当前位置:文档之家› 导数中含参数问题与恒成立问题的解题技巧

导数中含参数问题与恒成立问题的解题技巧

导数中含参数问题与恒成立问题的解题技巧
导数中含参数问题与恒成立问题的解题技巧

函数、导数中含参数问题与恒成立问题的解题技巧与方法 含参数问题及恒成立问题方法小结:

1、分类讨论思想

2、判别法

3、分离参数法

4、构造新函数法

一、分离讨论思想:

例题1: 讨论下列函数单调性:

1、()x f =();1,0,≠>-a a a a x

2、()x f =)0,11(1

2≠<<--b x x bx

二、判别法

例2:已知不等式04)2(2)2(2

<--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2<--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022a a a 或 (2)??

???<-=-=-040)2(202a a 解(1)得???<<-<2

22a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2.

练习1. 已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。

三、分离法参数:

分离参数法是求参数的取值范围的一种常用方法,通过分离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决.分离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到. 解题的关键是分离出参数之后将原问题转化为求函数的最值或值域问题.即:

(1)

对任意x 都成立()min x f m ≤ (2)对任意x 都成立。

例3.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

解: 将问题转化为x

x x a 2

4-<对]4,0(∈x 恒成立,令x x x x g 24)(-=,则min )(x g a <由144)(2

-=-=x

x x x x g 可知)(x g 在]4,0(上为减函数,故0)4()(min ==g x g ∴0

注:分离参数后,方向明确,思路清晰能使问题顺利得到解决。

例4.已知函数),1[,2)(2+∞∈++=x x

a x x x f ,若对任意),1[+∞∈x ,0)(>x f 恒成立,求实数a 的取值范围。(答案3->a )

例题 5. 已知函数()x x f ln =,()bx ax x g +=22

1,0≠a . 若2=b ,且()()()x g x f x h -=存在单调递减区间,求a 的取值范围; 解:当x ax x x h b 22

1ln )(,22--==时.,则.1221)(2x x ax ax x x h -+-=--=' 因为函数()h x 存在单调递减区间,所以()0h x '<有解.由题设可知,()x h 的定义域是()+∞,0 ,而()0<'x h 在()+∞,0上有解,就等价()0<'x h 于在区间()+∞,0能成立, 即x x a 212->, ()+∞∈,0x 成立, 进而等价于()x u a min >成立,其中()x x

x u 212-=.由()x x

x u 212-=1112-??? ??-=x 得,()1min -=x u .于是,1->a , 由题设0≠a ,所以a 的取值范围是()()+∞-,00,1

例6 已知x

a ax x x f 222)(2-+=在[1,)+∞上是单调递增函数,求a 的取值范围. 解 ∵()2a a f x x x =-+,∴2()1a

f x x

'=+.又)(x f 在[1,)+∞上是单调递增函数, ∴0)(≥'x f .于是可得不等式2x a -≥对于1x ≥恒成立.∴2max ()a x ≥-.由1x ≥,

得21x -≤-.∴1-≥a .

四、构造法: 利用导数解决不等式问题,实质上是转化为构造函数,利用导数研究函数的单调性,转化的思路一般如下:

f (x )≥

g (x )?F (x )=f (x )-g (x )≥0?F (x )min ≥0,

f (x )≤

g (x )?F (x )=f (x )-g (x )≤0?F (x )max ≤0.

例题7 设()f x =ln x ,()()g x f x =+'()f x 。

(1)求()g x 的单调区间和最小值;(2)讨论()g x 和1()g x 的大小;(3)求a 的取值范围,使得()()g a g x -<1a

,对任意的0x >成立。

例题8:求证:当0x >时,ln(1)x x >+

例题7:答案:(1)减区间:(0,1);增区间()1,+∞;最小值1.(2)当11,()()x g x g x ==;当(0,1)x ∈1()()g x g x >;当1(1,)()()x g x g x ∈+∞<1()()g x g x >

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题, 也是高中数学非常重要的一个模块, 不管是小题,还 是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后, a f (x )恒成立,则有a f (X )max 2. 对于双变量的恒成立问题 f(x) min g(x)min 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的, (甚至我提出这样 一个观点,所有导数的题目95%3根结底就是带参数二次函数在已知定义域上根的讨论, 3%是 ax b 与ax 3 b 这种形式根的讨论,2%!观察法得到零点,零点通常是1,-,e 之类),所以如果 e 我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一?二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知f (x ) ■ 2x2 2ax a 1定义域为R ,求a 的取值围 思考:①引入定义域(非R ) ② 参数在二次项,就需考虑是否为0 1 ③ 引入高次(3次,4次,—,I nx , e x 等等) x ④ 引入a 2, a 3等项(导致不能分离变量) f (x )恒成立,则有a f ( x) min (若是存在性问题,那么最大变最小, 最小变最大) 如:化简后我们分析得到, a,b , f (x) 0恒成立,那么只需 f ( x) min a,b ,使得 f(x) 0,那么只需f (X )max 0 如:化简后我们分析得到, X i ,X 2 a,b , f(xj g(X 2),那么只需 f (X)min g ( X) max 如:化简后我们分析得到, X i a,b , x 2 c, d 使f (xj gg ),那么只需 如:化简后我们分析得到, X i a,b ,X 2 C,d 使 f (X i ) g(X 2),那么只需 f (X)max g(x)min 还有一些情况了,这里不一一列举, 一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题, 成立问题(2014.03锡常镇一模那题特别典型) 总之一句话 (双变量的存在性与恒成立问题,都是先处理 我们往往先根据函数的单调性,去掉绝对值,再转变成恒

含参数导数问题分类讨论

含参数导数的解题策略 导数是研究函数性质的一种重要工具,利用导数可判断函数单调性、极值、最值等,其中渗透并充分利用着构造函数、分类讨论、转化与化归、数形结合等重要思想方法,导数常作为高考的压轴题,对考生的能力要求非常高,它不仅要求考生牢固掌握基础知识、基本技能,还要求考生具有较强的分析能力和计算能力。而含参数的导数问题是近年来高考的难点和热点,本文着重就含参数导数的几种常见的解题策略加以归纳. 一、分离参数,转化为最值策略 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出 ()max f x ,则()max a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()min a f x ≤,转 化为函数求最值. 例1、已知函数x x x f ln )(=.(Ⅰ)求)(x f 的最小值; (Ⅱ)若对所有1≥x 都有,1)(-≥ax x f 求实数a 的取值范围. 二、导数为0的点是否在定义域内,分类讨论策略 求导后,导函数为零有实根(或导函数的分子能分解因式),但不知导函数为零的实根是否落在定义域内,所以必须分类,通过令导函数为零的实根等于定义域端点值,求分点,从而引起讨论. 例2.已知a 是实数,函数))(2 a x x x f -=(. (Ⅰ)若3)1(='f ,求a 的值及曲线)(x f y =在点))1(,1(f 处的切线方程; (Ⅱ)求)(x f 在区间[0,2]上的最大值. 三、导函数为0是否存在,分类讨论策略 求导后,考虑导函数为零是否有实根(或导函数的分子能否分解因式),涉及到二次方程问题时,△与0的关系不定,所以必须分类,通过导函数是二次函数或者与二次函数有关,令△=0,求分点,从而引起讨论. 例3、已知函数,,讨论在定义域上的单调性. 四、导函数为0的方程的根大小不确定,分类讨论策略 求导后,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根也落在定义域内,但这些实根的大小关系不确定,分不了区间.所以必须分类,通过令几个根相等求分点,从而引起讨论. 例4、已知0>m ,讨论函数x e m x m mx x f 6 3)1(3)(2++++=的单调性.

导数中的恒成立和存在性问题

导数中的恒成立和存在性问题

技巧传播 1.恒成立问题的转化:()a f x >恒成立max ()a f x ?>;()a f x ≤恒成立min ()a f x ?≤; 2.能成立问题的转化:()a f x >能成立min ()a f x ?>;()a f x ≤能成立max ()a f x ?≤; 3.恰成立问题的转化:()a f x >在M 上恰成立()a f x ?>的解集为R ()()a f x M M a f x C M >???≤?在上恒成立在上恒成立 ; 另一转化方法:若x D ∈,()f x A ≥在D 上恰成立,等价于()f x 在D 上的最小值min ()f x A =, 若x D ∈,()f x B ≤在D 上恰成立,则等价于()f x 在D 上的最大值max ()f x B =; 4.设函数()f x 、()g x ,对任意的1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≥,则min min ()()f x g x ≥; 5.设函数()f x 、()g x ,对任意的1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≤,则max max ()()f x g x ≤; 6.设函数()f x 、()g x ,存在1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≥,则max min ()()f x g x ≥; 7.设函数()f x 、()g x ,存在1[,]x a b ∈,存在2[,]x c d ∈,使得12()()f x g x ≤,则min max ()()f x g x ≤; 8.若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图像在函数()y g x =图像上方; 9.若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图像在函数()y g x =图像下方;

导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题 含参数导数问题的分类讨论问题 1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。 ★已知函数ax x a x x f 2)2(2 131)(23++-=(a>0),求函数的单调区间 )2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a x a x x f ln )2(2)(+-- =(a>0)求函数的单调区间 2 2 2) )(2(2)2()(x a x x x a x a x x f --=++-=' ★★★例3已知函数()()22 21 1 ax a f x x R x -+=∈+,其中a R ∈。 (Ⅰ)当1a =时,求曲线()y f x =在点()() 2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。 ! 解:(Ⅰ)当1a =时,曲线()y f x =在点()() 2,2f 处的切线方程为032256=-+y x 。 (Ⅱ)由于0a ≠,所以()() 1 2)1(222+-+='x x a x f ,由 ()'0f x =,得121 ,x x a a =-=。这两个实根都在定 ()()()()()() 2 2 ' 2222 122122111a x a x a x x ax a a f x x x ? ?--+ ?+--+??==++义域R 内,但不知它们之间 的大小。因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。 (1)当0a >时,则12x x <。易得()f x 在区间1,a ? ? -∞- ??? ,(),a +∞内为减函数, 在区间1,a a ?? - ??? 为增函数。故函数()f x 在11x a =-处取得极小值 21f a a ?? -=- ??? ; 函数()f x 在2x a =处取得极大值()1f a =。 (1) 当0a <时,则12x x >。易得()f x 在区间),(a -∞,),1 (+∞-a 内为增函数,在区间 )1,(a a -为减函数。故函数()f x 在11 x a =-处取得极小值 21f a a ?? -=- ??? ;函数 ()f x 在 2x a =处取得极大值()1f a =。

第18讲 导数的应用——利用导数研究不等式恒成立问题备战2021年新高考数学考点精讲与达标测试

《导数的应用——利用导数研究不等式恒成立(能成立)问题》 达标检测 [A 组]—应知应会 1.已知函数f (x )=x +4 x ,g (x )=2x +a ,若?x 1∈????12,1,?x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是( ) A .a ≤1 B .a ≥1 C .a ≤2 D .a ≥2 【解析】选A.由题意知f (x )min ??? ?x ∈????12,1≥g (x )min (x ∈[2,3]),因为f (x )min =5,g (x )min =4+a ,所以5≥4+a ,即a ≤1,故选A. 2.(2020·吉林白山联考)设函数f (x )=e x ????x +3x -3-a x ,若不等式f (x )≤0有正实数解,则实数a 的最小值为________. 【解析】原问题等价于存在x ∈(0,+∞),使得a ≥e x (x 2-3x +3),令g (x )=e x (x 2-3x +3),x ∈(0,+∞),则a ≥g (x )min ,而g ′(x )=e x (x 2-x ).由g ′(x )>0可得x ∈(1,+∞),由g ′(x )<0可得x ∈(0,1).据此可知,函数g (x )在区间(0,+∞)上的最小值为g (1)=e.综上可得,实数a 的最小值为e. 3.(2020·西安质检)已知函数f (x )=ln x ,g (x )=x -1. (1)求函数y =f (x )的图象在x =1处的切线方程; (2)若不等式f (x )≤ag (x )对任意的x ∈(1,+∞)均成立,求实数a 的取值范围. 【解析】(1)因为f ′(x )=1 x , 所以f ′(1)=1. 又f (1)=0,所以切线的方程为y -f (1)=f ′(1)(x -1), 即所求切线的方程为y =x -1. (2)易知对任意的x ∈(1,+∞),f (x )>0,g (x )>0. ①当a ≥1时,f (x )≤g (x )≤ag (x ); ②当a ≤0时,f (x )>0,ag (x )≤0,所以不满足不等式f (x )≤ag (x ); ③当0<a <1时,设φ(x )=f (x )-ag (x )=ln x -a (x -1),则φ′(x )=1 x -a ,

含参数导数方法总结

导数题型总结(解析版) 体型一: 关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =- - (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立

用导数研究函数的恒成立与存在性问题-答案

用导数研究函数的恒成立与存在问题 1.已知函数23()2ln x f x x x a = -+,其中a 为常数. (1)若1a =,求函数()f x 的单调区间; (2)若函数()f x 在区间[1,2]上为单调函数,求a 的取值范围. 2.已知函数3 2 ()4()f x x ax a R =-+-∈,'()f x 是()f x 的导函数。 (1)当2a =时,对于任意的[1,1]m ∈-,[1,1]n ∈-,求()()f m f n '+的最小值; (2)若存在0(0,)x ∈+∞,使0()f x >0,求a 的取值范围。

3.已知函数x ax x f ln )(+= )(R a ∈. (1)若2=a ,求曲线)(x f y =在点1x =处的切线方程; (2)求)(x f 的单调区间; (3)设22)(2 +-=x x x g ,若对任意1(0,)x ∈+∞,均存在[]1,02∈x ,使得)()(21x g x f <, 求实数a 的取值范围.

4.(2016届惠州二模)已知函数()22ln f x x x =-+. (Ⅰ)求函数()f x 的最大值; (Ⅱ)若函数()f x 与()a g x x x =+ 有相同极值点. ①求实数a 的值; ②对121,,3x x e ???∈???? (e 为自然对数的底数),不等式 ()() 1211 f x g x k -≤-恒成立,求实数k 的取值范围.

5.已知函数2 12 ()()ln ()f x a x x a R =-+∈. (1)当1a =时,01[,]x e ?∈使不等式0()f x m ≤,求实数m 的取值范围; (2)若在区间1(,)+∞,函数()f x 的图象恒在直线2y ax =的下方,求实数a 的取值范围.

导数含参数取值范围分类讨论题型总结与方法归纳

一.含参数导数问题的分类讨论问题 求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。 ★例1已知函数ax x a x x f 2)2(2 131 )(23++-=(a>0),求函数的单调区间 ★★例2已知函数x a x a x x f ln )2(2 )(+--=(a>0)求函数的单调区间 ★★★例3已知函数()()22211 ax a f x x R x -+=∈+,其中a R ∈。 (Ⅰ)当1a =时,求曲线()y f x =在点()()2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。 。 练习:已知函数 当时,讨论的单调性. 二.已知函数的单调性求参数范围可以转化为不等式恒成立问题; .例4.已知函数f (x )=ln a +ln x x 在[1,+∞)上为减函数,则实数a 的取值范围为__________. 练习:已知函数f (x )=x 3+ax 2-x +c ,且 a =f ′? ?????23. (1)求a 的值; (2)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.

恒成立分参 例1:设函数f (x )=kx 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数k 的值为________. 练习: 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,-3] B .[-6,-98 ]C .[-6,-2] D .[-4,-3]

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ (若是存在性问题,那么最大变最小,最小变最大) 1.对于单变量的恒成立问题 如:化简后我们分析得到,对[],x a b ?∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ?∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题 如:化简后我们分析得到,对[]12,,x x a b ?∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ?∈,[]2,x c d ?∈使12()()f x g x ≥,那么只需 min min ()()f x g x ≥ 如:化简后我们分析得到,[]1,x a b ?∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话(双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题(201 4.03苏锡常镇一模那题特别典型) 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,(甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是 ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是1 1,,e e 之类) ,所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一.二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知()f x =R ,求a 的取值范围 思考:① 引入定义域(非R ) ②参数在二次项,就需考虑是否为0 ③引入高次(3次,4次,1 x ,ln x ,x e 等等) ④引入2a ,3a 等项(导致不能分离变量)

例说导数含参问题的处理策略

例说导数含参问题的处理策略详解 (完美终结篇) 张成 壹叁捌叁捌伍叁捌贰肆贰 一、 和单调性有关的含参问题 1. 求单调区间:本质是解含参不等式 例1:求2 ()()x a f x x -= 的单调区间 【解】2 ()() ()x a a x f x x -+'= 12x a x a ==- 当0a =时,()10f x '=>,故只有增区间:(,0),(0,)-∞+∞不能并哦 当0a >时,由2 ()() ()0x a x x f a x -+'= >即()(x a)0x a -+>得,x a x a <->, 由()(x a)0x a -+<得a x a -<< 当0a <时,由()0f x '>得,x a x a <>- 由()0f x '<得a x a <<- 综上所述:当0a =时函数增区间为(,0),(0,)-∞+∞ 当0a >时函数增区间为:(,),(,)a a -∞-+∞减区间为:(,)a a - 当0a <时函数增区间为:(,),(,)a a -∞-+∞减区间为:(,)a a - 例2:求函数f (x )=x 2e ax 的单调区间. 【解】 函数f (x )的导数f ′(x )=2x e ax +ax 2e ax =(2x +ax 2)e ax . 1220x x a ==- (1)当a =0时,由f ′(x )<0得 x <0;由f ′(x )>0,得x >0 所以当a =0时,函数f (x )在区间(-∞,0)上为减函数,在区间(0,+∞)上为增函数. 当a ≠0时,1220 x x a ==- (2)当a >0时,由2x +ax 2>0,得x <-2a 或x >0;由2x +ax 2<0,得-2 a <x <0. 所以当a >0时,函数f (x )在(-∞,-2a )和(0,+∞)上为增函数,在区间(-2 a ,0)上为减函数. (3)当a <0时,由2x +ax 2>0,得0<x <-2a ;由2x +ax 2<0,得x <0或x >-2 a , 所以当a <0时,函数f (x )在区间(-∞,0)和(-2a ,+∞)上为减函数,在区间(0,-2 a )上为增函数 总结:两个根大小不定时要讨论 2. 逆向问题:已知函数在某区间上单调性,求参数取值范围 (1) 解析式含参时:本质是恒成立问题: ()0f x '≥(()0f x '≤)恒成立 思路1:转化为求非含参一段函数的最值(范围) 思路2:数形结合 注意事项:端点能否取等号要注意

导数之恒成立问题

应用导数研究函数的恒成立与存在性问题 例已知函数()()()21,ln 12 f x x x g x x a =+=+-. (1)若存在[]0,2x ∈,使得()()f x g x =,求实数a 的取值范围; (2)若存在[]0,2x ∈,使得()()f x g x >,求实数a 的取值范围; (3)若对任意[]0,2x ∈,恒有()()f x g x >,求实数a 的取值范围; (4)若对任意[]12,0,2x x ∈,恒有()()12f x g x >,求实数a 的取值范围; (5)若对任意[]20,2x ∈,存在[]10,2x ∈,使得()()12f x g x >,求实数a 的取值范围; (6)若对任意[]20,2x ∈,存在[]10,2x ∈,使得()()12f x g x =,求实数a 的取值范围; (7)若存在[]12,0,2x x ∈,使得()()12f x g x >,求实数a 的取值范围; (8)若存在[]12,0,2x x ∈,使得()()12f x g x =,求实数a 的取值范围;

(1)恒成立问题 ①. ①x①D,均有f(x)>A恒成立,则f(x)min>A; ①. ①x①D,均有f(x)﹤A恒成立,则f(x)ma xg(x)恒成立,则F(x)= f(x)- g(x) >0,① F(x)min >0; ①. ①x①D,均有f(x)﹤g(x)恒成立,则F(x)= f(x)- g(x) <0,① F(x) ma x <0; (2)存在性问题 ①. ①x0①D,使得f(x0)>A成立,则f(x) ma x >A; ①. ①x0①D,使得f(x0)﹤A成立,则f(x) min g(x0)成立,设F(x)= f(x)- g(x),① F(x) ma x >0; ①. ①x0①D,使得f(x0) g(x2)成立,则f(x)min > g(x)ma x; ① ①x1①D, ①x2①E, 使得f(x1) >g(x2)成立,则f(x) ma x > g(x) min; ① ①x1①D, ①x2①E, 使得f(x1) >g(x2)成立,则f(x)m in > g(x)m in; ① ①x1①D, ①x2①E, 使得f(x1) >g(x2)成立,则f(x)max > g(x)max.

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程 一、复习预习 考纲要求: 1.理解导数和切线方程的概念。 2.能在具体的数学环境中,会求导,会求切线方程。 3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题 二、知识讲解 1.导数的计算公式和运算法则 几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '= ; 1(log )log a a x e x '=, ()x x e e '= ; ()ln x x a a a '= 求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.

法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '= 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ??? 复合函数的导数:设函数()u x ?=在点x 处有导数()x u x ?'=',函数()y f u =在点x 的对应点u 处有导 数()u y f u '=',则复合函数(())y f x ?=在点x 处也有导数,且x u x u y y '''?= 或(())()()x f x f u x ??'='?' 2.求直线斜率的方法(高中范围内三种) (1) tan k α=(α为倾斜角); (2) 1212 ()() f x f x k x x -= -,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率); 3.求切线的方程的步骤:(三步走) (1)求函数()f x 的导函数()f x '; (2)0()k f x '= (在0x x =处的切线的斜率); (3)点斜式求切线方程00()()y f x k x x -=-; 4.用导数求函数的单调性: (1)求函数()f x 的导函数()f x '; (2)()0f x '>,求单调递增区间; (3)()0f x '<,求单调递减区间; (4)()0f x '=,是极值点。 考点一 函数的在区间上的最值 【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。 【答案】:最大值为18,最小值为-2. 【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y , 取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。所以最大值为18,最小值为-2.

导数中含参数问题与恒成立问题的解题技巧

函数、导数中含参数问题与恒成立问题的解题技巧与方法 含参数问题及恒成立问题方法小结: 1、分类讨论思想 2、判别法 3、分离参数法 4、构造新函数法 一、分离讨论思想: 例题1: 讨论下列函数单调性: 1、()x f =();1,0,≠>-a a a a x 2、()x f =)0,11(1 2≠<<--b x x bx 二、判别法 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2<--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022a a a 或 (2)?? ???<-=-=-040)2(202a a 解(1)得???<<-<2 22a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习1. 已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。 三、分离法参数: 分离参数法是求参数的取值范围的一种常用方法,通过分离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决.分离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到. 解题的关键是分离出参数之后将原问题转化为求函数的最值或值域问题.即: (1) 对任意x 都成立()min x f m ≤ (2)对任意x 都成立。 例3.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

高三总复习导数——专题总结归纳.

历年高考题型总结及详解——倒数 内容简介:1.有关倒数考试方向及常考点. 2.常考点方法总结及名师点拨. 3.2014——2016各地历年高考题及解析. 4.名校有关模拟题——母题. 【命题意图】导数是研究函数的重要工具,利用导数研究函数的单调性可以描绘出函数图象大致的变化趋势,是进一步解决问题的依据.分类讨论思想具有明显的逻辑特征,是整体思想一个重要补充,解决这类问题需要一定的分析能力和分类技巧.因此高考对这类题主要考查导数的运算、代数式化简与变形,考查运算求解能力,运用数形结合、分类讨论的思想方法分析与解决问题能力. 【考试方向】含有参数的函数导数试题,主要有两个方面:一是根据给出的某些条件求出这些参数值,基本思想方法为方程的思想;二是在确定参数的范围(或取值)使得函数具有某些性质,基本解题思想是函数与方程的思想、分类讨论的思想.含有参数的函数导数试题是高考考查函数方程思想、分类讨论思想的主要题型之一.这类试题在考查题型上,通常以解答题的形式出现,难度中等. 【得分要点】 1.研究函数单调区间,实质研究函数极值问题.分类讨论思想常用于含有参数的函数的极值问题,大体上可分为两类,一类是定区间而极值点含参数,另一类是不定区间(区间含参数)极值点固定,这两类都是根据极值点是否在区间内加以讨论,讨论时以是否使得导函数变号为标准,做到不重不漏. 2.求可导函数单调区间时首先坚持定义域优先原则,必须先确定函数的定义域,尤其注意定义区间不连续的情况,此时单调区间按断点自然分类;其次,先研究定义区间上导函数无零点或零点落在定义区间端点上的情况,此时导函数符号不变,单调性唯一;对于导函数的零点在定义区间内的情形,最好列表分析导函数符号变化规律,得出相应单调区间. 3.讨论函数的单调性其实质就是讨论不等式的解集的情况.大多数情况下,这类问题可以归结为一个含有参数的一元二次不等式的解集的讨论,在能够通过因式分解求出不等式对应方程的根时依据根的大小进行分类讨论,在不能通过因式分解求出根的情况时根据不等式对应方程的判别式进行分类讨论.讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了

利用导数解决恒成立能成立问题备课讲稿

利用导数解决恒成立能成立问题

利用导数解决恒成立能成立问题 一利用导数解决恒成立问题不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) (1)恒成立问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 1.若在x∈[1,+∞)上恒成立,则a 的取值范围是 ______ . 2.若不等式x 4﹣4x 3>2﹣a 对任意实数x 都成立,则实数a 的取值范围 _________ . 3.设a >0,函数,若对任意的x 1,x 2∈[1,e],都有f (x 1)≥g(x 2)成立,则a 的取值范围为 _________ . 4.若不等式|ax 3 ﹣lnx|≥1对任意x∈(0,1]都成立,则实数a 取值范围是 _________ .

15.设函数f(x)的定义域为D,令M={k|f(x)≤k恒成立,x∈D},N={k|f(x)≥k恒成立,x∈D},已知 ,其中x∈[0,2],若4∈M,2∈N,则a 的范围是_________ . 6.f(x)=ax3﹣3x(a>0)对于x∈[0,1]总有f(x)≥﹣1成立,则a的范围为_________ . 7.三次函数f(x)=x3﹣3bx+3b在[1,2]内恒为正值,则b的取值范围是_________ . 8.不等式x3﹣3x2+2﹣a<0在区间x∈[﹣1,1]上恒成立,则实数a的取值范围是__ . 9.当x∈(0,+∞)时,函数f(x)=e x的图象始终在直线y=kx+1的上方,则实数k的取值范围是_________ .10.设函数f(x)=ax3﹣3x+1(x∈R),若对于任意的 x∈[﹣1,1]都有f(x)≥0成立,则实数a的值为 _________ .

导数常见题型与解题方法总结

导数题型总结 1、分离变量-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 2、变更主元-----已知谁的范围就把谁作为主元 3、根分布 4、判别式法-----结合图像分析 5、二次函数区间最值求法-----(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 一、基础题型:函数的单调区间、极值、最值;不等式恒成立 此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 第三种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元)。 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=- - 2()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

利用导数解决恒成立能成立问题

利用导数解决恒成立能成立问题 一利用导数解决恒成立问题不等式恒成立问题的常规处理方式?(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法) (1)恒成立问题 若不等式A x f 在区间D 上恒成立,则等价于在区间D 上min f x A 若不等式B x f 在区间D 上恒成立,则等价于在区间D 上max f x B 1.若在x ∈[1,+∞)上恒成立,则a 的取值范围是______ . 2.若不等式x 4﹣4x 3>2﹣a 对任意实数x 都成立,则实数a 的取值范围_________ . 3.设a >0,函数,若对任意的x 1,x 2∈[1,e],都有f (x 1)≥g (x 2)成立,则a 的取值范围为_________ . 4.若不等式|ax 3﹣lnx|≥1对任意x ∈(0,1]都成立,则实数a 取值范围是_________ . 15.设函数f (x )的定义域为D ,令M={k|f (x )≤k恒成立,x ∈D},N={k|f (x )≥k恒成立,x ∈D},已知,其中x ∈[0,2],若4∈M ,2∈N ,则a 的范围是_________ . 6.f (x )=ax 3﹣3x (a >0)对于x ∈[0,1]总有f (x )≥﹣1成立,则a 的范围为_________ . 7.三次函数f (x )=x 3﹣3bx+3b 在[1,2]内恒为正值,则b 的取值范围是_________ . 8.不等式x 3﹣3x 2+2﹣a <0在区间x ∈[﹣1,1]上恒成立,则实数a 的取值范围是__ .

9.当x ∈(0,+∞)时,函数f (x )=e x 的图象始终在直线y=kx+1的上方,则实数k 的取值范围是_________ . 10.设函数f (x )=ax 3﹣3x+1(x ∈R ),若对于任意的x ∈[﹣1,1]都有f (x )≥0成立,则实数a 的值为_________ . 11.若关于x 的不等式x 2+1≥kx 在[1,2]上恒成立,则实数k 的取值范围是_________ . 12.已知f (x )=ln (x 2+1),g (x )=()x ﹣m ,若?x 1∈[0,3],?x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是() A .[,+∞) B .(﹣∞,] C .[,+∞) D .(﹣∞,﹣] 13.已知,,若对任意的x 1∈[﹣1,2],总存在x 2∈[﹣1,2],使得g (x 1)=f (x 2),则m 的取值范围是() A .[0,] B .[,0] C .[,] D .[,1] 二利用导数解决能成立问题若在区间D 上存在实数x 使不等式A x f 成立,则等价于在区间D 上max f x A ;若在区间D 上存在实数x 使不等式 B x f 成立,则等价于在区间D 上的 min f x B.如14.已知集合A={x ∈R|≤2},集合B={a ∈R|已知函数f (x )=﹣1+lnx ,?x 0>0,使f (x 0)≤0成立},则A ∩B=()

高二数学导数中的恒成立问题专题学案(含答案)

1 第 讲 导数中的恒成立问题 时间: 年 月 日 刘满江老师 学生签名: 一、 兴趣导入 二、 学前测试 §1. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率 ,相应的切线 方程是 . §2.几种常见函数的导数 ①'C = ;②'()n x = ; ③'(sin )x = ; ④'(cos )x = ; ⑤'()x a = ; ⑥'()x e = ; ⑦'(log )a x = ;⑧'(ln )x = §3.导数的运算法则 (1)'()u v ±= . (2)'()uv = . (3)' ()u v = .(0)v ≠ §4.复合函数求导法则 复合函数(())y f g x =的导数和函数(),()y f u u g x ==的导数间的关系为x u x y y u '''=?,即y 对x 的 导数等于y 对u 的导数与u 对x 的导数的乘积. 解题步骤:分层—层层求导—作积还原. §5.函数的极值 (1)极值定义: 极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极 值; 极值是在0x 附近所有的点,都有)(x f >)(0x f ,则)(0x f 是函数)(x f 的极 值. (2)判别方法: ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极 值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极 值. 三、 方法培养

含参数导数问题的巧妙解法

参数范围统一解,函切两等显神通 何凌州 一.前言 在高考中,有许多涉及到参数的导数问题,许多学生害怕求导后根据参数的分类讨论,于是常常白白放弃得分的机会。事实上,有一种方法可以很好地解决此类问题,笔者在市面上的教辅练习中暂未找到系统介绍此方法的章节,故想把该方法分享给大家。暂将该方法定名为“参数范围统一解,函切两等显神通”。 二.标题解释 “参数范围统一解”说明了该方法运用的广泛性,凡是函数中有一个参数的,均可以用此方法,例:f(x)=e x?1?a(1+ln x)。若没有参数,例:f(x)=e x?1?1?ln x就无法使用该方法。“函切两等显神通”说明了完成一道题需要两个等式,即函数值相等,切线值相等,这两个等式是该类题目能够完成的关键。 三.例题 已知函数 f(x)=e x?1?a(1+ln x)有两个零点,求a的取值范围。 此题分析:若此题为一道大题,解题步骤会稍微有些麻烦,需要用到隐形零点的方法。若此题为一道小题,可以直接运用笔者介绍的下述方法。 第一步:f(x)=0可推出:e x?1=a(1+ln x)① ②第二步:对等式左右两边同时求导得:e x?1=a x 第三步:①÷②可得: 1=(1+ln x)x 第四步:解出(或观察出)x的解:x=1 第五步:将x的解代入①式或②式,解到a的值: a=1 第六步:大致绘制当a=1时a(1+ln x)和e x?1的图像(两图像相切),此时有一个交点 后续:通过对图像的认知,判断a与0和1的关系进而得到答案 即:分类讨论要按照a<0,a=0,01标准分类,原因是a的正负性会影响a(1+ln x)的正负性,如果a取负数(如?1)会造成图像中g(x)上下翻转

导数与不等式的恒成立问题

导数与不等式的恒成立问题 规范答题示专题 典例 (12分)设函数f (x )=e mx +x 2-mx . (1)证明:f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增; (2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围. 审题路线图 (1)求导f ′(x )=m (e mx -1)+2x ―→讨论m 确定f ′(x )的符号―→证明结论 (2)条件转化为(|f (x 1)-f (x 2)|)max ≤e -1 ―――――→结合(1)知 f (x )min =f (0) ? ?? ?? f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1―→? ?? ?? e m -m ≤e -1,e -m +m ≤e -1―→ 构造函数g (t )=e t -t -e +1―→研究g (t )的单调性―→寻求? ???? g (m )≤0, g (-m )≤0的条件―→ 对m 讨论得适合条件的范围

评分细则 (1)求出导数给1分; (2)讨论时漏掉m =0扣1分;两种情况只讨论正确一种给2分; (3)确定f ′(x )符号时只有结论无中间过程扣1分; (4)写出f (x )在x =0处取得最小值给1分; (5)无最后结论扣1分; (6)其他方法构造函数同样给分. 跟踪演练 已知函数f (x )=1 x -x +a ln x . (1)讨论f (x )的单调性; (2)若f (x )存在两个极值点x 1,x 2, 证明:f (x 1)-f (x 2)x 1-x 2

相关主题
文本预览
相关文档 最新文档