 令()0f x '≥,得1ln x x a e +≥ ,令()()1ln 0x x g x x e +=>.以下只需求()g x 的最大值. 求导得()11ln x g x e x x -??'=-- ??? ,令()11ln h x x x =--,()2110h x x x '=--<, ()h x 是()0,∞+上的减函数,又()10h =,故1是()h x 的唯一零点,

导数之恒成立问题

应用导数研究函数的恒成立与存在性问题 例已知函数()()()21,ln 12 f x x x g x x a =+=+-. (1)若存在[]0,2x ∈,使得()()f x g x =,求实数a 的取值范围; (2)若存在[]0,2x ∈,使得()()f x g x >,求实数a 的取值范围; (3)若对任意[]0,2x ∈,恒有()()f x g x >,求实数a 的取值范围; (4)若对任意[]12,0,2x x ∈,恒有()()12f x g x >,求实数a 的取值范围; (5)若对任意[]20,2x ∈,存在[]10,2x ∈,使得()()12f x g x >,求实数a 的取值范围; (6)若对任意[]20,2x ∈,存在[]10,2x ∈,使得()()12f x g x =,求实数a 的取值范围; (7)若存在[]12,0,2x x ∈,使得()()12f x g x >,求实数a 的取值范围; (8)若存在[]12,0,2x x ∈,使得()()12f x g x =,求实数a 的取值范围;

(1)恒成立问题 ①. ①x①D,均有f(x)>A恒成立,则f(x)min>A; ①. ①x①D,均有f(x)﹤A恒成立,则f(x)ma xg(x)恒成立,则F(x)= f(x)- g(x) >0,① F(x)min >0; ①. ①x①D,均有f(x)﹤g(x)恒成立,则F(x)= f(x)- g(x) <0,① F(x) ma x <0; (2)存在性问题 ①. ①x0①D,使得f(x0)>A成立,则f(x) ma x >A; ①. ①x0①D,使得f(x0)﹤A成立,则f(x) min g(x0)成立,设F(x)= f(x)- g(x),① F(x) ma x >0; ①. ①x0①D,使得f(x0) g(x2)成立,则f(x)min > g(x)ma x; ① ①x1①D, ①x2①E, 使得f(x1) >g(x2)成立,则f(x) ma x > g(x) min; ① ①x1①D, ①x2①E, 使得f(x1) >g(x2)成立,则f(x)m in > g(x)m in; ① ①x1①D, ①x2①E, 使得f(x1) >g(x2)成立,则f(x)max > g(x)max.

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程 一、复习预习 考纲要求: 1.理解导数和切线方程的概念。 2.能在具体的数学环境中,会求导,会求切线方程。 3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题 二、知识讲解 1.导数的计算公式和运算法则 几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '= ; 1(log )log a a x e x '=, ()x x e e '= ; ()ln x x a a a '= 求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.

法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '= 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ??? 复合函数的导数:设函数()u x ?=在点x 处有导数()x u x ?'=',函数()y f u =在点x 的对应点u 处有导 数()u y f u '=',则复合函数(())y f x ?=在点x 处也有导数,且x u x u y y '''?= 或(())()()x f x f u x ??'='?' 2.求直线斜率的方法(高中范围内三种) (1) tan k α=(α为倾斜角); (2) 1212 ()() f x f x k x x -= -,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率); 3.求切线的方程的步骤:(三步走) (1)求函数()f x 的导函数()f x '; (2)0()k f x '= (在0x x =处的切线的斜率); (3)点斜式求切线方程00()()y f x k x x -=-; 4.用导数求函数的单调性: (1)求函数()f x 的导函数()f x '; (2)()0f x '>,求单调递增区间; (3)()0f x '<,求单调递减区间; (4)()0f x '=,是极值点。 考点一 函数的在区间上的最值 【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。 【答案】:最大值为18,最小值为-2. 【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y , 取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。所以最大值为18,最小值为-2.

高考数学:不等式恒成立、能成立、恰成立问题

不等式恒成立、能成立、恰成立问题 一、不等式恒成立问题的处理方法 1、转换求函数的最值: (1)若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >,?()f x 的下界大于A (2)若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <,()f x 的上界小于A 例1、设f(x)=x2-2ax+2,当x ∈[-1,+∞]时,都有f(x)≥a 恒成立,求a 的取值围。 例2、已知(),22x a x x x f ++=对任意[)()0,,1≥+∞∈x f x 恒成立,试数a 的取值围; 例3、R 上的函数()x f 既是奇函数,又是减函数,且当 ??? ??∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒 成立,数m 的取值围. 例4、已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值3c --,其中a 、b 为常数.(1)试确定a 、b 的值; (2)讨论函数)(x f 的单调区间; (3)若对任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值围。 2、主参换位法

例5、若不等式a 10x -<对 []1,2x ∈恒成立,数a 的取值围 例6、若对于任意 1a ≤,不等式2(4)420x a x a +-+->恒成立,数x 的取值围 例7、已知函数323()(1)132a f x x x a x = -+++,其中a 为实数.若不等式2()1f x x x a '--+>对任意(0)a ∈+∞,都成立,数x 的取值围. 3、分离参数法 (1) 将参数与变量分离,即化为 ()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2) 求()f x 在x D ∈上的最大(或最小)值; (3) 解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值围。 适用题型:(1) 参数与变量能分离;(2) 函数的最值易求出。 例8、当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值围是 . 例9、已知函数321()33f x ax bx x =+++,其中0a ≠(1)当b a ,满足什么条件时,)(x f 取得极值?(2)已知0>a , 且)(x f 在区间(0,1]上单调递增,试用a 表示出b 的取值围. 4、数形结合 例10 、若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值围是________ 例11、当x ∈(1,2)时,不等式2(1)x -

利用导数解决恒成立能成立问题备课讲稿

利用导数解决恒成立能成立问题

利用导数解决恒成立能成立问题 一利用导数解决恒成立问题不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) (1)恒成立问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 1.若在x∈[1,+∞)上恒成立,则a 的取值范围是 ______ . 2.若不等式x 4﹣4x 3>2﹣a 对任意实数x 都成立,则实数a 的取值范围 _________ . 3.设a >0,函数,若对任意的x 1,x 2∈[1,e],都有f (x 1)≥g(x 2)成立,则a 的取值范围为 _________ . 4.若不等式|ax 3 ﹣lnx|≥1对任意x∈(0,1]都成立,则实数a 取值范围是 _________ .

15.设函数f(x)的定义域为D,令M={k|f(x)≤k恒成立,x∈D},N={k|f(x)≥k恒成立,x∈D},已知 ,其中x∈[0,2],若4∈M,2∈N,则a 的范围是_________ . 6.f(x)=ax3﹣3x(a>0)对于x∈[0,1]总有f(x)≥﹣1成立,则a的范围为_________ . 7.三次函数f(x)=x3﹣3bx+3b在[1,2]内恒为正值,则b的取值范围是_________ . 8.不等式x3﹣3x2+2﹣a<0在区间x∈[﹣1,1]上恒成立,则实数a的取值范围是__ . 9.当x∈(0,+∞)时,函数f(x)=e x的图象始终在直线y=kx+1的上方,则实数k的取值范围是_________ .10.设函数f(x)=ax3﹣3x+1(x∈R),若对于任意的 x∈[﹣1,1]都有f(x)≥0成立,则实数a的值为 _________ .

高中数学中的存在性问题与恒成立问题例题

第 1 页 共 3 页 高中数学存在性问题与恒成立问题 例1、若不等式 121x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 例2、设函数2()1f x x =-,对任意23x ??∈+∞????,,24()(1)4()x f m f x f x f m m ??--+ ???≤恒成立,则 实数m 的取值范围是 . 例3、若不等式220ax x ++>的解集为R ,则a 的范围是( ) A .0a > B . 18a >- C .18a > D .0a < 例4、已知不等式()11112log 1122123a a n n n +++>-+++对于一切大于1的自然数n 都成立, 试求实数a 的取值范围. 例5、若不等式2(2)2(2)40a x a x -+--<对x ∈R 恒成立,则a 的取值范围是______. 例6、2()1f x ax ax =+-在R 上恒满足()0f x <,则a 的取值范围是( ) A .0a ≤ B .4a <- C .40a -<< D .40a -<≤ 例7、若对于x ∈R ,不等式2230mx mx ++>恒成立,求实数m 的取值范围. 例8、不等式210x ax ++≥对一切102x ??∈ ???,成立,则a 的最小值为( ) A .0 B .2- C .52- D .3- 例9、不等式2|3||1|3x x a a +---≤对任意实数x 恒成立,则实数a 的取值范围为( ) A .(][)14-∞-+∞,, B .(][)25-∞-+∞,, C .[12], D .(][)12-∞∞,,

导数中含参数问题与恒成立问题的解题技巧

函数、导数中含参数问题与恒成立问题的解题技巧与方法 含参数问题及恒成立问题方法小结: 1、分类讨论思想 2、判别法 3、分离参数法 4、构造新函数法 一、分离讨论思想: 例题1: 讨论下列函数单调性: 1、()x f =();1,0,≠>-a a a a x 2、()x f =)0,11(1 2≠<<--b x x bx 二、判别法 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2<--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022a a a 或 (2)?? ???<-=-=-040)2(202a a 解(1)得???<<-<2 22a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习1. 已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。 三、分离法参数: 分离参数法是求参数的取值范围的一种常用方法,通过分离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决.分离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到. 解题的关键是分离出参数之后将原问题转化为求函数的最值或值域问题.即: (1) 对任意x 都成立()min x f m ≤ (2)对任意x 都成立。 例3.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

高中数学恒成立问题典型例题

恒成立问题是数学中的常见问题,在培养同学们思维的灵活性、创造性等方面起到了积极的作用,也是历年高考的一个热点。大多是在不等式中,以已知一个变量的取值范围,求另一个变量的取值范围的形式出现。 下面结合实例,介绍这类问题的几种求解策略。 一、参变分离法 在给出的不等式中,如果能通过恒等变形将参数与变量分离出来,即:若a≥f(x)恒成立,只需求出f(x)max,则a≥f(x)max;若a≤f(x)恒成立,只需求出f(x)min,则a≤f(x)min,转化为函数求最值。 二、主元变换法 在给出的含有两个变量的不等式中,学生习惯把变量x看成是主元(未知数),而把另一个变量a看成参数,在有些问题中这样的解题过程繁琐。如果把已知取值范围的变量作为主元,把要求取值范围的变量看作参数,则可简化解题过程。

三、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 四、数形结合 数形结合法是先将不等式两端的式子分别看作两个函数,且正确作出两个函数的图像,然后通过观察两图像(特别是交点)的位置关系,列出关于参数的不等式。 五、判别式法 对可化为关于x的一元二次不等式对x∈R(或去掉有限个点)恒成立,常用判别式法,先将其化为关于x的一元二次不等式,结合对应的一元二次函数图像,确定二次项系数与判别式满足的条件,化为关于参数的不等式问题,通过解不等式求解。要注意二次是否可为0。

六、最值法对含参数的不等式恒成立问题,可将其化为f(x)>0或f(x)<0在某个范围上恒成立的问题,则0<[f(x)]min或0>[f(x)] max,先求出f(x)的最值,将其转化为关于m的不等式问题,通过解不等式求出参数m的取值范围。 上面介绍了含参不等式中恒成立问题的几种解法,在解题过程中,要灵活运用题设条件综合分析,选择适当方法准确而快速地解题。

利用导数解决恒成立能成立问题

利用导数解决恒成立能成立问题 一利用导数解决恒成立问题不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) (1)恒成立问题 若不等式A x f 在区间D 上恒成立,则等价于在区间D 上min f x A 若不等式B x f 在区间D 上恒成立,则等价于在区间D 上max f x B 1.若在x ∈[1,+∞)上恒成立,则a 的取值范围是______ . 2.若不等式x 4﹣4x 3>2﹣a 对任意实数x 都成立,则实数a 的取值范围_________ . 3.设a >0,函数,若对任意的x 1,x 2∈[1,e],都有f (x 1)≥g (x 2)成立,则a 的取值范围为_________ . 4.若不等式|ax 3﹣lnx|≥1对任意x ∈(0,1]都成立,则实数a 取值范围是_________ . 15.设函数f (x )的定义域为D ,令M={k|f (x )≤k恒成立,x ∈D},N={k|f (x )≥k恒成立,x ∈D},已知,其中x ∈[0,2],若4∈M ,2∈N ,则a 的范围是_________ . 6.f (x )=ax 3﹣3x (a >0)对于x ∈[0,1]总有f (x )≥﹣1成立,则a 的范围为_________ . 7.三次函数f (x )=x 3﹣3bx+3b 在[1,2]内恒为正值,则b 的取值范围是_________ . 8.不等式x 3﹣3x 2+2﹣a <0在区间x ∈[﹣1,1]上恒成立,则实数a 的取值范围是__ .

9.当x ∈(0,+∞)时,函数f (x )=e x 的图象始终在直线y=kx+1的上方,则实数k 的取值范围是_________ . 10.设函数f (x )=ax 3﹣3x+1(x ∈R ),若对于任意的x ∈[﹣1,1]都有f (x )≥0成立,则实数a 的值为_________ . 11.若关于x 的不等式x 2+1≥kx 在[1,2]上恒成立,则实数k 的取值范围是_________ . 12.已知f (x )=ln (x 2+1),g (x )=()x ﹣m ,若?x 1∈[0,3],?x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是() A .[,+∞) B .(﹣∞,] C .[,+∞) D .(﹣∞,﹣] 13.已知,,若对任意的x 1∈[﹣1,2],总存在x 2∈[﹣1,2],使得g (x 1)=f (x 2),则m 的取值范围是() A .[0,] B .[,0] C .[,] D .[,1] 二利用导数解决能成立问题若在区间D 上存在实数x 使不等式A x f 成立,则等价于在区间D 上max f x A ;若在区间D 上存在实数x 使不等式 B x f 成立,则等价于在区间D 上的 min f x B.如14.已知集合A={x ∈R|≤2},集合B={a ∈R|已知函数f (x )=﹣1+lnx ,?x 0>0,使f (x 0)≤0成立},则A ∩B=()

2019届高考数学专题四恒成立问题精准培优专练理 (1)

培优点四 恒成立问题 1.参变分离法 例1:已知函数()ln a f x x x =-,若()2f x x <在()1,+∞上恒成立,则a 的取值范围是 _________. 【答案】1a ≥- 【解析】233ln ln ln a x x x x a x a x x x x - -,其中()1,x ∈+∞, ∴只需要() 3max ln a x x x >-. 令()3 ln g x x x x =-,()' 2 1ln 3g x x x =+-,()' 12g =-,()2 '' 11660x g x x x x -=-=<, ()'g x ∴在()1,+∞单调递减,()()()''10g x g g x ∴<>≠对于任意的π0,4x ?? ∈ ???都成立,则实数a 的取值范围 是___________. 【答案】π,14a ?? ∈ ??? 【解析】本题选择数形结合,可先作出sin 2y x =在π0,4x ?? ∈ ??? 的图像, a 扮演的角色为对数的底数,决定函数的增减,根据不等关系可得01a <<,观察图像进一

步可得只需 π 4 x = 时,log sin 2a x x >, 即πππlog sin 21444a a >?=?>,所以π,14a ??∈ ??? . 3.最值分析法 例3:已知函数()()ln 10f x a x a =+>,在区间()1,e 上,()f x x >恒成立,求a 的取值范围___________. 【答案】e 1a ≥- 【解析】()f x x >恒成立即不等式ln 10a x x -+>恒成立,令()ln 1g x a x x =-+, ∴只需()min 0g x >即可,()10g =, ()'1a a x g x x x -= -=,令()'00a x g x x a x ->?>?<(分析()g x 的单调性) 当1a ≤时 ()g x 在()1,e 单调递减,则()()010g x g <= (思考:为什么以1a =作为分界点讨论?因为找到()10g =,若要不等式成立,那么一定从1x =处起()g x 要增(不一定在()1,e 上恒增,但起码存在一小处区间是增的) ,所以1a ≤时导致()g x 在1x =处开始单减,那么一定不符合条件.由此请体会零点对参数范围所起的作用) 当1a >时,分x a =是否在()1,e 中讨论(最小值点的选取) 若1e a <<,单调性如表所示 ()()10 e 1e 0 g a g ?≥?∴?≥-?≥??,e 1e a ∴-≤<.

相关主题
文本预览
相关文档 最新文档