当前位置:文档之家› 高中物理模型总结

高中物理模型总结

高中物理模型总结
高中物理模型总结

1、追及、相遇模型

火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件?

故不相撞的条件为d

v v a 2)(2

21-≥

2、传送带问题 1.(14分)如图所示,水平传送带水平段长L =6米,两皮带轮直径均为D=0.2米,距地面高度H=5米,与传送带等高的光滑平台上有一个小物体以v 0=5m/s 的初速度滑上传送带,物块与传送带间的动摩擦因数为0.2,g=10m/s 2,求:

(1)若传送带静止,物块滑到B 端作平抛运动的水平距离S 0。 (2)当皮带轮匀速转动,角速度为ω,物体平抛运动水平位移s ;以不同的角速度ω值重复上述过程,得到一组对应的ω,s 值,设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,并画出s —ω关系图象。

解:(1))(12110m g

h

v t v s ===

(2)综上s —ω关系为:??

?

??≥≤≤≤s

rad s rad s

rad s /707/70101.0/101

ωωω

ω

2.(10分)如图所示,在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可以大大提高工作效率,水平传送带以恒定的速率

s m v /2=运送质量为kg m 5.0=的工件,工件都是以

s m v /10=的初速度从A 位置滑上传送带,工件与传

送带之间的动摩擦因数2.0=μ

,每当前一个工件在

传送带上停止相对滑动时,后一个工件立即滑上传送带,取2/10s m g =,求:

(1)工件滑上传送带后多长时间停止相对滑动 (2)在正常运行状态下传送带上相邻工件间的距离 (3)在传送带上摩擦力对每个工件做的功

(4)每个工件与传送带之间由于摩擦产生的内能

解:(1)工作停止相对滑动前的加速度2/2s m g a ==μ ① 由at v v t +=0可知:s s a v v t t 5.02

1

20=-=-=

② (2)正常运行状态下传送带上相邻工件间的距离m m vt s 15.02=?==? ③ (3)J J mv mv W 75.0)12(5.02

1

212122202=-??=-=

④ (4)工件停止相对滑动前相对于传送带滑行的距离

)21(20at t v vt s +

-=m )5.022

1

5.01(5.022??+?-?=m m 25.0)75.01(=-=⑤ J mgs fs E 25.0===μ内 ⑥

3、汽车启动问题 匀加速启动 恒定功率启动

4、行星运动问题

[例题1] 如图6-1所示,在与一质量为M ,半径为R ,密度均匀的球体距离为R 处有一质量为m 的质点,此时M 对m 的万有引力为F 1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m 的万有引力为F 2,则F 1与F 2的比是多少?

5、微元法问题

微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,

我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。

例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。

设某一时间人经过AB 处,再经过一微小过程Δt (Δt →0),则人由AB 到达A ′B ′,人影顶端C 点到达C ′点,由于ΔS AA ′= v Δt 则人影顶端的移动速度:

v C =CC t 0S lim t

'?→??=AA t 0H

S H h lim t '

?→?-?=H H h -v 可见v c 与所取时间Δt 的长短无关,所以人影的顶端C 点做匀速直线运动。

6、等效法问题

例1:如图4—1所示,水平面上,有两个竖直的光滑墙壁A 和B ,相距为d ,一个小球以初速度v 0从两墙之间的O 点斜向上抛出,与A 和B 各发生一次弹性碰撞后,正好落回抛出点,求小球的抛射角θ 。

由题意得:2d = v 0cos θ?t = v 0cos θ?

02v sin g

θ

可解得抛射角:θ =1

2

arcsin 202gd v

例2:质点由A 向B 做直线运动,A 、B 间的距离为L ,已知质点在A 点的速度为v 0 ,加速度为a ,如果将L 分成相等的n 段,质点每通过L

n

的距离加速度均增加

a

n

,求质点到达B 时的速度。 因加速度随通过的距离均匀增加,则此运动中的平均加速度为: a 平 =

a a 2

+初末

=

(n 1)a

a a n 2-++

=3an a 2n -=(3n 1)a 2n

-

由匀变速运动的导出公式得:2a 平L =2B

v -2

0v 解得:v B

7、超重失重问题

【例4】如图24-3所示,在一升降机中,物体A 置于斜面上,当升降机处于静止状态时,物体A 恰好静止不动,若升降机以加速度g 竖直向下做匀加速运动时,以下关于物体受力的说法中正确的是

[ ]

A .物体仍然相对斜面静止,物体所受的各个力均不变

B .因物体处于失重状态,所以物体不受任何力作用

C .因物体处于失重状态,所以物体所受重力变为零,其它力不变

D .物体处于失重状态,物体除了受到的重力不变以外,不受其它力的作用 点拨:(1)当物体以加速度g 向下做匀加速运动时,物体处于完全失重状态,其视重为零,因而支持物对其的作用力亦为零.

(2)处于完全失重状态的物体,地球对它的引力即重力依然存在. 答案:D

4.如图24-5所示,质量为M 的框架放在水平地面上,一根轻质弹簧的上端固定在框架上,下端拴着一个质量为m 的小球,在小球上下振动时,框架始终没有跳起地面.当框架对地面压力为零的瞬间,小球加速度的大小为

[ D ]

A g

B

C 0

D ..

..

()()M m g m

M m g m

-+

8、万有引力问题

例、宇航员在一星球表面上的某高处,沿水平方向抛出一小球。经过时间t ,小球落到星球表面,测得抛出点与落地点之间的距离为L 。若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L 。已知两落地点在同一水平面上,该星球的半径为R ,万有引力常数为G 。求该星球的质量M 。

例、小球A 用不可伸长的细绳悬于O 点,在O 点的正下方有一固定的钉子B ,OB=d ,初始时小球A 与O 同水平面无初速度释放,绳长为L ,为使小球能绕B 点做完整的圆周运动,如图9所示。试求d 的取值范围。

解.为使小球能绕B 点做完整的圆周运动,则小球在D 对绳的拉力F 1应该大于或等于零,即有:

d

L V m m g D

-≤2

根据机械能守恒定律可得

m 图9

[])(2

12d L d mg mV D --= 由以上两式可求得:L d L ≤≤5

3

9、天体运动问题 7.(16分)火星和地球绕太阳的运动可以近似看作为同一平面内同方向的匀速圆周运动,已知火星的轨道半径m r 11105.1?=火,地球的轨道半径m r 11100.1?=地,从如图所示的火星与地球相距最近的时刻开始计时,估算火星再次与地球相距最近需多少地球年?(保留两位有效数字

10、牛顿第二定律问题

例3 为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速

公路的最高限速 v=120km /h ,假设前方车辆突然停下,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s .刹车时汽车受到阻力的大小f 为汽车重力的0.40倍,该高速公路上汽车间的距离s 至少应为多少?取 g=10m /s 2.

11、平抛问题

10.如图所示,在一次空地演习中,离地H 高处的飞机以水平速度1

v 发射一颗炮弹欲轰炸地面目标P ,反应灵敏的地面拦截系统同时以速度2v 竖直向上发射炮弹拦截. 设拦截系统与飞机的水平距离为s ,若拦截成功,不计空气阻力,则1v 、2v 的关系应满足( )

A .1v =2v

B .1v =

2v s

H

C .1v =

s

H 2v D .1v =

2v H

s 12、曲线运动问题 17.(10分)如图所示,支架质量M ,放在水平地面上,在转轴O 处用一长为l 的细绳悬挂

一质量为m 的小球。求:

(1)小球从水平位置释放后,当它运动到最低点时地面对支架的支持力多大?

(2)若小球在竖直平面内摆动到最高点时,支架恰对地面无压力,则小球在最高点的速

度是多大?

13、图线问题

1. 质量为的m 物体放在A 地的水平地面上,用竖直向上的力拉物体,物体的加速度a 和拉力F 关系的a-F 图线如图中A 所示。质

量为m’的另一物体在B 地做类似实验所得a-F 图线如图中B 所

示。A 、B 两线延长线交Oa 轴于同一点P 。设A 、B 两地重力加

速度分别为g 和g’ ( )

A 、m’>m g’=g

B 、m’

C 、m’=m g’

D 、m’>m g’

[提示:由a=

g m

F

-可知斜率、纵横坐标的物理意义] 2. 物体A 、B 、C 均静止在同一水平面上,它们的质量分别为m A ,m B 和m C ,与水平面间

的动摩擦因数分别为μA ,μB 和μC ,用平行于水平面的拉力F ,分别拉物体A 、B 、C ,它们的加速度a 与拉力F 的关系图线如图所示,A 、B 、C 对应的直线分别为甲、乙、丙,甲、乙两直线平行,则下列说法正确的是:( ) A 、μA =μB ,m A =m B ; B 、μB =μC ,m A =m B ; C 、μA >μB ,m A >m B ; D 、μB <μC ,m A

14、直线运动问题

推论1.物体作初速度为零的匀加速直线运动,从开始(t =0)计时起,在连续相邻相等的时间间隔(△t=1s )内的位移比为连续奇数比。即:

S 第1s 内∶S 第2s 内∶S 第3s 内…=1∶3∶5∶…

推论2.物体作匀加速(加速度为a )直线运动,它经历的两个相邻相等的时间间隔为T ,它在这两个相邻相等的时间间隔内的位移差为△S ,则有△S=aT 2

推论3.物体作初速度为零的匀加速直线运动,从初始位置(S=0)开始,它通过连续相邻相等的位移所需的时间之比为

15、共点力平衡问题

1.如图所示,轻质光滑滑轮两侧用细绳连着两个物体A 与B ,物体B 放在水平地面上,A 、B 均静止.已知A 和B 的质量分别为m A 、m B ,,绳与水平方向的夹角为θ,则( BD ) A .物体B 受到的摩擦力可能为0 B .物体B 受到的摩擦力为mg A cos θ C.物体B 对地面的压力可能为0

D .物体B 对地面的压力为m B -m A gsin θ

16、功和动量结合问题

[例题1] 一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S ,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ.

17、碰撞问题

弹性碰撞 完全非弹性碰撞 完全弹性碰撞 18、多物体动量守恒

1.(14分)如图所示,A 、B 质量分别为,2,121kg m kg m ==置于小车C 上。小车质量

kg m 13=,

AB 间粘有少量炸药,AB 与小车间的动摩擦因数均为0.5,小车静止在光滑水平面上,若炸药爆炸释放的能量有12J 转化为A 、B 的机械能,其余的转化为内能。A 、B 始终在小车上表面水平运动,求:

(1)A 、B 开始运动的初速度各是多少? (2)A 、B 在小车上滑行时间各是多少?

3.(16分)如图,在光滑的水平桌面上,静放着一质量为980g 的长方形匀质木块,现有一颗质量为20g 的子弹以300m/s 的水平速度沿其轴线射向木块,结果子弹留在木块中没有射出,和木块一起以共同的速度运动。已知木块沿子弹

运动方向的长度为10cm ,子弹打进木块的深度为6cm 。设木块对子弹的阻力保持不变。

(1)求子弹和木块的共同速度以及它们在此过程中所增加的内能。

(2)若子弹是以400m/s 的水平速度从同一方向水平射向该木块的,则它能否射穿该木块?

6.(14分)如图所示,质量M =2kg 的平板小车后端放有质量m =3kg 的铁块,它和车之间的动摩擦因数 =0.5,开始时车和铁块一起以m/s

30=v 的速度向右在光滑水平地面上向右运动,并与竖直墙壁发生碰撞.设碰撞时间极短且碰撞后平板车速度大小保持不变,但方向与原来相反,平板车足够长,使得铁块总不

能和墙相碰.求:

(1)铁块在车上滑行的总路程;

(2)车和墙第一次相碰以后所走的总路程.(g 取2

m/s 10)

19、汽车过拱桥、火车过弯道、汽车过弯道、汽车过平直弯道

20先加速后减速模型

1. 一个质量为m=0.2kg 的物体静止在水平面上,用一水平恒力F 作用在物体上10s ,然后

撤去水平力F ,再经20s 物体静止,该物体的速度图象如图3所示,则下面说法中正确的是( )

A. 物体通过的总位移为150m

B. 物体的最大动能为20J

C. 物体前10s 内和后10s 内加速度大小之比为2:1

D. 物体所受水平恒力和摩擦力大小之比为3:1 答案:ACD

21斜面模型

1. 带负电的小物体在倾角为)6.0(sin =θθ的绝缘斜面上,整个斜面处于范围足够大、方

向水平向右的匀强电场中,如图1.04所示。物体A 的质量为m ,电量为-q ,与斜面间的动摩擦因素为μ,它在电场中受到的电场力的大小等于重力的一半。物体A 在斜面上由静止开始下滑,经时间t 后突然在斜面区域加上范围足够大的匀强磁场,磁场方向与电场强度方向垂直,磁感应强度大小为B ,此后物体A 沿斜面继续下滑距离L 后离开斜面。 (1)物体A 在斜面上的运动情况?说明理由。

(2)物体A 在斜面上运动过程中有多少能量转化为内能?(结果用字母表示)

22挂件模型

1. 图1.07中重物的质量为m ,轻细线AO 和BO 的A 、B 端是固定的。平衡时AO 是水平

的,BO 与水平面的夹角为θ。AO 的拉力F 1和BO 的拉力F 2的大小是( )

A. θcos 1mg F =

B. θcot 1mg F =

C. θsin 2mg F =

D. θ

sin 2mg

F =

图1.07

BD 正确。

23弹簧模型(动力学)

2. 图1.07中重物的质量为m ,轻细线AO 和BO 的A 、B 端是固定的。平衡时AO 是水平

的,BO 与水平面的夹角为θ。AO 的拉力F 1和BO 的拉力F 2的大小是( ) A. θcos 1mg F =

B. θcot 1mg F =

C. θsin 2mg F =

D. θ

sin 2mg

F =

图1.07

解析:以“结点”O 为研究对象,沿水平、竖直方向建立坐标系,在水平方向有12cos F F =θ竖直方向有mg F =θsin 2联立求解得BD 正确。

24水平方向的圆盘模型

1. 如图2.03所示,两个相同材料制成的靠摩擦传动的轮A 和轮B 水平放置,两轮半径

R R A B =2,当主动轮A 匀速转动时,在A 轮边缘上放置的小木块恰能相对静止在A

轮边缘上。若将小木块放在B 轮上,欲使木块相对B 轮也静止,则木块距B 轮转轴的最大距离为( ) A.

R B

4

B.

R B

3

C.

R B

2

D. R B

图2.03

答案:C

25行星模型

1.

卫星做圆周运动,由于大气阻力的作用,其轨道的高度将逐渐变化(由于高度变化很缓

慢,变化过程中的任一时刻,仍可认为卫星满足匀速圆周运动的规律),下述卫星运动的一些物理量的变化正确的是:( )

A. 线速度减小

B. 轨道半径增大

C. 向心加速度增大

D. 周期增大

解析:假设轨道半径不变,由于大气阻力使线速度减小,因而需要的向心力减小,而提供向心力的万有引力不变,故提供的向心力大于需要的向心力,卫星将做向心运动而使轨道半径减小,由于卫星在变轨后的轨道上运动时,满足32r T r

GM

v ∝=

和,故v 增大而T 减小,又2

r GM

m

F a =

=

引,故a 增大,则选项C 正确。

26水平方向的弹性碰撞

1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B

球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( )

A.

m

E P

B.

m

E P

2 C. m

E P

2

D. m

E P

22

解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出

mv mv 20=,由能量守恒定律得220

)2(21

21v m E mv P +=,联立解得m

E v P 20=,所以正确选项为C 。

27水平方向的非弹性碰撞

1. 如图3.05所示,木块与水平弹簧相连放在光滑的水平面上,子弹沿水平方向射入木块后

留在木块内(时间极短),然后将弹簧压缩到最短。关于子弹和木块组成的系统,下列说法真确的是

A . 从子弹开始射入到弹簧压缩到最短的过程中系统动量守恒

B . 子弹射入木块的过程中,系统动量守恒

C . 子弹射入木块的过程中,系统动量不守恒

D . 木块压缩弹簧的过程中,系统动量守恒

图3.05

答案:B

28人船模型

1. 如图3.09所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船

头走到船尾,不计水的阻力,求船和人对地面的位移各为多少?

图3.09

解析:以人和船组成的系统为研究对象,在人由船头走到船尾的过程中,系统在水平方向不受外力作用,所以整个系统在水平方向动量守恒。当人起步加速前进时,船同时向后做加速运动;人匀速运动,则船匀速运动;当人停下来时,船也停下来。设某时刻人对地的速

度为v ,船对地的速度为v',取人行进的方向为正方向,根据动量守恒定律有:0'=-Mv mv ,即

M

m

v v =' 因为人由船头走到船尾的过程中,每一时刻都满足动量守恒定律,所以每一时刻人的速度与船的速度之比,都与它们的质量之比成反比。因此人由船头走到船尾的过程中,人的平

均速度v 与船的平均速度v 也与它们的质量成反比,即

M

m v v =,而人的位移t v s =人,船的位移t v s =船,所以船的位移与人的位移也与它们的质量成反比,即><=1M

m

s s 人船

<1>式是“人船模型”的位移与质量的关系,此式的适用条件:原来处于静止状态的系统,在系统发生相对运动的过程中,某一个方向的动量守恒。由图1可以看出:><=+2L s s 人船 由<1><2>两式解得L m

M m

s L m M M s +=+=船人,

29爆炸反冲模型

1. 如图3.12所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M ,每颗炮弹质量为m ,

当炮身固定时,炮弹水平射程为s ,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少?

图3.12

解析:两次发射转化为动能的化学能E 是相同的。第一次化学能全部转化为炮弹的动能;

第二次化学能转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系

式m p E k 22

=知,在动量大小相同的情况下,物体的动能和质量成反比,炮弹的动能

E m

M M mv E E mv E +====2222112121,,由于平抛的射高相等,两次射程的比等于抛

出时初速度之比,即:m

M M

v v s s +==122,所以m M M s s 2+=。

30滑轮模型

1. 如图5.01所示,一路灯距地面的高度为h ,身高为l 的人以速度v 匀速行走。 (1)试证明人的头顶的影子作匀速运动; (2)求人影的长度随时间的变化率。

图5.01

解:(1)设t=0时刻,人位于路灯的正下方O 处,在时刻t ,人走到S 处,根据题意有OS=vt ,过路灯P 和人头顶的直线与地面的交点M 为t 时刻人头顶影子的位置,如图2所示。OM 为人头顶影子到O 点的距离。

图2

由几何关系,有

OS OM l OM h -= 联立解得t l

h hv

OM -=

因OM 与时间t 成正比,故人头顶的影子作匀速运动。

(2)由图2可知,在时刻t ,人影的长度为SM ,由几何关系,有SM=OM-OS ,由以上各式得

t l

h lv SM -=

可见影长SM 与时间t 成正比,所以影长随时间的变化率l

h lv

k -=。

31渡河模型

1. 小河宽为d ,河水中各点水流速度大小与各点到较近河岸边的距离成正比,

d

v k kx v 0

4=

=,水,x 是各点到近岸的距离,小船船头垂直河岸渡河,小船划水速度为0v ,则下列说法中正确的是( ) A. 小船渡河的轨迹为曲线 B. 小船到达离河岸

2

d

处,船渡河的速度为02v C. 小船渡河时的轨迹为直线

D. 小船到达离河岸4/3d 处,船的渡河速度为010v 答案:A

32电路的动态变化

1. 如图6.03所示电路中,R 2、R 3是定值电阻,R 1是滑动变阻器,当R 1的滑片P 从中点向

右端滑动时,各个电表的示数怎样变化?

33交变电流

1. 一闭合线圈在匀强磁场中做匀角速转动,线圈转速为240rad/min ,当线圈平面转动至

与磁场平行时,线圈的电动势为2.0V 。设线圈从垂直磁场瞬时开始计时,试求: (1)该线圈电动势的瞬时表达式; (2)电动势在

48

1

s 末的瞬时值。 答案:(1)2sin8πtV 、(2)1.0V 34电磁场中的单杆模型

1. 如图7.01所示,Ω6=Ω=215R R ,,电压表与电流表的量程分别为0~10V 和0~3A ,

电表均为理想电表。导体棒ab 与导轨电阻均不计,且导轨光滑,导轨平面水平,ab 棒处于匀强磁场中。

3

R

(1)当变阻器R 接入电路的阻值调到30Ω,且用F 1=40N 的水平拉力向右拉ab 棒并

使之达到稳定速度v 1时,两表中恰好有一表满偏,而另一表又能安全使用,则此时ab 棒的速度v 1是多少?

(2)当变阻器R 接入电路的阻值调到3Ω,且仍使ab 棒的速度达到稳定时,两表中恰

有一表满偏,而另一表能安全使用,则此时作用于ab 棒的水平向右的拉力F 2是多大?

图7.01

35电磁流量计模型

1. 图7.07是电磁流量计的示意图,在非磁性材料做成的圆管道外加一匀强磁场区域,当管

中的导电液体流过此磁场区域时,测出管壁上的ab 两点间的电动势ε,就可以知道管中液体的流量Q ——单位时间内流过液体的体积(s m /3

)。已知管的直径为D ,磁感应强度为B ,试推出Q 与ε的关系表达式。

36回旋加速模型

1. 在如图7.12所示的空间区域里,y 轴左方有一匀强电场,场强方向跟y 轴正方向成

60°,大小为C N E /100.45

?=;y 轴右方有一垂直纸面向里的匀强磁场,磁感应强

度T B 20.0=。有一质子以速度s m v /100.26

?=,由x 轴上的A 点(10cm ,0)沿与

x 轴正方向成30°斜向上射入磁场,在磁场中运动一段时间后射入电场,后又回到磁场,经磁场作用后又射入电场。已知质子质量近似为kg m 27

106.1-?=,电荷

C q 19106.1-?=,质子重力不计。求:

(计算结果保留3位有效数字)

(1)质子在磁场中做圆周运动的半径。

(2)质子从开始运动到第二次到达y 轴所经历的时间。 (3)质子第三次到达y 轴的位置坐标。 质子做匀速圆周运动的半径为:

m qB

mv

R 10.0==

质子从出发运动到第一次到达y 轴的时间1t 为s qB

m T t 711057.12-?≈==π 质子第三次到达y 轴的坐标为(0,34.6cm )。 37磁偏转模型

1. 如图7.22所示,匀强电场的场强E =4V /m ,方向水平向左,匀强磁场的磁感应强度B =2T ,

方向垂直于纸面向里.一个质量m =1g 、带正电的小物体A 从M 点沿绝缘粗糙的竖直壁无初速下滑,当它滑行h =0.8m 到N 点时离开壁做曲线运动,运动到P 点时恰好处于平衡状态,此时速度方向与水平方向成45°设P 与M 的高度差H =1.6m.求: (1)A 沿壁下滑过程中摩擦力做的功;

(2)P 与M 的水平距离S.(g 取10m /s 2

)

解:(1)小物体到N 点时离开壁时,qv N B =qE v N =E/B =2m/s

从M 到N 的过程中,根据动能定理22

1N f mv W mgh =+ 代入数据得W f =-6×10-3

J

(2) 小物体运动到P 点时恰好处于平衡状态qE=mg , qE B qv P 2=,22=P v m/s

从M 到P 的过程中,根据动能定理

22

1P f mv qES W mgH =

-+ 代入数据得S =0.6m

图7.22

高中物理二十四种模型

高中物理二十四种模型 ⒈"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度. ⒉"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题. ⒊"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法. ⒋"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守恒法)等. ⒌"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系. ⒍"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题. ⒎"斜面"模型:运动规律.三大定律.数理问题. ⒏"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动). ⒐"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题). ⒑"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法. ⒒"人船"模型:动量守恒定律.能量守恒定律.数理问题. ⒓"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题. ⒔"爆炸"模型:动量守恒定律.能量守恒定律. ⒕"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法. ⒖"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用. ⒗"电路的动态变化"模型:闭合电路的欧姆定律.判断方法和变压器的三个制约问题. ⒘"磁流发电机"模型:平衡与偏转.力和能问题.

⒙"回旋加速器"模型:加速模型(力能规律).回旋模型(圆周运动).数理问题. ⒚"对称"模型:简谐运动(波动).电场.磁场.光学问题中的对称性.多解性.对称性. ⒛电磁场中的单杆模型:棒与电阻.棒与电容.棒与电感.棒与弹簧组合.平面导轨.竖直导轨等,处理角度为力电角度.电学角度.力能角度. 21.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律. 22.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题. 23."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题. 24.远距离输电升压降压的变压器模型.

高中物理公式知识点总结大全资料

高中物理公式知识点 总结大全

高中物理公式、知识点、规律汇编表 一、力学公式 1、 胡克定律: F = kx (x 为伸长量或压缩量,K 为倔强系数,只与弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g 随高度、纬度、地质结构而变化) 3 、求F 1、F 2两个共点力的合力的公式: F=θCOS F F F F 2122212++ 合力的方向与F 1成α角: tg α=F F F 212sin cos θθ+ 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ∑F=0 或∑F x =0 ∑F y =0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力: f= μN 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G b 、 μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、 浮力: F= ρVg (注意单位) 7、 万有引力: F=G m m r 12 2 (1). 适用条件 (2) .G 为万有引力恒量 (3) .在天体上的应用:(M 一天体质量 R 一天体半径 g 一天体表面重力 加速度) a 、万有引力=向心力 1

高中物理的所有公式归纳

高中物理公式、规律汇编表 一、力学 1、 胡克定律: F = kx (x 为伸长量或压缩量;k 为劲度系数,只与弹簧的 原长、粗细和材料有关) 2、 重力: G = mg (g 随离地面高度、纬度、地质结构而变化;重力约等 于地面上物体受到的地球引力) 3 、求F 1、F 2两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 + F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合 外力为零。 F 合=0 或 : F x 合=0 F y 合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值 反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1) 滑动摩擦力: f= μ F N 说明 : ① F N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G ② μ为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、 接触面相对运动快慢以及正压力N 无关. (2) 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明:

(完整版)高中物理模型解题

高中物理模型解题 模型解题归类 一、刹车类问题 匀减速到速度为零即停止运动,加速度a突然消失,求解时要注意确定其实际运动时间。如果问题涉及到最后阶段(到速度为零)的运动,可把这个阶段看成反向、初速度为零、加速度不变的匀加速直线运动。 【题1】汽车刹车后,停止转动的轮胎在地面上发生滑动,可以明显地看出滑动的痕迹,即常说的刹车线。由刹车线长短可以得知汽车刹车前的速度的大小,因此刹车线的长度是分析交通事故的一个重要依据。若汽车轮胎跟地面的动摩擦因数是0.7,刹车线长是14m,汽车在紧急刹车前的速度是否超过事故路段的最高限速50km/h? 【题2】一辆汽车以72km/h速率行驶,现因故紧急刹车并最终终止运动,已知汽车刹车过程加速度的大小为5m/s2,则从开始刹车经过5秒汽车通过的位移是多大 二、类竖直上抛运动问题 物体先做匀加速运动,到速度为零后,反向做匀加速运动,加速过程的加速度与减速运动过程的加速度相同。此类问题要注意到过程的对称性,解题时可以分为上升过程和下落过程,也可以取整个过程求解。 【题1】一滑块以20m/s滑上一足够长的斜面,已知滑块加速度的大小为5m/s2,则经过5秒滑块通过的位移是多大? 【题2】物体沿光滑斜面匀减速上滑,加速度大小为4m/s2,6s后又返回原点。那么下述结论正确的是() A物体开始沿斜面上滑时的速度为12m/s B物体开始沿斜面上滑时的速度为10m/s C物体沿斜面上滑的最大位移是18m D物体沿斜面上滑的最大位移是15m 三、追及相遇问题 两物体在同一直线上同向运动时,由于二者速度关系的变化,会导致二者之间的距离的变化,出现追及相撞的现象。两物体在同一直线上相向运动时,会出现相遇的现象。解决此类问题的关键是两者的位移关系,即抓住:“两物体同时出现在空间上的同一点。分析方法有:物理分析法、极值法、图像法。常见追及模型有两个:速度大者(减速)追速度小者(匀速)、速度小者(初速度为零的匀加速直线运动)追速度大者(匀速)、 1、速度大者(减速)追速度小者(匀速):(有三种情况)

(完整版)高考物理弹簧模型总结,推荐文档

特级教师分析2013年高考物理必考题:含弹簧的物理模型 【命题规律】 高考中常出现的物理模型中,斜面问题、叠加体模型、含弹簧的连接体、传送带模型 等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题 在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述. 有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论 述和例举.试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹 射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问 题、含弹簧的连接体模型. 高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识 与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万 化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: 三、含弹簧的物理模型 纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重.高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒 问题、振动问题、功能问题等,几乎贯穿了整个力学的知识体系.为了帮助同学们掌握这 类试题的分析方法,现将有关弹簧问题分类进行剖析. 对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元 件.因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题老师的青睐. “高考直通车”联合衡水毕业清华北大在校生将于2013年5月中旬推出的手写版高考 复习笔记,希望对大家复习备考有所帮助。该笔记适合2014年、2015年、2016年高考生使 用。凡2013年5月中旬之后购买的高一、高二同学,每年指定日期可以免费更换一次最新 一年的笔记。另外,所有笔记使用者将被加入2014年高考备考专用平台,每周定期提供最 新资料和高考互动。笔记对外公开时间:5月20日 1.静力学中的弹簧问题 (1)胡克定律:F =kx ,ΔF =k ·Δx . (2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上 的拉力. ●例4 如图9-12甲所示,两木块A 、B 的质量分别为m 1和m 2,两轻质弹簧的劲度系 数分别为k 1和k 2,两弹簧分别连接A 、B ,整个系统处于平衡状态.现缓慢向上提木块A ,直到下面的弹簧对地面的压力恰好为零,在此过程中 A 和 B 的重力势能共增加了( ) 【解析】取A 、B 以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地 建议收藏下载本文,以便随时学习!我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙

高中物理全部公式大全汇总

[转] 高中所有物理公式整理,参考下的。 超级全面的物理公式!!!很有用的说~~~(按照咱们的物理课程顺序总结的)1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh

(3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr

高中物理基础知识 总结 几种典型的运动模型

高考物理知识点总结18 几种典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动 两个基本公式(规律):V t =V 0+atS=v o t+ 12 at 2 及几个重要推论: (1)推论:V t 2-V 02=2as (匀加速直线运动:a 为正值匀减速直线运动:a 为正值) (2)AB 段中间时刻的即时速度:V t/2= V V t 02+=s t (若为匀变速运动)等于这段的平均速度 (3)AB 段位移中点的即时速度:V s/2= v v o t 2 2 2 + V t/2=V =V V t 02+=s t =T S S N N 21++=V N ?V s/2= v v o t 222+ 匀速:V t/2=V s/2;匀加速或匀减速直线运动:V t/2

高中物理公式大全整理版)

高中物理公式大全 一、力学 1、胡克定律:f = k x (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料有关) 2、重力: G = mg (g 随高度、纬度、地质结构而变化,赤极g g >,高伟低纬g >g ) 3、求F 1、F 2的合力的公式: θcos 2212221F F F F F ++= 合,两个分力垂直时: 2 221F F F +=合 注意:(1) 力的合成和分解都均遵从平行四边行定则。分解时喜欢正交分解。 (2) 两个力的合力范围:? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、物体平衡条件: F 合=0 或 F x 合=0 F y 合=0 推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反向。 解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法 5、摩擦力的公式: (1 ) 滑动摩擦力: f = μN (动的时候用,或时最大的静摩擦力) 说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也可以小于G 。 ②μ为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关。 (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。 大小范围: 0≤ f 静≤ f m (f m 为最大静摩擦力) 说明:①摩擦力可以与运动方向相同,也可以与运动方向相反。 ②摩擦力可以作正功,也可以作负功,还可以不作功。 ③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 ④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、万有引力: (1)公式:F=G 2 2 1r m m (适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = 6.67×10-11 N ·m 2 / kg 2 (2)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高度)) a 、万有引力=向心力 F 万=F 向 即 '4222 22mg ma r T m r m r v m r Mm G =====πω 由此可得: ①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。 2 3 24GT r M π=r GM v =

高中物理所有公式总结

一, 质点的运动(1)----- 直线运动 1)匀变速直线运动 1.平均速度V平=S / t (定义式) 2.有用推论Vt 2 –V0 2=2as 3.中间时刻速度Vt / 2= V平=(V t + V o) / 2 4.末速度V=Vo+at 5.中间位置速度Vs / 2=[(V_o2 + V_t2) / 2] 1/2 6.位移S= V平t=V o t + at2 / 2=V t / 2 t 7.加速度a=(V_t - V_o) / t 以V_o为正方向,a与V_o同向(加速)a>0;反向则a<0 8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差 9.主要物理量及单位:初速(V_o):m/ s 加速度(a):m/ s2 末速度(Vt):m/ s 时间(t):秒(s) 位移(S):米(m)路程:米 速度单位换算:1m/ s=3.6Km/ h 注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(V_t - V_o)/ t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/ 2) 自由落体 1.初速度V_o =0 2.末速度V_t = g t 3.下落高度h=gt2 / 2(从V_o 位置向下计算) 4.推论V t2 = 2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。 (2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。 3) 竖直上抛 1.位移S=V_o t –gt 2 / 2 2.末速度V_t = V_o –g t (g=9.8≈10 m / s2 ) 3.有用推论V_t 2 - V_o 2 = - 2 g S 4.上升最大高度H_max=V_o 2 / (2g) (抛出点算起) 5.往返时间t=2V_o / g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。 平抛运动

高中物理解题模型详解总结

高考物理解题模型 目录 第一章运动和力................................................. 一、追及、相遇模型............................................ 二、先加速后减速模型.......................................... 三、斜面模型................................................. 四、挂件模型................................................. 五、弹簧模型(动力学)........................................ 第二章圆周运动................................................. 一、水平方向的圆盘模型........................................ 二、行星模型................................................. 第三章功和能 ................................................... 一、水平方向的弹性碰撞........................................ 二、水平方向的非弹性碰撞...................................... 三、人船模型................................................. 四、爆炸反冲模型 ............................................. 第四章力学综合................................................. 一、解题模型: ............................................... 二、滑轮模型................................................. 三、渡河模型................................................. 第五章电路...................................................... 一、电路的动态变化............................................ 二、交变电流................................................. 第六章电磁场 ................................................... 一、电磁场中的单杆模型........................................ 二、电磁流量计模型............................................ 三、回旋加速模型 ............................................. 四、磁偏转模型 ...............................................

关于高级高中物理模型总结归纳

1、追及、相遇模型 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 故不相撞的条件为d v v a 2)(2 21-≥ 2、传送带问题 1.(14分)如图所示,水平传送带水平段长L =6米,两皮带轮直径均为D=0.2米,距地面高度H=5米,与传送带等高的光滑平台上有一个小物体以v 0=5m/s 的初速度滑上传送带,物块与传送带间的动摩擦因数为,g=10m/s 2,求: (1)若传送带静止,物块滑到B 端作平抛 运动 的水平距离S 0。 (2)当皮带轮匀速转动,角速度为ω,物 体平抛运动水平位移s ;以不同的角速度ω值重复 上述过程,得到一组对应的ω,s 值,设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,并画出s —ω关系图象。 解:(1))(12110m g h v t v s === (2)综上s —ω关系为:?? ? ??≥≤≤≤s rad s rad s rad s /707/70101.0/101ωωω ω 2.(10分)如图所示,在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可以大大提高工作效率,水平传送带以的 工 恒定的速率s m v /2=运送质量为kg m 5.0=

件,工件都是以s m v /10=的初速度从A 位置滑上传送带,工件与传送带之间的动摩擦因数2.0=μ,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带,取2/10s m g =,求: (1)工件滑上传送带后多长时间停止相对滑动 (2)在正常运行状态下传送带上相邻工件间的距离 (3)在传送带上摩擦力对每个工件做的功 (4)每个工件与传送带之间由于摩擦产生的内能 解:(1)工作停止相对滑动前的加速度2/2s m g a ==μ ① 由at v v t +=0可知:s s a v v t t 5.02 1 20=-=-= ② (2)正常运行状态下传送带上相邻工件间的距离m m vt s 15.02=?==? ③ (3)J J mv mv W 75.0)12(5.02 12121 222 02=-??=-= ④ (4)工件停止相对滑动前相对于传送带滑行的距离 )21(20at t v vt s +-=m )5.022 1 5.01(5.022??+?-?=m m 25.0)75.01(=-=⑤ J mgs fs E 25.0===μ内 ⑥ 3、汽车启动问题 匀加速启动 恒定功率启动 4、行星运动问题 [例题1] 如图6-1所示,在与一质量为M ,半径为R ,密度均匀的球体距离为R 处有一质量为m 的质点,此时M 对m 的万有引力为F 1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m 的万有引力为F 2,则F 1与F 2的比是多少?

高中物理学考公式大全

学习必备 欢迎下载 高中物理学考公式大全 一、运动学基本公式 1.匀变速直线运动基本公式: 速度公式:(无位移)at v v t +=0 位移公式:(无末速度)2 02 1at t v x + = 推论公式(无时间):ax v v t 2202=- (无加速度)t v v x t 2 0+= 2、计算平均速度 t x v ??=【计算所有运动的平均速度】 2 0t v v v += 【只能算匀变速运动的平均速度】 3、打点计时器 (1)两种打点计时器 (a )电磁打点计时器: 工作电压(6V 以下) 交流电 频率50HZ (b )电火花打点计时器:工作电压(220v ) 交流电 频率50HZ 【计数点要看清是相邻的打印点(间隔 )还是每隔个点取一个计数点(间隔0.1s)】 (2)纸带分析 (a (b)求某点速度公式:t x v v t 22==【会根据纸带计算某个计数点的瞬时速度】 二、力学基本规律 1、不同种类的力的特点 (1).重力:mg G =(2r GM g ∝ ,↓↑g r ,,在地球两极g 最大,在赤道g 最小) (2). 弹力: x k F ?= 【弹簧的劲度系数k 是由它的材料,粗细等元素决定的,与它受不受力以及在弹 性线度内受力的大小无关】 (3).滑动摩擦力 N F F ?=μ;【在平面地面上,FN=mg ,在斜面上等于重力沿着斜面的分力】 静摩擦力F 静 :0~F max ,【用力的平衡观点来分析】 2.合力:2121F F F F F +≤≤-合 力的合成与分解:满足平行四边形定则 三、牛顿运动定律 (1)惯性:只和质量有关 (2)F 合=ma 【用此公式时,要对物体做受力分析】 (3)作用力和反作用力:大小相等、方向相反、性质相同、同时产生同时消失,作用在不同的物体上(这是与平衡力最明显的区别) (4)运用牛顿运动定律解题

高中物理模型24 活塞封闭气缸模型(解析版)

高中物理模型24 活塞封闭气缸(原卷版) 1.常见类型 (1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题。 (2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题。 (3)封闭气体的容器(如汽缸、活塞)与气体发生相互作用的过程中,如果满足守恒定律的适用条件,可根据相应的守恒定律解题。 (4)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解。 2.解题思路 (1)弄清题意,确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统)。 (2)分析清楚题目所述的物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程。 (3)注意挖掘题目的隐含条件,如几何关系等,列出辅助方程。 (4)多个方程联立求解。对求解的结果应注意检验它们的合理性。 多个系统相互联系的一定质量气体问题,往往以压强建立起系统间的关系,各系统独立进行状态分析,要确定每个研究对象的变化性质,分别应用相应的实验定律,并充分应用各研究对象之间的压强、体积、温度等量的有效关联,若活塞可自由移动,一般要根据活塞平衡确定两部分气体的压强关系。 【典例1】如图所示,足够长的圆柱形汽缸竖直放置,其横截面积为1×10-3m2,汽缸内有质量m=2 kg的活塞,活塞与汽缸壁封闭良好,不计摩擦。开始时活塞被销子K销于如图所示位置,离缸底12 cm,此时汽缸内被封闭气体的压强为1.5×105 Pa,温度为300 K。外界大气压强p0=1.0×105 Pa,g=10 m/s2。 (1)现对密闭气体加热,当温度升到400 K时,其压强为多大? (2)若在(1)的条件下拔去销子K,活塞开始向上运动,当它最后静止在某一位置时,汽缸内气体的温度为360 K,则这时活塞离缸底的距离为多少? 【变式训练1】如图,柱形容器内用不漏气的轻质绝热活塞封闭一定量的理想气体,容器外包裹保温材料。开始时活塞至容器底部的高度为H1,容器内气体温度与外界温度相等。在活塞上逐步加上多个砝码后,活塞下降到距容器底部H2处,气体温度升高了△T;然后取走容器外的保温材料,活塞位置继续下降,最后静止于距容器底部H3处:已知大气压强为p0。求:气体最后的压强与温度。 【典例2】如图,在水平放置的刚性气缸内用活塞封闭两部分气体A和B,质量一定的两活塞用杆连接。气缸内两活塞之间保持真空,活塞与气缸璧之间无摩擦,左侧活塞面积较大,A、B的初始温度相同。略抬高气缸左端使之倾斜,再使A、B升高相同温度,气体最终达到稳定状态。若始末状态A、B的压强变化量△p A、△p B均大于零,对活塞压力的变化量为△F A、△F B,则 (A)A体积增大(B)A体积减小(C) △F A △F B(D)△p A<△p B 【变式训练2】如图,绝热气缸A与导热气缸B均固定于地面,由刚性杆连接的绝热活塞与两气缸间均无摩擦。两气 缸内装有处于平衡状态的理想气体,开始时体积均为 V、温度均为 T。缓慢加热A中气体,停止加热达到稳定后, A中气体压强为原来的1.2倍。设环境温度始终保持不变,求气缸A中气体的体积 A V和温度 A T。 【典例3】(2019南昌二中1月质检)如图所示,两个截面积均为S的圆柱形容器,左右两边容器的高均为H,右边容器上端封闭,左边容器上端是一个可以在容器内无摩擦滑动的轻活塞(重力不计),两容器由装有阀门的极细管道(体积忽略不计)相连通。开始时阀门关闭,左边容器中装有热力学温度为T0的理想气体,平衡时活塞到容器底的距离为H,右边容器内为真空。现将阀门缓慢打开,活塞便缓慢下降,直至系统达到平衡,此时被封闭气体的热力学温度为T,且T>T0。求此过程中外界对气体所做的功。已知大气压强为p0。 【变式训练3】汽缸由两个横截面不同的圆筒连接而成,活塞A、B被轻质刚性细杆连接在一起,活塞可无摩擦移动,活塞A、B的质量分别为m1=24 kg、m2=16 kg,横截面积分别为S1=6.0×10-2 m2,S2=4.0×10-2 m2,一定质量的理想气体被封

高中物理连体模型总结

精讲3 牛顿运动定律连体问题 ?在实际问题中,常常会碰到几个物体(连接)在一起在外力作用下运动,求解它们的运动规律及所受外力和相互作用力,这类问题被称为连接体问 题。 常见的连体模型:①用轻绳连接②直接接触 ③靠摩擦接触 a

连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。处理方法:整体法与隔离法相结合 整体法:就是把整个系统作为一个研究对象来分析的方法。不必考虑系统内力的影响,只考虑系统受到的外力,根据牛顿第二定律列方程求解. 例1:如图所示,U形框B放在粗糙斜面上刚好静止。若将物体A放入放入U形框B内,问B是否静止。 隔离法:是把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法。 此时系统内部各物体间的作用力(内力)就可能成为研究对象的外力,在分析时要加以注意。需要求内力时,一般要用隔离法。

例2 如图所示,为研究a与F、m关系的实验装置,已知A、B质量分别为m、M,当一切摩擦力不计时,求绳子拉力。原来说F约为mg,为什么? 拓展:质量分别为m=2kg和M=3kg的物体A和B,挂在弹簧秤下方的定滑轮上,如图所示,当B加速下落时,弹簧秤的示数是。(g取10m/s2) 例3:用力F推,质量为M的物块A和质量为m的物块B,使两物体一起在光滑水平面上前进时,求物体M对m的作用力F N。

若两物体与地面摩擦因数均为μ时,相互作用力F N是否改变?为什么? 例4.如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球。开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的一半,则小球在下滑过程中,木箱对地面的压力是多少? 拓展:如图所示,A、B的质量分别为m1和m2,叠放于光滑的水平面上,现用水平力拉A时,A、B一起运动的最大加速度为a1,若用水平力改拉B物体时,A,B一起运动的最大为a2,则a1:a2等于() A.1:1 B.m1:m2 C.m2:m1D.m12:m22

高中物理公式知识点总结大全

高中物理公式、知识点、规律汇编表 一、力学公式 1、 胡克定律: F = kx (x 为伸长量或压缩量,K 为倔强系数,只与 弹簧的原长、粗细和材料有关) 2、 重力: G = mg (g 随高度、纬度、地质结构而变化) 3 、求F 1、F 2两个共点力的合力的公式: F=θCOS F F F F 2122212++ 合力的方向与F 1成α角: tg α=F F F 212 sin cos θθ+ 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1) 共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力 为零。 ∑F=0 或∑F x =0 ∑F y =0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力 (一个力)的合力一定等值反向 ( 2 ) 有固定转动轴物体的平衡条件: 力矩代数和为零. 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力的公式: (1 ) 滑动摩擦力: f= μN 说明 : a 、N 为接触面间的弹力,可以大于G ;也可以等于G;也可以小于G b 、 μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面 积大小、接触面相对运动快慢以及正压力N 无关. (2 ) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关. 大小范围: O ≤ f 静≤ f m (f m 为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一 定 夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、 浮力: F= ρVg (注意单位) F 1

高中物理解题常用经典模型

1、"皮带"模型:摩擦力.牛顿运动定律.功能及摩擦生热等问题. 2、"斜面"模型:运动规律.三大定律.数理问题. 3、"运动关联"模型:一物体运动的同时性.独立性.等效性.多物体参与的独立性和时空联系. 4、"人船"模型:动量守恒定律.能量守恒定律.数理问题. 5、"子弹打木块"模型:三大定律.摩擦生热.临界问题.数理问题. 6、"爆炸"模型:动量守恒定律.能量守恒定律. 7、"单摆"模型:简谐运动.圆周运动中的力和能问题.对称法.图象法. 8.电磁场中的"双电源"模型:顺接与反接.力学中的三大定律.闭合电路的欧姆定律.电磁感应定律. 9.交流电有效值相关模型:图像法.焦耳定律.闭合电路的欧姆定律.能量问题. 10、"平抛"模型:运动的合成与分解.牛顿运动定律.动能定理(类平抛运动). 11、"行星"模型:向心力(各种力).相关物理量.功能问题.数理问题(圆心.半径.临界问题). 12、"全过程"模型:匀变速运动的整体性.保守力与耗散力.动量守恒定律.动能定理.全过程整体法. 13、"质心"模型:质心(多种体育运动).集中典型运动规律.力能角度. 14、"绳件.弹簧.杆件"三件模型:三件的异同点,直线与圆周运动中的动力学问题和功能问题. 15、"挂件"模型:平衡问题.死结与活结问题,采用正交分解法,图解法,三角形法则和极值法. 16、"追碰"模型:运动规律.碰撞规律.临界问题.数学法(函数极值法.图像法等)和物理方法(参照物变换法.守 恒法)等. 17."能级"模型:能级图.跃迁规律.光电效应等光的本质综合问题. 18.远距离输电升压降压的变压器模型. 19、"限流与分压器"模型:电路设计.串并联电路规律及闭合电路的欧姆定律.电能.电功率.实际应用.

2017人教版高中物理公式详细大全

人教版高考复习——物理公式大全 一、质点的运动------直线运动 (一)匀变速直线运动 1、平均速度(定义式):t s v = ; 2、有用推论:as v v t 22 02 =-; 3、中间时刻速度:2 02 t t v v v v += =; 4、末速度:at v v t +=0; 5、中间位置速度:22 202 t s v v v +=; 6、位移:20021 2at t v t v v t v s t +=?+= ?=; 7、加速度:t v v a t 0 -={以0v 为正方向,a 与0v 同向(加速)0>a ;反向则0

高中物理现行高考所有公式大全(最全整理)

高中物理现行高考常用公式 一. 力学 1.1 静力学 物理概念规律名称 公式 重力 G mg = (g 随高度、纬度而变化) 摩擦力 (1) 滑动摩擦力: f= μN (2) 静摩擦力:大小范围O ≤ f 静≤ f m (f m 为最大静摩擦力与正压力有关) 浮力、密度 浮力F 浮= ρ液gV 排 ;密度ρ=m V 压强、液体压强 压强p F S = ;液体压强 p gh =ρ 胡克定律 F kx =(在弹性限度内) 万有引力定律 a 万有引力=向心力:F G m m r =?12 2 G Mm R h m () +=2 V R h m R h m T R h 2 22 2 24()()()+=+=+ωπ b 、近地卫星mg = G Mm R 2(黄金代换);地球赤道上G 2 R Mm -N=mR ω2 不从心 同步卫星G 2 r Mm =mr ω2 c. 第一宇宙速度mg = m V R 2 V= gR GM R =/ d. 行星密度 ρ= 2 3GT π(T 为近地卫星的周期) V 球= 3 3 4R π S 球=4πR 2 e. 双星系统 G m m r 122 =m 1R 1ω2=m 2R 2ω2 (R 1+R 2=r) 互成角度的二力的合成 F F F F F F F F 合= ++= ?+1222122122cos tan sin cos α θα α 正交分解法: F F F F F x y y x 合= += 22tan α 力矩 M FL =(不要求) 共点力的平衡条件 F 合=0或F F x y ==?? ?00 ∑F=o 或∑F x =o ∑F y =o 有固定转轴物体的平衡 条件 M 合=0或M M 逆顺= 共面力的平衡 F M 合合,==00

相关主题
文本预览
相关文档 最新文档