当前位置:文档之家› 半导体激光器的设计与数值研究

半导体激光器的设计与数值研究

半导体激光器的设计与数值研究
半导体激光器的设计与数值研究

脉冲激光测距仪的设计-课程设计

目录 第一章绪论 (1) 1.1设计背景 (1) 第二章脉冲激光测距仪的工作原理 (2) 2.1测距仪的简要工作原理 (2) 第三章脉冲激光器的结构及工作过程 (3) 3.1激光脉冲测距仪光学原理结构 (3) 3.1.1测距仪的大致结构组成 (3) 3.2主要的工作过程 (4) 3.3主要部件分析: (4) 3.3.1激光器(一般采用激光二极管) (4) 3.3.2激光二极管的特性 (5) 3.3.3光电器件(采用雪崩光电二极管APD) (6) 第四章影响测距仪的各项因素 (7) 4.1光脉冲对测距仪的影响 (7) 4.2发散角对测距仪的影响 (8) 第五章测距仪的光电读数显示 (9) 5.1距离显示原理及过程 (9) 5.2测量精度分析 (10) 5.3总述 (11) 参考文献 (11)

第一章绪论 1.1设计背景 在当今这个科技发达的社会,激光测距的应用越来越普遍。在很多领域,如电力,水利,通讯,环境,建筑,地质,警务,消防,爆破,航海,铁路,军事,农业,林业,房地产,休闲、户外运动等都可以用到激光测距仪。 激光测距仪一般具有精确度和分辨率高、抗干扰能力强、体积小、重量轻等优点,因而应用领域广、行业需求众多,市场需求空间大。 当前激光测距仪的发展趋势是向测量更安全、测量精度高、系统能耗小、体积小型化方向发展。激光测距仪一般采用两种方法来测量距离:脉冲法和相位法。而其中脉冲激光测距的应用领域也是越来越宽广,比如,地形测量、战术前沿测距、导弹运行轨道跟踪以及人造卫星、地球到月亮距离的测量等。脉冲激光测距法是利用激光脉冲持续时间非常短,能量相对集中,瞬时功率很大(可达几兆瓦)的特点,在有合作目标的情况下,脉冲激光测距可以达到极远的测程;如果只是利用被测目标对脉冲激光的漫反射所取得的微弱反射信号,也是可以测距的。因而脉冲激光测距法应用较多。

44瓦超高功率808nm半导体激光器设计和制作

44瓦超高功率808 nm半导体激光器设计与制作 仇伯仓,胡海,何晋国 深圳清华大学研究院 深圳瑞波光电子有限公司 1. 引言 半导体激光器采用III-V化合物为其有源介质,通常通过电注入,在有源区通过电子与空穴复合将注入的电能量转换为光子能量。与固态或气体激光相比,半导体激光具有十分显著的特点:1)能量转换效率高,比如典型的808 nm高功率激光的最高电光转换效率可以高达65%以上 [1],与之成为鲜明对照的是,CO2气体激光的能量转换效率仅有10%,而采用传统灯光泵浦的固态激光的能量转换效率更低, 只有1%左右;2)体积小。一个出射功率超过10 W 的半导体激光芯片尺寸大约为0.3 mm3, 而一台固态激光更有可能占据实验室的整整一张工作台;3)可靠性高,平均寿命估计可以长达数十万小时[2];4)价格低廉。半导体激光也同样遵从集成电路工业中的摩尔定律,即性能指标随时间以指数上升的趋势改善,而价格则随时间以指数形式下降。正是因为半导体激光的上述优点,使其愈来愈广泛地应用到国计民生的各个方面,诸如工业应用、信息技术、激光显示、激光医疗以及科学研究与国防应用。随着激光芯片性能的不断提高与其价格的持续下降,以808 nm 以及9xx nm为代表的高功率激光器件已经成为激光加工系统的最核心的关键部件。高功率激光芯片有若干重要技术指标,包括能量转换效率以及器件运行可靠性等。器件的能量转换效率主要取决于芯片的外延结构与器件结构设计,而运行可靠性主要与芯片的腔面处理工艺有关。本文首先简要综述高功率激光的设计思想以及腔面处理方法,随后展示深圳清华大学研究院和深圳瑞波光电子有限公司在研发808nm高功率单管激光芯片方面所取得的主要进展。 2.高功率激光结构设计 图1. 半导体激光外延结构示意图

半导体材料研究的新进展(精)

半导体材料研究的新进展* 王占国 (中国科学院半导体研究所,半导体材料科学实验室,北京100083 摘要:首先对作为现代信息社会的核心和基础的半导体材料在国民经济建设、社会可持续发展以及国家安全中的战略地位和作用进行了分析,进而介绍几种重要半导体材料如,硅材料、GaAs和InP单晶材料、半导体超晶格和量子阱材料、一维量子线、零维量子点半导体微结构材料、宽带隙半导体材料、光学微腔和光子晶体材料、量子比特构造和量子计算机用材料等目前达到的水平和器件应用概况及其发展趋势作了概述。最后,提出了发展我国半导体材料的建议。本文未涉及II-VI族宽禁带与II-VI族窄禁带红外半导体材料、高效太阳电池材料Cu(In,GaSe 2 、CuIn(Se,S等以及发展迅速的有机半导体材料等。 关键词:半导体材料;量子线;量子点材料;光子晶体 中图分类号:TN304.01文献标识码:A文章编 号:1003-353X(200203-0008-05 New progress of studies on semiconductor materials WANG Zhan-guo (Lab.of Semiconductor Materials Science,Institute of Semiconductors, Chinese Academy of Sciences,Beijing100083,China Abstract:The strategic position and important role of semiconductor materials,as a core and foundation of the information society,for development of national economic,national safety and society progress

半导体激光器的研究进展

半导体激光器的研究进展 摘要:本文主要述写了半导体激光器的发展历史和发展现状。以及对单晶光纤激光器进行了重点描述,因其在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,近年来成为新型固体激光源研究的热点。 一、引言。 激光是20 世纪以来继原子能、电子计算机、半导体之后人类的又一重大发明。半导体激光科学与技术以半导体激光器件为核心,涵盖研究光的受激辐射放大的规律、产生方法、器件技术、调控手段和应用技术,所需知识综合了几何光学、物理光学、半导体电子学、热力学等学科。 半导体激光历经五十余年发展,作为一个世界前沿的研究方向,伴随着国际科技进步突飞猛进的发展,也受益于各类关联技术、材料与工艺等的突破性进步。半导体激光的进步在国际范围内受到了高度的关注和重视,不仅在基础科学领域不断研究深化,科学技术水平不断提升,而且在应用领域上不断拓展和创新,应用技术和装备层出不穷,应用水平同样取得较大幅度的提升,在世界各国的国民经济发展中,特别是信息、工业、医疗和国防等领域得到了重要应用。 本文对半导体激光器的发展历史和现状进行了综述,同时因单晶光纤激光器在激光医疗、激光成像、光电对抗以及人眼安全测照等领域具有重大的应用价值,本文也将对其做重点描述。 二、大功率半导体激光器的发展历程。 1962 年,美国科学家宣布成功研制出了第一代半导体激光器———GaAs同质结构注入型半导体激光器。由于该结构的激光器受激发射的阈值电流密度非常高,需要5 × 104~1 ×105 A /cm2,因此它只能在液氮制冷下才能以低频脉冲状态工作。从此开始,半导体激光器的研制与开发利用成为人们关注的焦点。1963 年,美国的Kroemer和前苏联科学院的Alferov 提出把一个窄带隙的半导体材料夹在两个宽带隙半导体之间,构成异质结构,以期在窄带隙半导体中产生高效率的辐射复合。随着异质结材料的生长工艺,如气相外延( VPE) 、液相外延( LPE) 等的发展,1967年,IMB 公司的Woodall 成功地利用LPE 在GaAs上生长了AlGaAs。在1968—1970 年期间,美国贝尔实验室的Panish,Hayashi 和Sμmski成功研究了AlGaAs /GaAs单异质结激光器,室温阈值电流密度为8.6 × 103 A /cm2,比同质结激光器降低了一个数量级。

半导体激光器的发展与运用

半导体激光器的发展与运用 0 引言激光器的结构从同质结发展成单异质结、双异质结、量子 阱 (单、多量子阱)等多种形式, 制作方法从扩散法发展到液相外延(LP日、气相外延(VPE)、分子束外延(MBE)、金属有机化合物气相淀积(MOCVD)、化学束外延(CBE 以及它们的各种结合型等多种工艺[5].半导体激光器的应用范围十分广泛,而且由于它的体积小,结构简单,输入能量低,寿命长,易于调制和价格低等优点, 使它已经成为当今光电子科学的核心技术,受到了世界各国的高度 重视。 1 半导体激光器的历史 半导体激光器又称激光二极管(LD)。随着半导体物理的发展,人们早在20 世纪50 年代就设想发明半导体激光器。 20 世纪60 年代初期的半导体激光器是同质结型激光器, 是一种只能以脉冲形式工作的半导体激光器。在1962 年7 月召开的固体器件研究国际会议上,美国麻省理工学院林肯实验室的两名学者克耶斯(KeyeS和奎斯特(Quist、报告了砷化镓材料的光发射现象。 半导体激光器发展的第二阶段是异质结构半导体激光器,它是由两种不同带隙的半导体材料薄层,如GaAs,GaAIAs所组成的激光器。单异质结注人型激光器(SHLD,它是利用异质结提供的势垒把注入电子限制在GaAsP 一N 结的P 区之内,以此来降低阀值电流密度的激光

器。 1970 年,人们又发明了激光波长为9 000? 在室温下连续工作的双异质结GaAs-GaAlAs(砷化稼一稼铝砷)激光器. 在半导体激光器件中,目前比较成熟、性能较好、应用较广的是具有双异质结构的电注人式GaAs 二极管激光器. 从20 世纪70 年代末开始, 半导体激光器明显向着两个方向发展,一类是以传递信息为目的的信息型激光器;另一类是以提高光功率为目的的功率型激光器。在泵浦固体激光器等应用的推动下, 高功率半导体激光器(连续输出功率在100W 以上,脉冲输出功率在5W 以上, 均可称之谓高功率半导体激光器)在20 世纪90 年代取得了突破性进展,其标志是半导体激光器的输出功率显著增加,国外千瓦级的高功率半导体激光器已经商品化,国内样品器件输出 已达到600W另外,还有高功率无铝激光器、红外半导体激光器和量子级联激光器等等。其中,可调谐半导体激光器是通过外加的电场、磁场、温度、压力、掺杂盆等改变激光的波长,可以很方便地对输出 光束进行调制。 20 世纪90 年代末,面发射激光器和垂直腔面发射激光器得到了迅速的发展。 目前,垂直腔面发射激光器已用于千兆位以太网的高速网络,为了满足21 世纪信息传输宽带化、信息处理高速化、信息存储大容量以及军用装备小型、高精度化等需要,半导体激光器的发展趋势主要是向高速宽带LD大功率LD短波长LD盆子线和量子点激光器、中红外LD

《光纤通信》课程设计

《光纤通信》课程设计报告 设计名称:光纤中光孤子传输特性 专业:08光信息科学与技术 成员姓名:张XX、胡X、 成员学号: 指导老师:李X

光纤中光孤子传输特性 光孤子理论的出现,对于现代通信技术的发展起到了里程碑的作用。因为现代通信技术的发展一直朝着两个方向的努力:一是大容量的传输,二是延长中继距离。光孤子传输不变形的特点决定了他在通信领域的应用前景。普通的光纤通信必须每隔几十千米设立一个中继站,经对信号的脉冲整形放大误码检查后再发射出去,而用光孤子通信则可不设中继站,只要对光纤损耗进行增益补偿,即可把光信号无畸变的传输到很远的地方。 光孤子形成的机理 光孤子是光纤中两种最基本的物理现象,即群速度色散和SPM 共同的作用形成的。光纤中的强度引起的折射率非线性SPM效应(光学柯尔效应),在反常区导致的光脉冲压缩可以抵消GVD效应形成的光脉冲展宽,从而保持光脉冲传输过程中的形状不变。光孤子的形成机理是光纤中群速度色散和自相位调制效应在反常区的精确平衡。二而光纤耗损造成的脉冲能量的损失,则用每一段传输距离后的光放大器来补偿,保持其非线性效应作用的存在。 光孤子传输 1.系统的构成 将光孤子作为信息的载波可实现光孤子通信,其传输系统如下图: 图 光纤孤子传输系统的基本构成 该系统由5个基本功能组成: 1.光孤子发送终端(TX ) 2.光孤子接受终端(RX ) 3.光孤子传输光纤(STF ) 4.光孤子能量补偿放大器(OA,OA1-OAn) 5.光孤子传输控制装置(TCS) 图中SS为光孤子源,MOD为光调制器,TS为测试设备。 系统中的TX由超短脉冲半导体或掺饵光纤激光器,光调制器,信息源和光纤功率放大器构成,用于产生光孤子脉冲信号;RX由宽带光接收机或频谱分析仪,误码仪与条纹相机构成,用于测试系统的传输特性或通信能力;STF由普通单模光纤或色散位移光纤DSF构成,OA1--OAn由EDFA或SOA组成,TCS由导频滤波器,强度或相位调制器,非线性元件和色散补偿光纤等组成,设置在沿传输系统不同的区域,用于克服或降低由放大器放大带来的放大自 ss mod OA OA1 STF OA2 STF STF TCS OAn STF TS TX RX

半导体激光器驱动电路设计(精)

第9卷第21期 2009年11月1671 1819(2009)21 6532 04 科学技术与工程 ScienceTechnologyandEngineering 2009 Sci Tech Engng 9 No 21 Nov.2009 Vol 通信技术 半导体激光器驱动电路设计 何成林 (中国空空导弹研究院,洛阳471009) 摘要半导体激光驱动电路是激光引信的重要组成部分。根据半导体激光器特点,指出设计驱动电路时应当注意的问题,并设计了一款低功耗、小体积的驱动电路。通过仿真和试验证明该电路能够满足设计需求,对类似电路设计有很好的借鉴作用。 关键词激光引信半导体激光器窄脉冲中图法分类号 TN242; 文献标志码 A 激光引信大部分采用主动探测式引信,主要由发射系统和接收系统组成。发射系统产生一定频率和能量的激光向弹轴周围辐射红外激光能量,而接收系统接收处理探测目标漫反射返回的激光信号,而后通过信号处理系统,最终给出满足最佳引爆输出信号。由此可见,激光引信的探测识别性能很大程度上取决于激光发射系统的总体性能,即发射激光脉冲质量。而光脉冲质量取决于激光器脉冲驱动电路的质量。因此,半导体激光器驱动电路设计是激光引信探测中十分重要的关键技术。 图1 驱动电路模型 放电,从而达到驱动激光器的目的。 由于激光引信为达到一定的探测性能,通常会要求激光脉冲脉宽窄,上升沿快,一般都是十几纳秒甚至几纳秒的时间。因此在选择开关器件时要求器件开关速度快。同时,由于激光器阈值电流、工作电流大 [1] 1 脉冲半导体激光器驱动电路模型分析 激光器驱动电路一般由时序产生电路、激励脉冲产生电路、开关器件和充电元件几个部分组成,如图1。 图1中,时序产生电路生成驱动所需时序信号,一般为周期信号。脉冲产生电路以时序信号为输入条件。根据其上升或下降沿生成能够打开开关器件的正激励脉冲或负激励脉冲。开关器件大体有三种选择:双极型高频大功率晶体管、晶体闸流管电路和场效应管。当激励脉冲到来时,开关器件导通,

紫外激光器研究进展及其关键技术讲解

紫外激光器研究进展及其关键技术 黄川 2120160620 摘要:本文详细介绍了利用LD泵浦的紫外激光器产生紫外激光的非线性原理,并在此基础上介绍了在全固态紫外激光器中用到的倍频晶体的种类和各自的应用场景;介绍了近年来高功率固体紫外激光器研制的国内外进展情况,最后展望了高功率全固体紫外激光器研制的未来。 关键词:紫外激光;非线性光学;相位匹配 1、引言 因为紫外激光具有的短波长和高光子的能量特点,所以紫外激光在工业领域内具有非常广泛的应用。在工业微加工领域内,相较于红外激光的热熔过程,紫外激光加工时的“冷蚀效应”可以使加工的尺寸更小,达到提高加工精度的目的。另外,紫外激光器在生物技术,医疗设备加工,大气探测等领域也有广泛的应用。 一般而言,可以将紫外激光器划分为三类:固体紫外激光器,气体紫外激光器,半导体紫外激光器。其中固体紫外激光器应用最为广泛的是激光二极管泵浦全固态激光器。而利用激光二极管抽运的固体UV激光器相较于其他类型的紫外激光器而言,具有效率高,性能可靠,硬件结构简单的特点,因此应用最为广泛,基于LD抽运的全固态UV激光器也得到了迅猛的发展。 在实际的应用当中,实现紫外连续激光输出的方法一般是利用晶体材料的非线性效应实现变频的方法来产生。产生全固态紫外激光的方法一般有两种:一是直接对全固体激光器进行3倍频或4倍频来得到紫外激光;另一种方法是先利用倍频技术得到二次谐波,然后再利用和频技术得到紫外激光。相较于前一种方法,后者利用的是二次非线性极化率,其转换效率要高很多。最常见的是通过三倍频和四倍频技术产生355nm和266nm的紫外激光。下文将简单介绍紫外激光产生的非线性原理。 2、非线性频率转换原理 2.1 介质的非线性极化 激光作用在非线性介质上会引起介质的非线性极化,这是激光频率变换的非线性基础。在单色的电磁波作用下,介质的内部原子,离子等不会发生本征能级的跃迁,但是这些离子的电荷分布以及运动状态都会发生一些变化,引起光感应的电偶极矩,这个电偶极矩作为新的辐射源辐射电磁波。

光电综合课程设计报告

光电综合课程设计报告 姓名: 李方圆 学号: 1150730006 专业: 应用物理学

目录 1引言 (1) 1.1含义 (1) 1.2结构 (1) 1.3优点 (1) 1.4发展趋势 (2) 2理论分析 (3) 3 MATLAB数值模拟 (3) 3.1 程序主要源代码 (3) 3.2 数值模拟结果 (5) 3.3 结果分析 (5) 4心得体会 (6)

1引言 1.1含义 单包层光纤激光器的输出一般只有几十毫瓦的量级, 因此光纤激光器通常被认为是小功率光电子器件。然而, 对于大多数的激光应用领域, 我们需要更高功率的激光输出。双包层泵浦技术的出现是光纤领域的一大突破, 它使得光纤激光器和光纤放大器真正成为高功率器件。双包层光纤激光器是新型光纤激光器发展的代表,它的优点在于不需要将泵浦能量直接藕合到模场直径相对较小的光纤中去,它可以采用低成本的,大模场(多模)高功率的半导体激光器作为泵浦源。因为这个优势,近几年来,双包层光纤激光器研究受到了极大的关注。 1.2结构 图1 是双包层光纤示意图。光纤由纤芯、内包层、外包层和保护层组成, 折射率从纤心到外包层依次减小。为保证光纤输出单模激光, 纤芯直径为一般为几个微米, 内包层起着使激光约束在单模纤芯内和成为泵浦光的多模导管作用, 外包层起将泵浦光限制在内包层中的作用。内包层的直径一般为几百微米, 这种设计大大减小了对泵浦源模式的质量要求, 可用价格相对便宜的高功率多模二极管阵列做泵浦源, 通过特定的光学装置或直接人射到光纤,一部分泵浦光藕合到纤芯中, 而大部分泵浦光祸合到内包层中, 内包层中的光受外包层限制, 在内包层之间来回反射, 而不被吸收, 在不断的穿过纤芯的过程中, 被其中的激光介质一稀土元素离子吸收, 所以泵浦光在光纤的一端藕合进人光纤, 在光纤的整个长

半导体激光器的设计

半导体激光器设计 半导体激光器产生激光的机理,即必须建立特定激光能态间的粒 子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和 其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广 泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈 发明显,光谱范围宽, 相干性增强,使半导体激光器开启了激光应用 发展的新纪元。 1半导体激光器的工作原理 激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具 备三个基本条件: (1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在 半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处 在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠 给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子 数反转状态的大量电子与空穴复合时,便产生受激发射作用。 (2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内 得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自

然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜.对F—p腔 (法布里一珀罗腔)半导体激 光器可以很方便地利用晶体的与P—n结平面相垂直的自然解理面 一[110]面构成F—P腔。 (3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场.这就必须要有足够强的电流注入,即有足够的粒子数反转,粒子数反转程度越高,得到的增益就越大,即要求必须满足一定的电流阀值条件.当激光器达到阀值时,具有特定波长的光就能在腔内谐振并被放大,最后形成激光而连续地输出. 可见在半导体激光器中,电子和空穴的偶极子跃迁是基本的光发射和光放大过程。 1.2 双异质结基本结构 将有源层夹在同时具有宽带隙和低折射率的两种半导体材料之间,以便在垂直于结平面的方向(横向)上有效地限制载流子和光子。用此结构于1970年实现了GaAlAs/GaAs激射波长为0.89 μm 的半导体激光器在室温下能连续工作。 图表示出双异质结激光器的结构示意图和相应的能带图在正向 偏压下

半导体激光器工作原理

半导体激光器工作原理 半导体激光器工作原理是:通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时便产生受激发射作用。半导体激光器的激励方式主要有三种:电注入式、电子束激励式和光泵浦激励式。电注入式半导体激光器一般是由GaAS(砷化镓)、InAS(砷化铟)、Insb (锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。电子束激励式半导体激光器一般用N型或者P型半导体单晶(PbS、CdS、ZhO等)作为工作物质,通过由外部注入高能电子束进行激励。光泵浦激励式半导体激光器一般用N型或P型半导体单晶(GaAS、InAs、InSb等)作为工作物质,以其它激光器发出的激光作光泵激励。

目前在半导体激光器件中,性能较好、应用较广的是:具有双异质结构的电注入式GaAs二极管半导体激光器。 半导体光电器件的工作波长与半导体材料的种类有关。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。 小功率半导体激光器(信息型激光器),主要用于信息技术领域,例如用于光纤通信及光交换系统的分布反馈和动态单模激光器(DFB-LD)、窄线宽可调谐激光器、用于光盘等信息处理领域的可见光波长激光器(405nm、532nm、635nm、650nm、670nm)。这些器件的特征是:单频窄线宽、高速率、可调谐、短波长、光电单片集成化等。大功率半导体激光器(功率型激光器),主要用于泵浦源、激光加工系统、印刷行业、生物医疗等领域。 半导体激光器主要参数: 1.波长nm:激光器工作波长,例如405nm、532nm、635nm、650nm、670nm、690nm、780nm、810nm、860nm、980nm。 2.阈值电流Ith:激光二极管开始产生激光振荡的电流,对小功率激光器而言其值约在数十毫安。 3.工作电流Iop:激光二极管达到额定输出功率时的驱动电流,此

半导体激光器的最新进展及应用现状

半导体激光器的最新进展及应用现状 发表时间:2018-11-11T11:02:03.827Z 来源:《电力设备》2018年第18期作者:黄志焕[导读] 摘要:随着半导体技术的发展,半导体激光器所涉及的领域也在不断扩展,其应用领域的范围已覆盖光电子学的很多方面,半导体激光器已成为光电子学的核心器件之一。 (天津环鑫科技发展有限公司 300384) 摘要:随着半导体技术的发展,半导体激光器所涉及的领域也在不断扩展,其应用领域的范围已覆盖光电子学的很多方面,半导体激光器已成为光电子学的核心器件之一。由于半导体激光器具有体积小、寿命长、电光转换效率高、调制速度快、波长范围宽和易于集成等优点,在光互连、光通信、光存储等方面具有广泛的应用。 关键词:半导体激光器;最新进展;应用现状 1半导体激光器研究的意义半导体激光器的研究是我国光电技术研究的重要内容,是国家重点提出并且一直在努力寻求新的突破的领域。就当前半导体激光器研究的意义来看,对国家的发展具有重要的现实意义。与此同时,半导体激光器在各行各业的应用都十分广泛,并且呈现出以每年20%以上的增长速度,比如,军师领域的激光雷达、制导以及医疗、通讯、光盘等都开始应用半导体激光器。其涉及领域之广,扩展速度之快,应用价值之强,是被广泛认可的。近年来,随着信息科技的不断发展,人们对半导体激光器的性能要求越来越高,传统的半导体激光器在具体的实践应用当中已经表现出明显的不足之处。因此进行半导体激光器的研究,不短提升半导体激光器的现代化水平,具有重要的现实意义。 2半导体行业半导体器件是电子电路中必不可少的组成成分。半导体是人们为了生产生活需要,将两物质按照电学性质进行分类时确定的一个名称。它的导电性介于导体和绝缘体之间。半导体导电性能全是由其原子结构决定的。以元素半导体硅和锗为例,其原子序列分别是14和32,它们两个最外层电子数都是4。半导体具有自由电子和空穴两种载流子。而半导体的性质不同于导体和绝缘体,就是因为半导体拥有的载流子数目不同而载流子是能够运动的荷电粒子。电子和空穴都是载流子,它们相互运动即可产生电流。硅和锗是最为典型的元素半导体。 根据构成物质元素的不同,半导体可分为元素半导体和化合物导体,元素半导体由一种元素构成,化合物半导体由多种元素构成。而根据掺杂类型的不同,半导体可分为本征半导体、N型半导体和P型半导体;如果按照原子结构的排列规则不同,又可分为单晶半导体、多晶半导体和非晶态半导体。半导体行业具有技术密集、资金密集,高风险高回报和知识密集等特点。进入2010年以来,国家大力支持半导体行业的发展,2011年11月,国家税务总局和财政部联合发布了《关于退还集成电路企业采购设备增值税期末留纸税额》;2012年4月政府部门又发布了《关于进一步鼓励软件产业和集成电路产业发展企业所得税政策的通知》;而于2014年,工信部又发布了《国家集成电路产业发展推进纲要》。近几年,我国半导体行业发展速度超快,半导体产业逐渐呈现向大陆地区转移的新趋势,为我国各行业的发展带来设备国产化的发展机遇。而且政府政策大力支持半岛体行业的发展,大基金入场将会加速产业转型升级,成熟化发展。半导体具有掺杂特性、热敏性和光敏性三大特点。 3激光器顾名思义,激光器是一种能发射激光的装置。1954年,人们制成了第一台微波量子放大器;1958年A.L.肖洛和C.H.汤斯把微波量子放大器的原理推广到光频范围;1960年T.H.梅曼等人制成了第一台红宝石激光器;1961年A.贾文等人制成了第一台氦氖激光器。1962年R.N.霍耳等人制成了第一台半导体激光器;之后,激光器的种类就越来越多。一般而言,按工作介质分类,激光器可分为固体激光器、气体激光器、染料激光器和半导体激光器4大类。激光器的组成一般由3个重要部分构成,即工作物质、激励抽运系统、谐振腔。其中激光工作物质是一种激光增益的媒介,其原子或分子的能级差决定了激光的波长与频率。激光抽运系统是指为使激光器持续工作给予能量的源头,它实现并维持了工作物质的粒子数反转。光学谐振腔是激光生成的容器,有多种多样的设计方式是激光器设计的核心。 4激光器系统功能 4.1逻辑控制 系统通过操作面板实现逻辑控制,主要控制功能有3个。(1)内时钟工作:通过RS-422通信接口,向电源控制单元发射出光指令,工作频率可1-20Hz切换,同时通过LED反馈激光器工作状态。(2)外时钟工作:利用外部开关切换至外时钟,利用DSP外部中断接口检测外时钟。(3)自检功能:通过按压自检开关,触发激光器发射激光。 4.2高精度时序控制 激光器输出能量的大小和稳定性与激光电源的高精度时序是密不可分的,必须确保电源控制系统输出时钟的精度及稳定性。为实现μs级高精度控制逻辑,采用DSP控制芯片内置的PLL模块完成高精度时序控制,锁相环独有的负反馈和倍频技术可以提供高精度、稳定的频率,DSP 输入时钟30MHz,倍频到150MHz,时钟周期可达6.67ns。通过精确的技术方法,按照设计的延时产生所需的各路时钟,可以满足高精度的时序配置要求。 4.3恒流源驱动控制 激光器电源控制系统接收到激光发射的信号后,DSP输出12位数字信号,通过DAC1230芯片,将数字信号转换成相应的模拟参考电压信号。恒流源电路中的采样电阻R将通过泵浦模块的电流转换成相应的电压,经过F放大电路后,与参考电压进行比较,产生功率驱动信号,此信号控制功率管的开关。同时可通过DSP改变参考电压的大小,实现恒流源电流的调节。激光电源控制系统还可通RS-422通信接口,远程设置恒流源的电流和脉宽。 4.4温度控制系统 温度是影响激光器泵浦模块输出波长和泵浦效率的重要因素,故对泵浦模块进行控温是必不可少的。半导体激光器一般采用半导体热电致冷器进行控温,该制冷器具有无机械运动、无噪声、无污染、体积小、可靠性高、寿命长、制冷迅速、冷量调节范围宽及冷热转换快等特点。测温元件采用电流输出型温度传感器AD590,特点是工作直流电压较宽,一般为4-30V,输出电流为223μA(-50℃)-423μA(+150℃),灵敏度为1μA/℃。

光电课程设计_光学仿真

概述:一、光源 在光纤通信系统中,光源器件可实现从电信号到光信号的转换,是光发射机以及光纤通信系统的核心器件,它的性能直接关系到光纤通信系统的性能和质量指标。光纤通信系统要求光源具有合适的发射波长,处在光纤的低损耗窗口之中;有足够大的输出功率,从而有较长的传输距离;有较窄的发光谱线,可以减少光纤的色散对信号传输质量的影响;易于与光纤耦合,确保更多的光功率进入光纤;易于调制,响应速度要快,调制失真小,带宽大;在室温下能连续工作,可靠性高,寿命至少在10万小时以上。下面简单介绍已广泛应用的两类半导体光源:半导体发光二极管(LED )和半导体激光二极管(LD )。 1 发光二极管(LED ) 发光二极管(LED )是低速、短距离光波通信系统中常用的光源。其寿命很长,受温度影响较小,输出光功率与注入电流的线性关系较好,价格也比较便宜。驱动电路简单,不存在模式噪声等问 题。 发光二极管结构简单,是一个正向偏置的PN 同质结,电子-空穴对在耗尽区辐射复合发光,称为电致发光。发出的部分光耦合进入光纤供传输使用。LED 所发出的光是非相干光,具有较宽的谱宽(30~60nm )和较大的发射角(≈100°)。 自发辐射产生的功率是由正向偏置电压产生的注入电流提供的,当注入电流为I ,在稳态时,电子-空穴对通过辐射和非辐射复合,其复合率等于载流子注入率I/q ,其中发射电子的复合率决定于内量子效率ηint ,光子产生率为(I ηint/q),因此LED 内产生的光功率为 ()int int /P w q η= (2. 1) 式中,ω 为光量子能量。假定所有发射的光子能量近似相等,并设从LED 逸出的功率占内部产生功率的份额为ηext ,则LED 的 发射功率为 ()int int /e ext ext P P w q I ηηη== (2. 2) ηext 亦称为外量子效率。由上式可知,LED 发射功率P 和注入电流I 成正比。 发光二极管LED 是光纤通信中的常用光源,它的发光仅仅是自发辐射,属于非相干光源,其输出光发射角较大,但LED 线性度好,调制时动态范围大,信号失真小,也就是P-I 曲线线性好,其P-I 特性曲线如图2.1所示。 图2.1 发光二极管的P —I 特性曲线 15 10 5 0 0 200 400 电流(mA) 发射功率(m W ) 边发光 面发光

课程设计半导体激光器

郑州轻工业学院 课程设计任务书 题目半导体激光器原理及应用 专业、班级学号姓名 主要内容、基本要求、主要参考资料等: 完成期限: 指导教师签名: 课程负责人签名: 年月日

郑州轻工业学院半导体激光器课程设计 郑州轻工业学院 课程设计说明书题目:半导体激光器原理及应用 姓名:王森 院(系):技术物理系 专业班级:电子科学与技术09-1 学号:540911010132 指导教师:运高谦 成绩: 时间:年月日至年月日 I

郑州轻工业学院半导体激光器课程设计 摘要 本文主要讲的是半导体激光器的发展历史、工作原理及应用。半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有合适的光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,首先产生激光的具体过程有许多特殊之处,其次所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围变宽,相干性增强,可以说是半导体激光器开启了激光应用发展的新纪元。 关键词激光技术;半导体激光器;受激辐射;光场 II

郑州轻工业学院半导体激光器课程设计 Abstract This article is mainly about the history of the development of semiconductor lasers, working principle and applications. Semiconductor lasers produce laser mechanism, which must be established between the specific laser energy state population inversion, and a suitable optical resonator. As the physical structure of the semiconductor material in which electron motion specificity and particularity, while the specific process of producing laser has many special features, the other produced by the laser beam has a unique advantage to make it widely used in all sectors of society . From homo-junction to the heterojunction, the power from the information type to type, is also becoming increasingly apparent superiority of the laser, spectral range, coherence enhanced semiconductor lasers opened a new era in the development of laser applications. Keywords: Laser technique;Semiconductor lasers;Stimulated emission;Optical field III

半导体激光器设计

半导体激光器设计 摘要:半导体激光器产生激光的机理,即必须建立特定激光能态间的粒子数反转,并有光学谐振腔。由于半导体材料物质结构的特异性和其中电子运动的特殊性,一方面产生激光的具体过程有许多特殊之处,另一方面所产生的激光光束也有独特的优势,使其在社会各方面广泛应用。从同质结到异质结,从信息型到功率型,激光的优越性也愈发明显,光谱范围宽,相干性增强,使半导体激光器开启了激光应用发展的新纪元。 关键词:受激辐射;光场;同质结;异质结;大功率半导体激光器 、八— 0刖言 半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD), 是20世纪60年代发展起来的一种激光器。半导体激光器的工作物质有几十种,例如砷化傢(GaAs),硫化镉(CdS)等,激励方式主要有电注入式,光泵式和高能电子束激励式三种。半导体激光器从最初的低温(77K)下运转发展到室温下连续工作;从同质结发展成单异质结双异质结,量子阱(单,多量子阱)等多种形式。半导体激光器因其波长的扩展,高功率激光阵列的出现以及可兼容的光纤导光和激光能量参数微机控制的出现而迅速发展.半导体激 光器的体积小,重量轻,成本低,波长可选择,其应用遍布临床,加工制造,军事,其中尤以大功率半导体激光器方面取得的进展最为突出。 1半导体激光器的工作原理 1.1激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件:(1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注入必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激

半导体激光器的发展历程2(精)

广西师范学院2017年本科毕业论文 论文题目 半导体激光器的发展历程 毕业生:吴伊琴 指导老师:王革 学科专业:物理学(师范) 目录 摘要 前言

一.理论基础及同质结半导体激光器(1917-1962) 1.1激光理念及激光技术的面世 1.2早期半导体激光器理念提出与探索(1953-1962)二.异质结半导体激光器(1963-1977) 2.1 单异质(SH)激光器 2.2 双异质(DH)激光器 三.半导体激光器实用领域的探索(1980-2005) 3.1 光纤通信与半导体激光器的相辅相成 3.2 量子阱能带工程技术的引入 4.1半导体激光器应用的多样化 4.2 半导体激光器的未来发展 结语 参考文献 摘要

双异质半导体激光器,量子阱技术,应变量子阱激光器,DFB激光器,面发射激光器,大功率激光器等等突破性研究成果的面世,使得半导体激光器已经占据了激光领域市场的大壁江山,以及成为了军事,医疗,材料加工,印刷业,光通信等等领域不可或缺的存在。本文梳理了1917年—2008年半导体激光器的发展历程,文中包括了半导体激光器大多研究成果,按照时间线对其进行整理。 总的说来,半导体激光器的发展历程可以分为4个阶段 第一.理论准备及起步阶段(1917-1962)。 1962年同质结半导体激光器研制成功。尽管同质结半导体激光器没有实用价值,但是它面世是半导体激光器发展历程中重要的标志,其基本理论是后来半导体激光器前进的基础。 第二.大发展期(1962--1979 长寿命,长波长双异质半导体激光器的面世使得半导体激光器能够满足光纤通信的需求。1978-1979年,国际上关于通过改进器件结构提高器件稳定性,降低损耗的研究成果非常多。由于对AlGaAs—GaAs激光器特性的不断进步的追求,使得这个时期出现了许多新的制造工艺,新的结构理念,为之后发展长波长半导体激光器留下了充足的技术支持。 第三.实用性的初步探索(1980--1990)在这期间半导体激光器的实用领域主要集中于光纤通信领域,由于光纤通信技术的不断发展,使得半导体激光器的发展也极其迅猛。 第四.实用的多样化(1990--2008 由于量子阱技术,应变量子阱激光器,DFB激光器,面发射激光器,大功率激光器等等突破性研究成果的面世,半导体激光器的实用领域覆盖了军事,医疗,材料加工,印刷业,光通信等等领域。 本文按照时间线将半导体激光器的发展历程梳理了一遍,使得半导体激光器的发展脉络更加清晰,时候其发展历程更加具体,明了。 关键词:激光半导体激光器应用多样化发展方向 前言 激光,英文名为“laser”是20世纪以来,目前在人类科技进步史上与原子能,计算机,半导体并驾齐驱的重大发明。其发展动向对于人类的科技,生活等等方面有着重要的影响。

信息光学课程设计

光纤耦合与特性测试 一、实验目的 1、了解常用的光源与光纤的耦合方法。 2、熟悉光路调整的基本过程,学习不可见光调整光路的办法。 3、通过耦合过程熟悉Glens的特性。 4、了解1dB容差的基本含义。 5、通过实验的比较,体会目前光纤耦合技术的可操作性。 二、实验原理 在光纤线路耦合的实施过程中,存在着两个主要的系统问题:即如何从各种类型的发光光源将光功率发射到一根特定的光纤中(相对于目前的光源而言),以及如何将光功率从一根光纤耦合到另外一根光纤中去(相对于目前绝大多数光纤器件而言)。对于任一光纤系统而言,主要的目的是为了在最低损耗下,引入更多能量进入系统。这样可以使用较低功率的光源,减少成本和增加可靠度,因为光源是不能工作在接近其最大功率状态的。 光学耦合系统的1dB失调容差定义为当耦合系统与半导体激光器之间出现轴向、横向、侧向和角向偏移,从而使得耦合效率从最大值下降了1dB时的位置偏移量。1dB失调容差对于实用化的光学耦合系统来说是一个重要的衡量指标.因为任何半导体激光器组件中都存在如何将耦合系统与半导体激光器芯片相对固定(封装)的问题,不论采用何种固定方式,都不可避免地存在由于封装技术不完善及环境因素变化而造成的位置失调现象。一个光学耦合系统具有效大的失调容差就意味着该系统在封装时允许出现较大的位置失调.因而可以来用结构简单、定位精度不太高的低成本封装技术。 光纤系统中,必须考虑光源的辐射空间分布(角分布)、发光面积,光纤的数值孔径、纤芯尺寸和光纤的折射率剖面等等,使尽可能多的光能量进入光纤当中。对于耦合系统,通常要求具有以下几个特点: 1. 大的1dB容差。大的容差是工业生产的一个基本条件,容差越大,才可能产量越大,成本越低。 2. 弱的光反馈。目前低成本光源一般不配置隔离器,所以对于耦合系统来说,弱的光反馈意味着光源的稳定性的提高。 3. 简单易操作、耦合效率高、稳定。

半导体激光器

半导体激光器 半导体激光器 半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体激光器的分类 (1)异质结构激光器(2)条形结构激光器(3)AIGaAs/GaAs激光器(4)InGaAsP/InP激光器(5)可见光激光器(6)远红外激光器(7)动态单模激光器(8)分布反馈激光器(9)量子阱激光器(10)表面发射激光器(11)微腔激光器 半导体激光器 半导体激光(Semiconductor laser)在1962年被成功激发,在1970年实现室温下连续输出。后来经过改良,开发出双异质接合型激光及条纹型构造的激光二极管(Laser diode)等,广泛使用于光纤通信、光盘、激光打印机、激光扫描器、激光指示器(激光笔),是目前生产量最大的激光器。激光二极体的优点是效率高、体积小、重量轻且价格低。尤其是多重量子井型的效率有20~40%,P-N型也达到数%~25%,总而言之能量效率高是其最大特色。另外,它的连续输出波长涵盖了红外线到可见光范围,而光脉冲输出达50W(带宽100ns)等级的产品也已商业化,作为激光雷达或激发光源可说是非常容易使用的激光的例子。 仪器简介

Q-Line纤绿半导体激光器 半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件.其工作原理是,通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用.半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式.电注入式半导体激光器,一般是由GaAS(砷化镓),InAS(砷化铟),Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射.光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励.在半导体激光器件中,目前性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器. 工作原理及特点 半导体激光器工作原理是激励方式,利用半导体物质(即利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈、产生光的辐射放大,输出激光。半导体激光器优点是体积小,重量轻,运转可靠,耗电少,效率高等。 封装技术 技术介绍 半导体激光器封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而半导体激光器封装则是完成输出电信号,保护管芯正常工作,输出:可见光的功能,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于半导体激光器。 发光部分 半导体激光器的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高半导体激光器的内、外部量子效率。常规Φ5mm型半导体激光器封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合

相关主题
文本预览
相关文档 最新文档