当前位置:文档之家› 浅析电厂励磁系统常见故障及其处理方法

浅析电厂励磁系统常见故障及其处理方法

浅析电厂励磁系统常见故障及其处理方法
浅析电厂励磁系统常见故障及其处理方法

黄陵煤矸石发有限公司

技术论文

题目:浅析电厂励磁系统常见的故障分析及处理

熊文平

2017年9月27日

浅析电厂励磁系统常见的故障分析及处理

熊文平

黄陵矿业煤矸石发电有限公司陕西黄陵727307

[摘要]黄陵矿业煤矸石发电公司二期3#、4#机组采用武汉武水电气技术有限责任公司型号为TDWLT-01型微机励磁调节器两个控制箱组成的双通道控制系统,现改用武汉武水电气技术有限责任公司TDWLT-01型和WLT-1000微机励磁调节器由两个控制箱组成的双通道控制系统,通过运行中故障的分析处理,发现了其中的缺陷和原因并进行了处理,从而彻底解决了励磁系统存在的隐患,提高了发电系统运行的可靠性、稳定性。

[关键词]电厂励磁;参数;无功波动;电压波动

1、引言

黄陵矿业煤矸石发电公司二期3#、4#机组采用武汉武水电气技术有限责任公司型号为TDWLT-01型微机励磁调节器。该调节器在几年的运行中先后出现过一些故障,并造成机组停机。根据现场的运行情况对黄陵矿业煤矸石发电公司的励磁调节器进行优化改造,并采用武汉武水电气技术有限责任公司的WLT-1000励磁调节器替代原TDWLT-01微机调控器。根据现场的运行中的出现的一些问题,对TDWLT-01型和WLT-1000调节器组成的双通道控制系统运行中常见故障进行原因分析及处理。

2、TDWLT-01型调节器双通道控制系统运行中常见故障原因分析及处理

2.1电压调节方式无法建压

(1)现象。2009-05-16,3#发电机启动时,将3#机的1#励磁调节器作为主机运行时,按下电压调节方式,启励时发电机端电压不升高至6.3KV,切换至2#励磁调节器,能够正常启励。

(2)原因。励磁调节器内部故障

(3)措施。①更换1#励磁调节器内部调节器控制板。②更换电压调节方式按钮③检查励磁调节器内部接线,接线是否有松动。④通过①②③处理后,3#机的1#励磁调节器均无法启励,更换3#机1#励磁调节器后,运行正常。

2.2启励后跳闸

(1)现象。2016-09-10 11:10 4#机组大修后,首次启动,将4#机的1#励

磁调节器作为主机运行时,按下电压调节方式,启励时发电机端电压升高至7.8KV,机组立即跳闸。经过观察可控硅上控制板指示灯(发光二极管)只有3个亮,另外3个不亮。

(2)原因。①控硅上控制板指示灯坏。②励磁调节器内部故障。

措施。①用万用表测量,将万用表的量程切换到直流20V档,测量示灯(发光二极管)是否有5V左右的电压,如果有则表示板指示灯(发光二极管)坏,如无5V左右的电压,则表明励磁调节器无脉冲输出。②检查励磁调节器的脉冲输出线及接线端子是否是好的,如果是好的,就进一步判断为励磁调节器内部故障。③更换励磁调节器脉冲板,更换后,再次试验正常。

3 TDWLT-01型和WLT-1000微机励磁调节器双通道控制系统运行中常见故障原因分析及处理

3.1启励后机端电压波动

(1)现象。2016-10-13 11:30在4#机大修后(更换励磁机旋转整流二极管,通过实验励磁机正常),装置在启励过程中,当1#(型号为WLT-1000)为主机时,励磁调节柜上的机端电压波动,当机端电压达到6.3kv时,从电气监控盘上调电压曲线,电压在6KV至6.5kv区间波动,在励磁调节柜上观察励磁电压在35V至45V 区间波动,励磁电流在9至10A的区间波动。当启动2#励磁调节器(型号为TDWLT-01)时,现象同启动1#励磁调节器一样。

(2)原因。①励磁调节柜故障②励磁调节器参数设置不当

(3)处理。①通过做励磁调节柜静态实验判断,在励磁调节器的励磁PT(接线端子号9、11、13)、仪表PT(接线端子号15、17、19),通过三相调压器接入100V电压,再在励磁调节柜输出端(接线端子号85、89),

接上电阻性负载(双灯炮串联接入),励磁调节柜静态实验图1。

励磁调节柜静态实验图1

通过启励加压,负载端。通过示波器观察,控制角在30度、60度、90度和120

度时,波形均符合可控硅输出波形图,所以判断励磁调节柜正常。②通过C-KEY-16键盘(按下MODE键即可进入参数设置方式,首先按MODE键进入设置模式,励磁电流显示区显示参数符号,控制输出显示区全黑,按P键调出参数值,再按∧键或∨键调整到所需设置的参数,直接按数字键键入所需参数,此时符号显示区的=变为C,若所需设置值为负数时,按C键使符号显示区第四位为负号,确认无误后,按SET键。当符号显示区的C变为=后表示参数已正确写入。按∧键或∨键调整其它参数,或按MODE键返回工作参数显示方式。),调出电压放大倍数PU,由原来的12改为30,机端电压不再波动。但是励磁电压和励磁电流还在波动。通过C-KEY-16键盘调出微分时间常数NU,由原来的0.2改为0,励磁电压和励磁电流还在波动立刻减小。通过C-KEY-16键盘调出积分时间常数IU,由原来的20改为34,励磁电压和励磁电流还在波动停止,相对稳定。

3.2无功摆动

(1)现象。WLT-1000型励磁调节器调试并网运行后发现有功在45MW时,运行一段时间后,无功就会摆动一次,尤其是在早上,频率较大

(2)原因。①励磁机输出电压不稳造成发电机无功摆动。②系统电压变化时发电机之间无功的分配。

(3)处理。①为了排除励磁机输出电压不稳造成发电机无功摆动,从无功波动的的现象(运行一段时间后,无功就会摆动一次,尤其是在早上,频率较大),因为不是连续波动的,可以排除设备故障。②由发电机的调节特性可知:当发电机的励磁电流不变时,发电机的出口电压即系统电压的变化会引起发电机无功电流的变化,电压升高时无功电流减小,电压降低时无功电流将增大。当多台发电机并列运行且励磁电流不变时,系统电压或无功变化引起的发电机的无功变化量由发电机的调差特性决定,系统无功波动时,调差系数小的发电机承担较多的无功分配。由于黄陵矿业煤矸石发电公司二期3#、4#机组功率在55MW,在系统属于小机组,应该不参与无功调节。查看励磁调节调差系数设置是否正确,通过C-KEY-16键盘调出调差系数DU,由原来的-3改为0,通过电气运行人员几天观察,无功波动范围变得很微小。

3.3两励磁调节装置互相切换后跳机。

(1)现象。2016-10-13 11:30,在4#机启励后,电压达到6.3KV时,运行人员要进行切换试验,1#切2#时(通过观察,1#励磁调节器的控制角为85度,2#

励磁调节器控制角78度),立即跳机。重新用2#启励时,电压达到6.3KV时,运行人员要进行切换试验,2#切1#时(通过观察,1#励磁调节器的控制角为83度,2#励磁调节器控制角75度),立即跳机。

(2)原因。两励磁调节器控制角不一致。

(3)处理。①先测量两励磁调节器励磁PT和仪表PT输入端子上电压是否一致,如不一致,则查找励磁调节器外部接线原因。如果一致。则需要对励磁调节参数进行调整。②对励磁调节参数进行调整:先查看(C-KEY-16键盘插入主机接口,按∧键或∨键)UF、UY显示值是否一致,如果1#(WLT-1000型)UF较大,通过通过C-KEY-16键盘调出U+将其改小后保存,调出显示再观察两励磁调节器的UF 是否一致,如果不一致,再继续修改,直到观察两励磁调节器的UF一致时,停止修改。UY和UF一致,但是需要修改Y+参数。

4结语

黄陵矿业煤矸石发电有限公司通过选用可靠性强、功能完善、操作简单、兼容性好的WLT-1000型励磁调节器对原有不能满足要求的,且无法维修的TDWLT-01型励磁调节器进行优化改造,满足了电厂安全性评价,提高了电力系统运行的静态稳定性及输电的可靠性,实现了并列运行各台发电机组之间无功功率的合理分配,保证了机组安全可靠经济运行。

[参考文献]

1、陈东阳浅谈电厂励磁系统常见故障分析及处理能源技术与管理2015(40.2)02-0171-02

[作者简介】

熊文平(1979-),男,汉族,陕西汉中人,现任黄陵煤矸石发电公司管理中心电气专工,.毕业于西安交通大学电气工程及自动化专业,长期从取电厂电气设备检修、技术、改造创新及电气设备管理等方面的工作。

励磁系统常见故障及应对措施

励磁系统常见故障及应对措施 摘要:保持励磁系统良好状态,对于水电站安全生产具有十分重要的作用,因 此本文对励磁系统工作原理、常见故障及其应对措施进行了探讨。 关键词:故障;措施;励磁系统;水轮发电机 励磁系统(excitation system)是向水轮发电机转子绕组提供磁场电流的装置,其主要作用是维持发电机电压在给定水平上、合理分配无功以及提高电力系统运 行稳定性[1]。可见,维护和调试好励磁系统对于保障水电生产的安全运行意义重大。但是我们也知道任何设备在运行中都可能出现故障,如何针对故障快速诊断 和排除是维护人员重要职责和任务,励磁系统自然也不例外,因此本文对水轮发 电机励磁系统常见故障与应对措施进行了探讨。 1 水轮发电机励磁系统工作原理 1.1 关于励磁方式 水轮发电机的励磁方式分他励和自励两大类。他励主要是以励磁机作为励磁 电源的一种励磁方式,自励的励磁电源取自发电机自身。虽然他励方式不受发电 机运行状态影响,励磁可靠性较高,但是结构较为复杂,多出现在旧式励磁系统中,目前基本上采用自励方式。在自励方式中,应用较多的是可控硅静态励磁方式,它没有旋转部分,维护相对简单。可控硅静态励磁方式又分为自并励和自复 励两种形式,两者比较起来自并励方式从技术、维护、可靠性和造价等方面都更 为成熟和适用,因而应用更广泛,故此本文将自并励方式作为讨论的基础。 1.2 自并励系统的原理与构成 如图1所示,自并励系统利用接在发电机端的励磁变压器励磁交流电源,通过晶闸管整 流装置变换为直流励磁电源。再结合图2,水轮发电机励磁系统由励磁调节器、励磁整流装置、起励装置、灭磁装置、励磁变压器以及保护、测量等装置组成。其中励磁系统由励磁调 节器与功率灭磁单元构成,励磁调节器根据所检测到的发电机电压、电流等信号,按照一定 的控制准则自动调节功率灭磁单元的输出;而励磁控制系统则涵盖了励磁系统和同步发电机,通过励磁控制系统可以实现对发电机电压、电力系统无功分配的控制。可见,励磁系统由众 多相互关联的环节所组成,任一环节出现故障都可能影响发电机的运行。 2 水轮发电机励磁系统常见故障与应对措施 2.1 起励失败 起励失败是指励磁系统下达投励指令后,发电机无法建立初始电压的故障现象[2]。由于 水轮发电机励磁系统型号众多,参数设置和信号显示也有所差异,就以EXC9000励磁系统为 例说明,在10s内机端电压仍低于发电机额定电压的10%,调节器显示屏会报“起励失败”信号。造成起励失败的原因非常多,比较常见的有[3-4]:(1)开机检查有疏漏,如功率柜交直 流刀闸、起励开关、灭磁开关、PT高压侧刀闸、同步变压器保险座开关等没有合上。(2) 起励回路有故障,如线路松动或元器件损坏。(3)调节器故障。(4)采用“残压起励”模式,而转子侧剩磁不够。(5)新手操作生疏,按压起励按钮时间太短,不足5s。 解决办法:(1)严格按照程序检查开机状态,复核所有环节,避免疏漏。(2)细心观察,如怀疑起励回路故障,通过观察起励接触器动作、吸合声响判断,无声响可能是回路故障;若是调节器故障,可观察调节器I/O板第9号开关输入指示灯是否常亮,灯不亮依次检 查接线和上位机指令是否发出。(3)设备检修后,检查人机界面起励方式是否合适,通过 调整起励方式或更换通道重新开机。(4)维护检修后的故障,不少是先前操作留下的,耐 心回想一下曾动过什么就能发现一些苗头,如转子与励磁输出的电缆是否接反了。 2.2 励磁不稳定 发电机运行过程中,励磁波动过大,例如励磁系统运行数据增大,但有时又正常,无规 律可循,并且仍可以进行加减磁的调节。可能原因是:(1)移相脉冲控制电压输出不正常。

发电厂电气设备运行中常见故障及应对措施研究 张志杰

发电厂电气设备运行中常见故障及应对措施研究张志杰 发表时间:2019-07-09T09:58:51.167Z 来源:《电力设备》2019年第6期作者:张志杰[导读] 摘要:发电设备的性能要求越来越高,电气设备的高强度运行,这对发电厂来说是一个发展机遇,这是一个前所未有的挑战。 (河南博奥建设有限公司河南巩义 451200) 摘要:发电设备的性能要求越来越高,电气设备的高强度运行,这对发电厂来说是一个发展机遇,这是一个前所未有的挑战。如何保证电力的正常运行是当前大型电厂的重点。并且在发生故障时能够防止电源的维护是非常重要的,因此正确判断电厂设备的运行故障是非常重要的。注意从多方面考虑和解决具体问题,以改善电厂电气设备安全运行管理的现状,并找到相应的对策。 关键词:发电厂;电气设备;故障;措施 一、发电厂电气设备常见故障分析 1、发电机温度过高 对于发电机温度过高的情况,原因是发电机的连续工作循环通常很长。处于高强度的持续运转中。一旦设备因为持续工作而内部产生高温,就会直接对内部的零件造成影响。是内部零件(铁、铜)耗损,随之产生大量的热能,使得电气相关设备的温度骤升。长期如此,加速了设备表面绝缘层的老化,甚至直接脱落,设备使用年限大大缩短。 2、备用电源自动切换故障 电气设备故障突发情况较多,应对各种不确定性,发电厂通常会备有备用电源供突发情况时使用,当发生突发状况时,启用备用电源保证发电厂正常运转。但由于备用电源是自动切换,又存在着更多的不确定性,通常也是由于备用电源的供电不足及切换启动的时间过长而导致设备无法正常运作,导致续航能力降低。 3、电气设备电压超载 在一定标准范围内,发电设备才能正常的工作。但是某些时段,电气设备的电压会发生超载情况,设备运行失败,电气设备压力过大也会导致短路和电路熔断。更严重的是,还会由于温度过高大致火灾的发生。发电厂的损失和对工人生命的威胁。对于发电机设备的整个系统,当电压高于额定值时,励磁会增加(由于设备容量的变化),转子电流增加,温升效应增强,加速了设备的老化,增加了铁/铜的损耗。当电压低于额定值时,诸如卷绕芯的发电机部件的稳定性恶化,设备不能正常稳定地操作,并且发生单元的异常振动。 4、电气设备接地故障 如果接地系统发生短路故障,将带来很大的安全隐患。设备在接地的情况下才能正常运行。一旦发生了接地故障,大部分原因是由于相关工作人员对接地工作的轻视,未按严格要求操作,当点击超负荷工作后设备短路,处理不好直接危及工作人员的生命。直流接地故障不会出现短路情况。保险丝没有烧断,导致维修人员误认为一切正常,导致故障扩大;交流接地故障,例如由电机绕组中的湿气引起的接地故障。 二、发电厂电气设备故障成因分析 1、升压站出线设备保护不当 恶劣的自然环境是设备产生过电压的主要原因之一,实际工作中,由于雷电的影响,会阻碍发电厂、电网路线的正常运行,通过雷电和出线线路的直接接触,造成较高的外部过电压,可能迫使发电、输电过程中断,机组跳闸,影响生产。 2、不重视电力外输线路保护 大部分发电厂,使用远距离高压专用输电线路,向外部输电,此方法主要特点为输电路程远、能量损耗小,但传输过程可能会产生不可预测的问题,因此输电线路的过电压保护问题已经成为目前研究的主要对象。发电厂应与电网积极沟通,加强输电线路的维护管理,消除长距离输电过程中产生的过电压。 3、变压器保护不当 变压器在开断空载的情况下,会出现过电压。此时断流器切断空载电流,磁场能量转化为电能后,绕组上的电容电压出现最大值,通过绕组变比,就会产生很高的电压,变压器绕组及与变压器线路相连的设备就会承受过电压。 4、发电机中心点保护问题 发电厂将发电机的中性点和接地变压器连接,然后接地。变压器在此过程中,采用较高变比的变压器,就可以减少过电压的问题,降低发电机中性点绝缘材料的压力。但是有的发电厂会利用设施降低中性点接地变压器的电压值,来减少过电压的产生,但是此方法会使接地变压器处于绝缘过热状态,降低接地变压器的使用寿命。 三、电气设备故障诊断与检测技术 1、诊断技术 1.1状态分析法。状态分析方法是指基于电气设备的故障状态进行分析和诊断的方法。电气设备运行过程主要分为这几个阶段,也叫做运行状态,比如电动机。该操作可分为几个过程,例如启动,运行,正向旋转,反向旋转,制动和停止。在一些电气设备运行的状态下,故障频率非常高,设备在一定状态下的运行状态是电气设备故障分析的主要依据。 1.2图形分析法。每一套电气设备都由相应的设计图纸设计完成。这些设计可在电气设备故障排除中发挥重要作用。电气设备有原理图、施工图、系统图和位置图等,诸如此类许多类型的图纸,例如。在电气设备的故障诊断中,有必要对图纸进行综合分析,以掌握图纸的关系。 1.3单元分析法。多个单元的运转组合而成一套完整电气设备,每个单元运行特定的功能。电气设备一旦发生了故障,则表示其中一个单元功能已丢失。在对电气设备进行故障排除时,设备的功能应分为几个特定的单元,以便在较短的时间内准确确定故障的位置。 2、检测技术 2.1局部放电在线监测技术。发电厂电气设备大都结构复杂,绝缘水平也不尽相同,因为不均匀的电场分布导致较高的局部电场。制造工艺的粗糙,恶劣的运行条件都会导致局部放电现象,继而逐渐发展成为严重的故障。以变压器为例的局部放电监测方法如下:超声波检测,测光,化学检测,脉冲电流法,射频检测法等。例如超声检测法的应用:超声波传感器位于变压器油枕壁上,变压器内部局部放电产生的超声波可由传感器接收。可以非常精确地监测局部放电的大小和位置。

同步发电机励磁自动控制系统练习参考答案

一、名词解释 1.励磁系统 答:与同步发电机励磁回路电压建立、调整及在必要时使其电压消失的有关设备和电路。 2.发电机外特性 答:同步发电机的无功电流与端电压的关系特性。 3.励磁方式 答:供给同步发电机励磁电源的方式。 4.无刷励磁系统 答:励磁系统的整流器为旋转工作状态,取消了转子滑环后,无滑动接触元件的励磁系统。 5.励磁调节方式 答:调节同步发电机励磁电流的方式。 6.自并励励磁方式 答:励磁电源直接取自于发电机端电压的励磁方式。 7.励磁调节器的静态工作特性 答:励磁调节器输出的励磁电流(电压)与发电机端电压之间的关系特性。 8.发电机调节特性 答:发电机在不同电压值时,发电机励磁电流IE与无功负荷的关系特性。 9.调差系数 答:表示无功负荷电流从零变至额定值时,发电机端电压的相对变化。 10.正调差特性 答:发电机外特性下倾,当无功电流增大时,发电机的端电压随之降低的外特性。11.负调差特性 答:发电机外特性上翘,当无功电流增大时,发电机的端电压随之升高的外特性。12.无差特性 答:发电机外特性呈水平.当无功电流增大时,发电机的端电压不随之变化的外特性。

13.强励 答:电力系统短路故障母线电压降低时,为提高电力系统的稳定性,迅速将发电机励磁增加到最大值。 二、单项选择题 1.对单独运行的同步发电机,励磁调节的作用是( A ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.保持机端电压恒定和调节发电机发出的无功功率; D.调节发电机发出的有功电流。 2.对与系统并联运行的同步发电机,励磁调节的作用是( B ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.调节机端电压和发电机发出的无功功率; D.调节发电机发出的有功电流。 3.当同步发电机与无穷大系统并列运行时,若保持发电机输出的有功 PG = EGUG sinδ为常数,则调节励磁电流时,有( B )等于常数。 X d A.U G sinδ; B.E Gsinδ; C.1 X d ?sinδ; D.sinδ。 4.同步发电机励磁自动调节的作用不包括( C )。 A.电力系统正常运行时,维持发电机或系统的某点电压水平; B.合理分配机组间的无功负荷; C.合理分配机组间的有功负荷; D.提高系统的动态稳定。 5.并列运行的发电机装上自动励磁调节器后,能稳定分配机组间的( A )。A.无功负荷;

35kV变电站消弧线圈常见故障及处理

35kV变电站消弧线圈常见故障及处理 发表时间:2019-01-14T11:03:42.360Z 来源:《防护工程》2018年第30期作者:李玉哲 [导读] 本文结合笔者多年的实践工作经验,就35kV变电系统常见的真空断路器故障、线路电缆故障 李玉哲 国网山东省电力公司菏泽市定陶区供电公司山东菏泽 271400 摘要:本文结合笔者多年的实践工作经验,就35kV变电系统常见的真空断路器故障、线路电缆故障、电压互感器故障以及消弧线圈等故障原因进行分析,对变电站日常检修维护过程中消弧线圈出现自身故障的技术处理措施进行了详细分析研究,提出了相应的解决办法,具有一定的参考价值。 关键词:35kV变电站;消弧线圈;故障及处理 引言:我国3kV、6kV、10kV、以及35kV等中低压配电网系统中,绝大多数是按小电流接地系统进行设计,即系统中性点是不接地系统。在进行35kV变电站系统设计时,通常按照中性点不接地系统进行,这种变电站运行方式,其在系统发生单相接地故障时,其电流值将大于系统允许安全运行值(对于3kV~10kV系统而言,其单相接地电流值应不大于30A),此时故障电流产生的电弧将不能自行熄灭。为了降低电弧电流以满足系统安全运行需求,在工程中通常采用在中性点和大地间接入相应容量的消弧线圈,利用消弧线圈的补偿电流对系统进行动态补偿,这样就可以帮助系统熄灭故障接地点处故障电流产生的电弧,保证系统运行可靠性。 一、35kV变电站的常见故障 1.线路电缆故障分析 1.1接地点电阻值过高。通常情况下,为了避免感应过电压过高,交联电缆一般设有两个接地点,这样使得接地的电阻值小于规定的值,以起到保护电缆的作用。但是如果因为电缆的接头的金属屏蔽效果不好,导致接地的电阻值过高,超过标准值很多时候就会很容易产生更高的过电压,当电缆绝缘胶老化的时候,就很容易被烧穿。 1.2电缆长期负重导致出现故障。一般用在25℃的特定温度下的载流量来确认电缆是否负重运行,电缆在长期负重运行的情况下很容易出现故障,特别是在夏天由于本身的环境气温就高,长时间高温下负重运行导致电缆的绝缘层老化,增加了故障的几率。 1.3安装电缆不达标导致故障。在电缆的铺设和安装中,一般是通过往电缆沟里铺垫软土或者填水泥来保护电缆,但是如果没有忽略了这些措施,或者做的不到位的话就很容易导致电缆机械性的损伤,而这些损伤也常常是导致故障的隐患。 1.4厂家的质量问题。一些厂家制造的电缆间的连接接头不注意质量问题,导致连接头和终端头出现种种故障,还有劣质的电缆中会掺杂一些气体、液体和杂质等,这样就很容易导致杂质在高强度的电场下发生电离,使得电缆的绝缘层在老化的过程中提前被击穿而引发电缆故障。 2真空断路器故障分析 2.1真空泡的真空度降低。在35kV变电站的长期运行中,真空泡的真空度下降也是导致故障的常见原因,因为真空泡的真空度降低会使其使用寿命大大缩短,甚至严重到导致真空断路器的损坏和爆炸。 2.2真空断路器分闸失灵。真空断路器的分闸失灵会导致事故越级,事故范围波及广,常见的真空断路器失灵情况有遥控分闸不能自动断开分断路器、继电器保护动作失灵和人工分闸不能使用。 3电压互感器故障分析 在35kV电力系统中存在着很多储能元件,比如线性电容和非线性的铁心线圈。如果铁心的饱和引起电感量发生变化,那么当线路对地容抗XC与铁心感抗XL十分接近或者相等时,就会引发并联铁磁谐振,而电路中的非线性电感元件是产生铁磁共振的必要条件,所以在发生铁磁谐振的时候,电压互感器承受了更多的过电压,铁心的磁通就会成倍的增加,铁心迅速达到了饱和状态,频率的降低将导致绕组过热而烧毁甚至爆炸。 4消弧线圈故障分析 35kV变电站通常具有一种自动保护的功能叫做消弧线圈,而这种保护功能在消弧线圈发生故障时会自动启动。如果消弧线圈自身的中性点位移电压值和补偿电流偏大的时候就会产生警报,如果不能及时发现排除警报就很容易导致故障。 二、消弧线圈自身故障处理 1铁心故障处理 消弧线圈是一个具有铁心的电感线圈,其自身电感电流与系统故障电容电流间进行补偿,从而降低变电站系统发生单相接地故障电流值。虽然消弧线圈自身电阻很小,但其电抗值却相当大。消耗线圈的铁心与线圈等均浸在变压器油中。从外观看,消弧线圈的外部结构与单相变压器极为相似,但消弧线圈内部结构却不是简单的单相变压器。在设计制造过程中,为了避免消弧线圈内部铁心快速饱和,通常在消弧线圈内部铁心柱上留很多间歇,并在间隙中用绝缘纸板进行完善填充,这样可以让消耗线圈拥有一个较为稳定的电抗值,使消弧线圈所产生的补偿电流能够与系统电压间存在稳定的比例特性,进而使消弧线圈能够根据变电站故障实际情况需求,合理选择调解线圈以期获得一个较为理想的感性电流值,从而与变电站系统故障时的电容电流值进行抵消,达到明显的消弧作用。但是在日常运行过程中,也会发现有消弧线圈烧损事故发生,大多数是由产品制造、运输不当、以及调试合理等引起。因此,为了提高35kV变电站运行可靠性,对消弧线圈的运行维护和预防性试验工作就显得十分重要。结合大量文献资料和实际工作经验,对提高消弧线圈运行可靠性常见检修维护措施归纳总结如下建议。 1.1严格检测电缆。要通过使用专业的检测仪器对电缆和接头的定期检测及时分析出接地电阻的变化规律。然后根据变化的趋势判断如果接地的电阻值高于设计的标准值,那么一方面可能是电缆和地面连接不稳定,另一方面则有可能是因为接头处被氧化了。 1.2确保安装电缆全过程的质量。对于电缆的质量监控就要从工厂、材料、工人施工等多方面进行把关,要严格要求技术工人的技术素质,技术要精细以保证电缆的制作质量。采用达到IEC标准的新型硅橡胶预置式接头以克服热缩电缆头的缺点。

试论水电厂励磁系统常见故障分析及处理

试论水电厂励磁系统常见故障分析及处理 发表时间:2019-09-10T10:13:00.813Z 来源:《当代电力文化》2019年第09期作者:王天纬 [导读] 从不同角度入手客观分析了水电厂励磁系统及其常见故障,提出了一些行之有效的措施的同时分析实例,在科学处理各类故障问题基础上确保励磁系统运行更具安全性、稳定性以及经济性。 江苏国信溧阳抽水蓄能发电有限公司江苏省常州市 213334 摘要:励磁系统是水电厂必不可少的组成要素,其高效运转直接关系到水电厂综合运营效益,而这必须高度重视故障问题。因此,本文从不同角度入手客观分析了水电厂励磁系统及其常见故障,提出了一些行之有效的措施的同时分析实例,在科学处理各类故障问题基础上确保励磁系统运行更具安全性、稳定性以及经济性。 关键词:水电厂励磁系统常见故障分析处理 励磁系统运行中故障问题的出现会对发电机正常运行产生不同层次的影响,出现失磁、停机等情况,无形中会增加励磁系统运行成本。发电厂要多层次客观剖析励磁系统常见的各类故障,在科学处理基础上强化励磁系统管理,确保各方面功能作用顺利发挥的同时尽可能延长其使用寿命,在保证发电质量的基础上实现综合效益目标。 一、水电厂励磁系统及其常见故障 1、水电厂励磁系统 简单来说,励磁系统主要是向发电机的转子绕组实时传递励磁电流,发电机运行是否安全、可靠和励磁系统的运行有着深层次联系。以溧阳抽水蓄能电站的机组励磁系统为例,由多个设备组成,比如,励磁变压器、磁场开关、过电压保护装置、控制与监视信号系统。励磁电源取自主变低压侧15.75kV离相封闭母线,经励磁变降压为600V,由三组三相全控桥式可控硅整流装置整流后向转子绕组输出电流建立磁场,维持机端电压在给定水平,满足机组各种工况的励磁调节,远方自动控制、先地手动控制是励磁系统运行中的主要控制方式。相应地,下面便是励磁系统的原理结构图。 2、水电厂励磁系统的常见故障 在运行环境、自身质量、人员操作等层面因素持续作用下,水电厂励磁系统运行中极易发生各类故障问题,可以将其分为两大类,即内部故障、外部故障。在联系实际过程中对其进行针对性处理,在故障高效管控基础上提升励磁系统运行的综合效益。 二、水电厂励磁系统的常见故障处理 1、励磁电缆单相接地引发的励磁系统故障 在水电厂运行过程中,励磁电缆单相接地以后,会对励磁系统运行产生不利的影响,极易引发故障问题。在励磁电缆单相接地以后,励磁电缆的正极对地绝缘有明显变化,数值为0,接地电阻也为0,励磁电缆、电缆层支撑铁架二者接触的位置有烧焦的痕迹,励磁系统的运行也受到一定的影响,出现故障问题,进而,导致发电机组出现失磁问题。针对这种情况,水电厂维修人员需要在准确定位励磁系统故障基础上细化分析故障发生的原因、影响因素、严重等级等,在综合把握基础上根据励磁电缆单相接地后严重情况,针对性处理故障问题。 2、集电环正负极短路引起的励磁系统故障 在运行过程中,集电环正负极短路以后励磁系统极易引发故障问题。水电厂维修人员需要全面、深入把握励磁系统运行中呈现的故障报警信息数据,对励磁系统自身动作进行合理化诊断,准确把握对应的过励限制动作、欠励限制动作,看其在励磁系统故障发生以后是否同时出现,这是因为通常情况下二者都不会同时出现,比如,励磁电流不小于发电机运行中额定励磁电流的情况下,过励限制动作才会出现,在发电机正常运行中,过励限制动作、欠励限制动作二者正好处在两个极端。在此过程中,励磁系统故障发生后,转子的磁场不断减弱,发电机的机端电压也会明显降低等,励磁电流持续变大,导致可控硅被击穿等。在此基础上,集电环的正负极短路以后,灯泡头内部的温度不断升高,滑环、集电环、碳刷等零部件都会受到不同程度的影响,励磁系统故障问题复杂化,增加了励磁系统维修的难度系数。在处理过程中,维修人员可以将导电杆上面的绝缘衬套更换掉,彻底清扫干净碳刷、集电环等部件,更换其中的快速熔断器、可控硅,对受油器座运行中渗出的油进行科学化处理,对其中的非线性压敏电阻进行科学化试验。同时,维修人员要再次仔细检查集电环的正负极以及极易引发励磁系统故障的零部件等。此外,在励磁系统日常运行中,维修人员要加强集电环正负极的防控,要根据励磁系统故障发生以及维修记录,按时对相关设备进行规范化检查、清扫,按时对油器座运行中渗出的油进行科学处理且通过年度大检从根本上解决渗油问题,动态控制灯泡头的温度、环境等,在多层面科学把握基础上降低励磁系统故障发生系数。 3、励磁变高压侧熔断器熔断下的励磁系统故障 在水电厂运行过程中,励磁变高压侧熔断器熔断以后,发电机组的无功正负间会出现较大的摆动,包括励磁系统的电流、电压。维修人员先要客观分析励磁系统的报警信息,在应用现代化技术以及检测设备等过程中准确定位故障发生的具体位置,全面、动态评估、分析

发电厂电气设备常见故障及应对策略

发电厂电气设备常见故障及应对策略 作者:贾玉峰 来源:《科学与财富》2020年第19期 摘要:电能资源是当今世界范围内公认的主要的清洁能源之一,广泛应用在生活、生产等各种领域中。缺少了电能各行各业的生活生产都会受到严重影响,因此发电厂的稳定运行是整个社会发展的重要保障。本文对发电厂电气设备的一些常见故障进行列举讨论及研究,提出了发生故障的原因,并对电气设备事故案例进行了学习、分析,同时对发电厂常见电气设备故障的排除做出了应对策略。通过一系列的研究、学习,可以对发电厂常见的电气设备故障排除有一个明确的方向,对于提高设备消缺及时率,保障设备安全稳定运行有一定的帮助。 关键词:电能;电气设备;常见故障;应对策略 1发电厂电气设备常见故障现象及原因分析 1.1;;;; 一般设备接地 电气设备需要进行必要的接地处理,以保证设备正常运行的同时起到保护人员安全的作用。当设备接地不良时会出现接地报警或设备跳闸。其主要原因有:设备使用及安装、维修人员对设备接地不给予重视,接地线缺失或损坏;接地线老化及腐蚀。 1.2;;;; 电机运行异常 电机通电后,按下启动按钮虽能转动但转速达不到正常速度,或电动机只发出嗡嗡声,转子却不转动,其原因可能是:1、电源电压过低。2、电机转子或负载的机械卡死。3、定子回路某一相断线造成缺相。4、转子接触不良。5、电机定子回路出现接线方式错误。 1.3;;;; 变频器故障 变频器是发电厂使用频率很高的节能设备,但同时也是故障率较高的设备之一。其常见故障有:变频器就地所带设备控制的参数波动较大;变频器跳闸并出现相应報警;就地变频器有烧焦、异味等现象。其主要原因是:1、线路松动,接触不良;2、所带设备负载过重或卡死;3、温度过高,散热不良;4、交流接触器积灰太多,吸合困难 2电气设备故障事故案例及分析 事故经过:2018年06月18日,2#电除尘A1高压控制柜断路器跳停,电气检修人员立即办票处理,检查发现A1高压控制柜内两个IGBT模块烧毁,电气检修人员与厂家沟通并在其远程指导下更换了两个IGBT模块,由于模块烧毁原因未查明,汇报生技部,待厂家到厂进行

液压系统常见的故障系统处理

1 常见故障的诊断方法 5。液压设备是由机械、液压、电气等装置组合而成的,故出现的故障也是多种多样的。某一种故障现象可能由许多因素影响后造成的,因此分析液压故障必须能看懂液压系统原理图,对原理图中各个元件的作用有一个大体的了解,然后根据故障现象进行分析、判断,针对许多因素引起的故障原因需逐一分析,抓住主要矛盾,才能较好的解决和排除。液压系统中工作液在元件和管路中的流动情况,外界是很难了解到的,所以给分析、诊断带来了较多的困难,因此要求人们具备较强分析判断故障的能力。在机械、液压、电气诸多复杂的关系中找出故障原因和部位并及时、准确加以排除。 5.1.1 简易故障诊断法 简易故障诊断法是目前采用最普遍的方法,它是靠维修人员凭个人的经验,利用简单仪表根据液压系统出现的故障,客观的采用问、看、听、摸、闻等方法了解系统工作情况,进行分析、诊断、确定产生故障的原因和部位,具体做法如下: 1)询问设备操作者,了解设备运行状况。其中包括:液压系统工作是否正常;液压泵有无异常现象;液压油检测清洁度的时间及结果;滤芯清洗和更换情况;发生故障前是否对液压元件进行了调节;是否更换过密封元件;故障前后液压系统出现过哪些不正常现象;过去该系统出现过什么故障,是如何排除的等,需逐一进行了解。 2)看液压系统工作的实际状况,观察系统压力、速度、油液、泄漏、振动等是否存在问题。

3)听液压系统的声音,如:冲击声;泵的噪声及异常声;判断液压系统工作是否正常。 4)摸温升、振动、爬行及联接处的松紧程度判定运动部件工作状态是否正常。 总之,简易诊断法只是一个简易的定性分析,对快速判断和排除故障,具有较广泛的实用性。 5.1.2 液压系统原理图分析法 根据液压系统原理图分析液压传动系统出现的故障,找出故障产生的部位及原因,并提出排除故障的方法。液压系统图分析法是目前工程技术人员应用最为普遍的方法,它要求人们对液压知识具有一定基础并能看懂液压系统图掌握各图形符号所代表元件的名称、功能、对元件的原理、结构及性能也应有一定的了解,有这样的基础,结合动作循环表对照分析、判断故障就很容易了。所以认真学习液压基础知识掌握液压原理图是故障诊断与排除最有力的助手,也是其它故障分析法的基础。必须认真掌握。 5.1.3 其它分析法 液压系统发生故障时,往往不能立即找出故障发生的部位和根源,为了避免盲目性,人们必须根据液压系统原理进行逻辑分析或采用因果分析等方法逐一排除,最后找出发生故障的部位,这就是用逻辑分析的方法查找出故障。为了便于应用,故障诊断专家设计了逻辑流程图或其它图表对故障进行逻辑判断,为故障诊断提供了方便。

励磁系统常见故障及其处理方法分析--精选.doc

励磁系统常见故障及其处理方法 1、起励不成功 原因 1:起励按钮 /按键接通时间短,不足以使发电机建立维持整流桥导通的电压。 处理方法:保持起励按钮持续接通原因 2:发电机残压太低,却仍然投入5 秒以上。 “残压起励”,这样即 使按起励按钮超过 5 秒,也不会起励成功。 处理方法:切除“残压起励”功能,直接用辅助电源起励。 原因 3:将功率柜的脉冲投切开关仍置于切除位置。 原因 4:整流桥的交流电源未输入(励磁变高压侧开关或低 压侧开关未合上)。 原因 5:同步变压器的保险丝座开关未复位。 原因 6:机组转速未到额定,而转速继电器提前接通,造成 自动起励回路自动退出。 原因 7:起励电源开关未合,起励电源未送入起励回路。 原因 8:起励接触器未动作或主触头接触不良。 原因 9:起励电源正负极输入接反,导致起励电流无法输入 转子。 原因 10:起励电阻烧毁开路。 原因 11:转子回路开路。 原因 12:转子回路短路。 原因 13:始终存在“逆变或停机令”信号。(近方逆变旋钮开关未复位;远方监控或保护的停机令信号未复位)原因 14:灭磁开关控制回路的分闸切脉冲或分闸逆变信号始终保持。 原因 15:调节器没有开机令信号输入。 原因 16:可控硅整流桥脉冲丢失或可控硅损坏。 原因 17:调节器故障

原因 18:调节器脉冲故障。 原因 19:脉冲电源消失或电路接触不良。 原因 20:灭磁开关触头接触不良。 2、起励过压 原因 1:励磁变压器相序不对。 原因 2: PT 反馈电压回路存在故障。 原因 3:残压起励回路没有正确退出。 原因 4:调节器输出脉冲相位混乱。 3、功率柜故障 原因 1:风压低,风压继电器接点抖动。 处理方法:调整风压继电器行程开关的角度。 原因 2:风温过高,温度高于50 度。 处理方法:对比两个功率柜,检查测温电阻是否正常。 原因 3:电流不平衡, 6 个可控硅之间均流系数<0.85。 处理方法:检查是否有可控硅不导通或霍尔变送器测量误 差。 4、 PT 故障 条件: PT 电压 >10%,任一相电压低于三相平均值的83%。原因 1: PT 高压侧保险丝熔断 处理方法:测量 PT 输入端三相电压,检查电压是否平衡。 原因 2:模拟量总线板故障,其中间电压互感器或接线插头有问题。 处理方法:将输入 A/B 套 DSP 板的接线插头互相调换测试。原因 3:调节器 DSP 板故障,导致PT 电压测试不准确处理方法:更换对应的DSP 板,或将 A/B 套 DSP 板互换。

发电厂电气系统常见运行故障及解决措施初论

发电厂电气系统常见运行故障及解决措施初论 【摘要】随着经济的快速发展和和谐社会的建设,各行业对电力的需求越来越大,发电厂的建设规模也越来越大,当前发电厂主要依靠大型的机械设备进行发电,设备在长期运行中电气系统会出现大小不一的故障,如果不及时的处理这些故障,对发电厂的正常运行会有严重的影响,限制了发电厂的生产和建设,因此,对发电厂电气系统常见故障进行分析,采取有效的措施及时处理故障,对发电厂的发展有极其重要的意义。 【关键词】发电厂;电气系统;运行故障;措施 随着社会的不断发展,各行业对电力的需求量越来越高,发电厂承担着为社会的发展提供电力保障的艰巨任务,发电厂的正常运行对社会的良好发展有十分重要的作用。由于发电厂在发电过程中需要用到许多大型的机械设备,这些设备在长期运行中电气系统会发生许多故障,如果不采取有效的措施进行故障处理,将会影响发电厂的正常运行,因此,对发电厂电气系统常见的故障进行分析,并采取有效的解决措施进行故障处理,发电厂安全高效发电具有重要意义。 1、发电厂电气系统常见的故障及原因 发电厂的电气系统主要由发电机、主变压器、厂用电主接线、配电设备、开关设备、保安电源、通信设备、照明设备等组成,是发电厂的重要组成部分,由于发电厂的电气系统在长期运行中,需要承受机械负荷和电力负荷的双重压力,这些压力会对电气设备的的安全运行、使用寿命等造成严重的影响,因此,分析发电厂电气系统常见的故障原因,对发电厂的正常运行有极其重要的意义。 1.1发电厂电气设备接地 发电厂电气系统的电气接地可以分为交流接地、直流接地两种情况,是电气系统保障设备人员安全的主要手段之一,近年来,随着发电厂建设规模的扩大,发电厂的用电负荷、供电电压、短路电流等有了很大的提高,如果出现异常将对电气设备和工作人员造成严重的危害。交流接地是指电动机的接地系统受潮、设备老化及腐蚀等因素的影响,发生交流接地情况时将对发电厂工作人员的生命安全带来很大的威胁;当电气系统发生直流接地时,则可能使信号装置,继电保护装置,控制装置发误动和拒动。 1.2发电机升温高、升温迅速 发电厂在发电过程中,发电机需要进行长时间的高速运行,导致发电机迅速的升高温度,发电机在运行过程中,金属部件处于高速运作的状态,在运行时机械能会转换为热能,电气系统的绝缘部件长期处于高温条件下,部件会逐渐老化,绝缘性能会逐渐降低,从而对电气系统的正常运行造成严重的影响。导致发电机过快升温的原因有发电机运作时间长、降温系统不能及时散热、降温等。

液压系统常见故障分析及处理

液压系统常见故障分析及处理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。文中概括介绍了液压系统在日常使用中常见故障分析以及处理方法。 一.工作原理 液压传动是以液体为工作介质,通过能量转换来实行执行机构所需运动的一种传动方式。首先,液压泵将电动机(或其它原动机)的机械能转换为液体的压力能,然后,通过液压缸(或液压马达)将以液体的压力能再转化为机械能带动负载运动。 二.液压系统的组成 液压传动系统通常由以下五部分组成。 1.动力装置部分。其作用是将电动机(或其它原动机)提供的机械能转换为液体的压力能。简单地说,就是向系统提供压力油的装置。如各类液压泵。 2.控制调节装置部分。包括压力、流量、方向控制阀,是用以控制和调节液压系统中液流的压力、流量和流动方向,以满足工作部件所需力(或力矩)、速度(或转速)和运动方向(或运动循环)的要求。 3.执行机构部分。其作用是将液体的压力能转化为机械能以带动工作部件运动。包括液压缸和液压马达。 4.自动控制部分。主要是指电气控制装置。 5.辅助装置部分。除上述四大部分以外的油箱、油管、集成块、滤油器、蓄能器、压力表、加热器、冷却器等等。它们对于保证液压系统工作的可靠性和稳定性是不可缺少的,具有重要的作用。 三.液压缸 液压缸是把液压能转换为机械能的执行元件。液压缸常见故障有:液压缸爬行、液压外泄漏、液压缸机械别劲、液压缸进气、液压缸冲击等。 1.液压缸爬行故障分析及处理 (1)缸或管道内存有空气,处理方法:设置排气装置;若无排气装置,可开动液压系统以最大行程往复数次,强迫排除空气;对系统及管道进行密封。 (2)缸某处形成负压,处理方法:找出液压缸形成负压处加以密封;并排气。 (3)密封圈压得太紧,处理方法:调整密封圈,使其不松不紧,保证活塞杆能来回用手拉动。 (4)活塞与活塞杆不同轴,处理方法:两者装在一起,放在V形块上校正,使同度误差在0.04mm以内;换新活塞。 (5)活塞杆不直(有弯曲),处理方法:单个或连同活塞放在V形块上,用压力机控直和用千分表校正调直。

发电厂电气一次设备常见故障及对策

发电厂电气一次设备常见故障及对策 随着我国社会经济的不断进步,人们对于能源的需求量在不断上涨,尤其是对电能的需求越来越高。所以,发电厂电力系统的稳定运行十分重要,电气一次设备的故障率在一定程度上决定着供电质量。本文阐述了发电厂电气设备稳定运行的重要性及电气一次设备的故障原因,并提出了相应的解决对策。 标签:发电厂;电气设备;故障;对策 电能需求的增加,导致发电厂电力负荷在不断增大,给发电设备带来了一定的压力。基于发电厂设备的长期连续运行模式,现阶段发电厂对应用设备的质量性能要求也在不断提升。对于发电厂的常见电气设备故障,工作人员以及相关部门应该给予足够的重视,加强对电气系统运行故障的研究和实践分析,从而保证发电厂的稳定供电。 一、发电厂电气设备正常运转的重要性 发电厂对于地区经济发展具有重要的推动作用,随着人们对于电力能源需求的增加,很多发电厂开始更加注重电气设备的运行保护工作。在原有电气设备的优化维护基础上,引进了一些新的现代化电气设备。发电厂应用设备的类型越来越复杂,各设备之间的联系也更加密切,任何一个小部件的安装或调整都可能会对发电系统的稳定运行造成一定的影响。毋庸置疑,发电厂带来的地区性或是全国性经济快速增长显而易见,也为人们的日常生活提供了更多便捷和保障,而这背后无不依赖于电气设备的稳定运行。所以,深化对电气设备的检修维护工作意义重大。 二、发电厂常见设备故障的原因分析 (一)日常管理检测不到位 对于任何企业来讲,日常管理工作都十分重要,尤其是发电公司,任何一个环节的疏忽,都可能导致多个相关问题的出现。电气系统故障问题与工作人员的日常管理维护息息相关,很多电气故障的发生都是因为相关的管理工作不到位,缺乏对电气系统的必要检测。和人体器官一样,电气系统的连续运行会产生一些问题,但是在问题初期往往具有很高的隐藏性,如果工作人员不去进行专业检测,很难从表面发现问题,这就造成了严重的设备故障隐患。所以,对电气设备的检测维护是进行设备保养的有效手段,如果在电气系统的运行中检测不到位,则难以及时发现和解决故障。 (二)设备温度控制没做好 在发电厂的日常经营中,主变压器全部是24小时连续运行,铜耗、铁耗等会产生大量热量。如果冷却系统效率下降或故障,会造成主变压器的温度过高,

5发电机自并励励磁自动控制系统设计()

作者:Pan Hon glia ng 仅供个人学习 辽宁工业大学

电力系统自动化课程设计(论文)题目:发电机自并励励磁自动控制系统设计(1)院(系):电气工程学院 专业班级:电气XXX _________ 学号:_xxx _______________ 学生姓名: ___________________ 指导教师: ___________________ 起止时间:2013.12.16 —12.29

课程设计(论文)报告地内容及其文本格式 1、课程设计(论文)报告要求用A4纸排版,单面打印,并装订成册,内容包括: ①封面(包括题目、院系、专业班级、学生学号、学生姓名、指导教师姓名、、起止时间等) ②设计(论文)任务及评语 ③中文摘要(黑体小二,居中,不少于200字) ④目录 ⑤正文(设计计算说明书、研究报告、研究论文等) ⑥参考文献 2、课程设计(论文)正文参考字数:2000字周数. 3、封面格式 4、设计(论文)任务及评语格式 5、目录格式 ①标题“目录”(小二号、黑体、居中) 6、正文格式 ①页边距:上2.5cm,下2.5cm,左3cm,右2.5cm,页眉1.5cm,页脚1.75cm,左侧装订; ②字体:一级标题,小二号字、黑体、居中;二级,黑体小三、居左;三级标题,黑体四号;正文文字小四号字、宋体; ③行距:20磅行距; ④页码:底部居中,五号、黑体; 7、参考文献格式 ①标题:“参考文献”,小二,黑体,居中. ②示例:(五号宋体) 期刊类:[序号]作者1,作者2, ... 作者n.文章名.期刊名(版本).岀版年,卷次(期次):页次. 图书类:[序号]作者1,作者2,……作者n.书名.版本.岀版地:岀版社,岀版年:页次.

变电所常见故障应急处理方案

变电所常见故障应急处理方案 35kV GIS 开关柜: 1、断路器拒动 1.1应急处理 当远动操作失灵时,应立即安排巡检员到达现场。现场人员检查是否有拒动开关的故障信息。如果没有,可按电调命令在所内监控盘上进行操作,若操作失败,可在开关本体上当地电动操作,如果操作不成功,立即汇报电调,并通知车间生产调度。故障开关在非运营时间处理。 1.2、处理程序、方法及注意事项: 1.2.1 检查是否有SF6 气体泄漏,气压低于下限值,有无气室压力报警信号。 1.2.2 检查直流电源(控制、电机)的电压是否正常。若不正常,从直流盘馈出到断路器端子箱顺序查找。操作机构的检修必须先将合闸弹簧和分闸弹簧的能量释放掉。 1.2.3 检查控制、电机回路的空气开关有无烧损或接触不良。更换空气开关。 1.2.4 检查控制、电机回路是否断线、接触不良。紧固端子和接线。 1.2.5 检查操作机构辅助开关、限位开关转换是否到位。调整或更换辅助开关、限位开关。 1.2.6 检查分合闸线圈是否烧毁,有异味,用万用表测量线圈电阻。更换分合闸线圈。 1.2.7 检查断路器是否已储能,电机是否烧毁,有异味,用万用表测量电机电阻。更换电机。 1.2.8 检查二次接线是否错误(新安装或检修变更二次接线后,首次投入时出现)。改正错误接线。 1.2.9 检查机构有无卡滞现象。注润滑油,处理卡滞点。 1.2.10 检查操作机构各轴连接销子是否脱落。安装连接销子。 2、断路器跳闸 2.1、应急处理 2.1.1 如发生进线开关跳闸, 故障开关退出运行,母联开关合闸,母线由一路电源供电。如引起所内一台35/0.4kV 的变压器故障或400V 母线失压时,自动切除该变电所供电区域内的三级负荷,400V 母联自投,若400V 母联自投不成功,由电调当值供电调度员通过SCADA 倒闸操作或现场变电所值班员采用手动倒闸操作,改变供电系统运行方式,由该变电所内另一台35/0.4kV 变压器承担该变电所供电区域内的一、二级负荷供电。 2.1.2 如发生环网出线开关跳闸,听从电调指挥,将故障位置隔离。待非运营时间处理故障。 2.2、程序、方法及注意事项: 2.2.1 进、出线断路器跳闸: 在控制信号盘上查看故障信息,判断保护类型。 1)差动保护跳闸。检查保护环网电缆,对保护装置进行试验、检查。 2)过流、零序跳闸。检查所内35kV 设备及电缆是否有绝缘不良,闪络情况,如果绝缘不良地点不在母排上,需要检查是否有越级跳闸等现象。并对保护装置进行检查、试验。 2.2.2 馈线断路器跳闸: 1)断开变电所跳闸馈出线环网隔离开关,检查差动保护二次回路是否有故障,如:直流回路是否短路,流互二次是否开路,接线是否正确。对二次回路进行检修。 2)对馈线电缆进行检查试验,如果是电缆故障,参考电缆故障预案进行处理。 3)对跳闸断路器进行相关的保护试验。检查保护插件。如果是插件故障,更换插件。 4)若是35kV 整流机组\动力变馈线开关跳闸还应检查变压器。 2.2.3 如果是断路器本体故障,参照断路器拒动进行处理。 3、三位置开关、接地开关拒动 3.1、应急处理

同步电动机励磁系统常见故障分析

同步电动机励磁系统常见故障分析 作者:陆业志 本文结合KGLF11型励磁装置,对其在运行中的常见故障进行分析。 1 常见故障分析 (1)开机时调节6W,励磁电流电压无输出。 原因分析:励磁电流电压无输出,肯定是晶闸管无触发脉冲信号,而六组脉冲电路同时无触发脉冲很可能是移相插件接触不良,或者同步电源变压器4T损坏,造成没有移相给定电压加到六组脉冲电路的1V1基极回路上,从而六组脉冲电路无脉冲输出导致晶闸管不导通。 (2)励磁电压高而励磁电流偏低。 原因分析:这是个别触发脉冲消失或是个别晶闸管损坏的缘故。个别触发脉冲消失可能是脉冲插件接触不良。另外图1中三极管1V1、单极晶体管2VU及小晶闸管9VT损坏,或者是电容2C严重漏电或开路。如果主回路中晶闸管1VT~6VT中有某一个开路或是触发极失灵,同样会导致输出励磁电流偏低的现象。 (3)合励磁电路主开关时,励磁电流即有输出。 原因分析:这是由于图1所示脉冲电路中的三极管1V1集电极-发射极之间漏电,即使移相电路还未送来正确的控制电压,也会导致1C充电到2VU导通的程度。2VU即输出触发使小晶闸管9VT导通,2C经9VT放电而发出脉冲令1VT、3VT、6VT之一触发导通,使转子励磁电路中流过直流电流。 (4)同步电动机起动时,励磁不能自行投入。 原因分析:励磁不能自行投入。肯定是自动投励通道电路中断或工作不正常,因此可能是投励插件与插座间接触不良,或是图2所示投励电路中的三极管3V1、单结晶体管4VU工作不正常,电容5C漏电、电位器W′损坏。另外是移相插件同样有接触不良现象,或者是图3所示移相电路的小晶闸管10VT损坏等等。 (5)运行过程中励磁电流电压上下波动。 原因分析:引起励磁电流电压输出不稳的原因很多,主要有1)脉冲插件可能存在接触不良,造成个别触发脉冲时有时无。2)图1所示脉冲电路的电位器4W松动,使三极管1V1电流负反馈发生变化,造成放大器工作点不稳定,从而影响晶闸管主回路输出的稳定性。另外,如果电容2C漏电或单结晶体管2VU及三极管1V1性能不良,也会引起触发脉冲相位移动。3)图3所示移相电路的电位器6W松动或接触不良,将会使移相控制电压Ed间歇性消失,引起励磁电流电压输出大幅度波动。另外,如果稳压管7VS、8VS损坏,都会使Ey随电网电压波动而波动,使Ed输出波动,造成晶闸管主回路直流输出不稳。 (6)励磁装置输出电压调不到零位。

相关主题
文本预览
相关文档 最新文档