当前位置:文档之家› 最新《材料力学》第3章 扭转 习题解

最新《材料力学》第3章 扭转 习题解

最新《材料力学》第3章 扭转 习题解
最新《材料力学》第3章 扭转 习题解

第三章扭转习题解

[习题3-1] 一传动轴作匀速转动,转速min

/

200r

n=,轴上装有五个轮子,主动轮II输入的功率为60kW,从动轮,I,III,IV,V依次输出18kW,12kW,22kW和8kW。试作轴的扭图。

解:(1)计算各轮的力偶矩(外力偶矩)

n

N

T k

e

55

.9

=

外力偶矩计算(kW换算成kN.m)

题目编号轮子编号轮子作用功率(kW) 转速r/min Te(kN.m)习题3-1 I 从动轮18 200 0.859 II 主动轮60 200 2.865

III 从动轮12 200 0.573

IV 从动轮22 200 1.051

V 从动轮8 200 0.382

(2) 作扭矩图

[习题3-2] 一钻探机的功率为10kW,转速min

/

180r

n=。钻杆钻入土层的深度m

l40

=。如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度m,并作钻杆的扭矩图。

解:(1)求分布力偶的集度m

)

(

5305

.0

180

10

549

.9

549

.9m

kN

n

N

M k

e

?

=

?

=

=

设钻杆轴为x轴,则:0

=

∑x M

e

M

ml=

)

/

(

0133

.0

40

5305

.0

m

kN

l

M

m e=

=

=

T图(kN.m)

(2)作钻杆的扭矩图 x x l

M mx x T e

0133.0)(-=-

=-=。]40,0[∈x 0)0(=T ; )(5305.0)40(m kN M T e ?-==

扭矩图如图所示。

[习题3-3] 圆轴的直径mm d 50=,转速为120r/min 。若该轴横截面上的最大切应力等于60MPa ,试问所传递的功率为多大? 解:(1)计算圆形截面的抗扭截面模量:

)(245445014159.316

1

161333mm d W p =??==

π (2)计算扭矩

2max /60mm N W T

p

==

τ )(473.1147264024544/6032m kN mm N mm mm N T ?=?=?=

(3)计算所传递的功率 )(473.1549

.9m kN n

N M T k

e ?=== )(5.18549.9/120473.1kW N k =?=

[习题3-4] 空心钢轴的外径mm D 100=,内径mm d 50=。已知间距为m l 7.2=的两横截面的相对扭转角o

8.1=?,材料的切变模量GPa G 80=。试求: (1)轴内的最大切应力;

(2)当轴以min /80r n =的速度旋转时,轴所传递的功率。 解;(1)计算轴内的最大切应力

)(9203877)5.01(10014159.3321

)1(32144444mm D I p =-???=-=

απ。 )(184078)5.01(10014159.3161

)1(16134343mm D W p =-???=-=απ

式中,D d /=α。 p

GI l

T ?=

?, mm

mm mm N l

GI T p

27009203877/80000180/14159.38.142???=

=

?

mm N ?=45.8563014

)(563.8m kN ?=

MPa mm

mm N W T p 518.4618407845.85630143max =?==

τ (2)当轴以min /80r n =的速度旋转时,轴所传递的功率 )(563.880

549.9549

.9m kN N

n N M T k k e ?=?=== )(74.71549.9/80563.8kW N k =?=

[习题3-5] 实心圆轴的直径mm d 100=,长m l 1=,其两端所受外力偶矩m kN M e ?=14,材料的切变模量GPa G 80=。试求:

(1)最大切应力及两端面间的相对转角;

(2)图示截面上A 、B 、C 三点处切应力的数值及方向; (3)C 点处的切应变。 解:(1)计算最大切应力及两端面间的相对转角 p

e p W M W T

==

max τ。 式

)(19634910014159.316

1

161333mm d W p =??==

π。故:

MPa mm mm

N W M p e 302.7119634910143

6max

=??==τ p

GI l T ?=

? 式中,)(981746910014159.332

1

321444mm d I p =??==

π。故: o p rad m m N m m N GI l T 02.1)(0178254.010*******/10801140004

1229==?????=?=

-? (2)求图示截面上A 、B 、C 三点处切应力的数值及方向 MPa B A 302.71max ===τττ 由横截面上切应力分布规律可知:

MPa B C 66.35302.715.02

1=?==ττ

A 、

B 、

C 三点的切应力方向如图所示。 (3)计算C 点处的切应变

343

10446.0104575.4108066.35--?≈?=?=

=

MPa

MPa

G

C

C τγ [习题3-6] 图示一等直圆杆,已知mm d 40=,mm a 400=,GPa G 80=,o

DB 1=?。试求:

(1)最大切应力;

(2)截面A 相对于截面C 的扭转角。 解:(1)计算最大切应力

从AD 轴的外力偶分布情况可知:

e CD AB M T T ==,0=BC T 。

p e p p e p CB CB p DC DC p i i DB GI a

M GI a GI a M GI l T GI l T GI l T =

?+?=?+?==∑

0? a

GI M p e ?=

式中,)(2513274014159.332

1

321444mm d I p =??==π。故: mm N mm mm mm N a

GI M p e ?=??==

877296180

14159.3400251327/8000042?

p

e

W M =

max τ 式中,)(125664014159.316

1

161333mm d W p =??==π。故: MPa mm

mm N W M p e 815.69125668772963max =?==

τ (2)计算截面A 相对于截面C 的扭转角

o DB p

e p p e p BC BC p AB AB p i i AC GI a

M GI a GI a M GI l T GI l T GI l T 22202===?+?=?+?==∑

?? [习题3-7] 某小型水电站的水轮机容量为50kW ,转速为300r/min ,钢轴直径为75mm ,若在正常运转下且只考虑扭矩作用,其许用切应力MPa 20][=τ。试校核轴的强度。 解:(1)计算最大工作切应力 p

p e W T

W M =

=

max τ 式中,)(592.1300

50

549.9549

.9m kN n N M k e ?=?==;

)(125667514159.316

1

161333mm d W p =??==π。 故:MPa mm mm N W M p e 219.198283515920003

max =?==

τ (2)强度校核

因为MPa 219.19max =τ,MPa 20][=τ,即][max ττ≤,所以轴的强度足够,不会发生破坏。

[习题3-8] 已知钻探机钻杆(参看题3-2图)的外径mm D 60=,内径mm d 50=,功率kW P 355.7=,转速min /180r n =,钻杆入土深度m l 40=,钻杆材料的GMPa G 80=,许用切应力MPa 40][=τ。假设土壤对钻杆的阻力是沿长度均匀分布的,试求: (1)单位长度上土壤对钻杆的阻力矩集度m ;

(2)作钻杆的扭矩图,并进行强度校核; (3)两端截面的相对扭转角。 解:(1)求单位长度上土壤对钻杆的阻力矩集度m

)(390.0180

355

.7549.9549

.9m kN n N M k e ?=?== 设钻杆轴为x 轴,则:

0=∑x

M

e M ml =

)/(00975.040

390

.0m kN l M m e ===

(2)作钻杆的扭矩图,并进行强度校核

①作钻杆扭矩图

x x mx x T 00975.040

39

.0)(-=-

=-=。]40,0[∈x 0)0(=T ; )(390.0)40(m kN M T e ?-==

扭矩图如图所示。 ②强度校核

p

e

W M =

max τ 式中,)(21958])60

50

(1[6014159.3161)1(16134343mm D W p =-???=-=

απ MPa mm

mm N W M p e 761.17219583900003max =?==

τ 因为MPa 761.17max =τ,MPa 40][=τ,即][max ττ≤,所以轴的强度足够,不

会发生破坏。

(3)计算两端截面的相对扭转角

?

=40

)(p

GI dx

x T ? 式中,)(658752])60

50

(1[6014159.3321)1(32144444mm D I p =-???=-=

απ 40

240

4

122640

]2

[10658752/108000975.000975.01|)(|x m m kN xdx GI GI dx x T p

p ?

?

-???==

=? 0

5.8)(148.0≈=rad

[习题3-9] 图示绞车由两人同时操作,若每人在手柄上沿着旋转的切向作用力F 均为0.2kN ,已知轴材料的许用切应力MPa 40][=τ,试求: (1)AB 轴的直径;

(2)绞车所能吊起的最大重量。 解:(1)计算AB 轴的直径

AB 轴上带一个主动轮。两个手柄所施加的外力偶 矩相等:

)(08.04.02.0m kN M M e e ?=?==右左 )(16.02m kN M M e e ?==右主动轮 扭矩图如图所示。

由AB 轴的强度条件得: ][163

max τπτ≤==

d

M W M e p e 右

右 mm mm

N mm

N M d e 7.21/4014159.38000016][1632

3

=???=≥τπ右 (2)计算绞车所能吊起的最大重量

主动轮与从动轮之间的啮合力相等:

35

.02

.0从动轮主动轮

e e M M =

)(28.016.020

.035

.0m kN M e ?=?=

从动轮 由卷扬机转筒的平衡条件得:

从动轮e M P =?25.0

28.025.0=?P

)(12.125.0/28.0kN P ==

[习题3-10] 直径mm d 50=的等直圆杆,在自由端截面上承受外力偶m kN M e ?=6,而在圆杆表面上的A 点将移动到A 1点,如图所示。已知mm AA s 31==??

,圆杆材料的弹性模量GPa E 210=,试求泊松比ν(提示:各向同性材料的三个弹性常数E 、G 、ν间存在如下关系:)

1(2ν+=

E

G 。

解:整根轴的扭矩均等于外力偶矩:

m kN M T e ?==6。设1,O O 两截面之间的相对对转

角为?,则2d s ?=??,d

s ??=2? d

s GI l T P ?=?=

2? 式中,)(6135925014159.332

1

321444mm d I p =??==

π

GPa MPa mm

mm mm

mm mm N s I d l T G p 4874.81372.814873613592250100010624

6==??????=???= 由)1(2ν+=

E G 得:289.014874

.812210

12=-?=-=G E ν

[习题3-11] 直径mm d 25=的钢圆杆,受轴向拉60kN 作用时,在标距为200mm 的长度内伸长了0.113mm 。当其承受一对扭转外力偶矩m kN M e ?=2.0时,在标距为200mm 的长度内相对扭转了0.732o

的角度。试求钢材的弹性常数G 、G 和ν。 解:(1)求弹性模量E EA Nl

l =

? GPa

MPa mm

mm mm N l A Nl E 448.2168.216447113.02514.325.020********==????=??= (2)求剪切弹性模量G

)(383492514159.332

1

321444mm d I p =??==

π 由P

GI l

T ?=

?得: GPa MPa mm

mm mm N I l T G p 7.81136.8168438349)180/14.3732.0(200102.04

6==?????=??=?

材料力学基本概念

变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式;轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中;扭转的概念、纯剪切的概念、薄壁圆筒的扭转,剪切虎克定律、切应力互等定理;静矩、惯性矩、惯性积、惯性半径、平行移轴公式、组合图形的惯性矩和惯性积的计算、形心主轴和形心主惯性矩概念;应力状态的概念、主应力和主平面、平面应力状态分析—解析法、图解法(应力圆)、三向应力圆,最大切应力、广义胡克定律、三个弹性常数E 、G 、μ间的关系、应变能密度、体应变、畸变能密度;强度理论的概念、杆件破坏形式的分析、最大拉应力理论、最大拉应变理论、最大切应力理论、畸变能理论、相当应力的概念;疲劳破坏的概念、交变应力及其循环特征、持久极限及其影响因素。 第一章 a 绪论 变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式 第一节 材料力学的任务与研究对象 1、 变形分为两类:外力解除后能消失的变形成为弹性变形;外力解除后不能消失的变形,称为塑性变形或 残余变形。 第二节 材料力学的基本假设 1、 连续性假设:材料无空隙地充满整个构件。 2、 均匀性假设:构件内每一处的力学性能都相同 3、 各向同性假设:构件某一处材料沿各个方向的力学性能相同。 第三节 内力与外力 截面法求内力的步骤:①用假想截面将杆件切开,得到分离体②对分离体建立平衡方程,求得内力 第四节 应力 1、 切应力互等定理:在微体的互垂截面上,垂直于截面交线的切应力数值相等,方向均指向或离开交线。 胡克定律 2、 E σε=,E 为(杨氏)弹性模量 3、 G τγ=,剪切胡克定律,G 为切变模量 第二章 轴向拉压应力与材料的力学性能 轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中 第一节 拉压杆的内力、应力分析 1、 拉压杆受力的平面假设:横截面仍保持为平面,且仍垂直于杆件轴线。即,横截面上没有切应变,正应

材料力学复习题

材料力学复习题

材料力学复习题 一、填空题 1. 截面上正应力的方向与截面 _________________。 2.由于杆件截面尺寸的突然改变而使局部区域出现应力急剧增大的现象是______。 3.梁的弯矩对截面位置坐标的一阶导数为截面的_________. 4. 空间应力状态的主应力为321,,σ σ,第三强度理 σ 论的相当应力 σ为____________. 3 xd 5. 轴向拉伸杆,正应力最大的截面和剪应力最大的截面() A.分别是横截面、45°斜截面B.都是横截面 C.分别是45°斜截面、横截面D.都是45°斜截面 6. 在研究构件的强度、刚度和稳定性时,对变 形体作了连续性假设、均匀性假设和________. 7. 若AB梁在B支座处的下沉量为δ,则B处的约束力为________.

__________同时指向两面的交线或背离两面的交线. 15. 弯矩具有极值的截面上,剪力一定等于__________. 16. 某点处于二向应力状态如图所示,已知 σ=40Mpa,yσ=30Mpa,τx=20Mpa,弹性模 x 量E=2×105Mpa,泊松比μ=0.3,该点沿σx 方向 的线应变εx等于__________. 17. 某危险点处应力状态如图所示.则第三强度 理论的相当应力σxd3=__________ MPa. 18. 根据拉压胡克定律,轴向变形l 等于_____ _。 19. 圆截面上扭转剪应力最大的点位于__ ____。

20.弯矩为常数的梁上,剪力的值为____ __。 21.交变应力反复作用下发生的破坏称为__ ____。 22.为保证稳定性,细长压杆承受的载荷不能超过__ ____。 23.图示杆件发生的基本变形有___ ___。 24. 二、选择题 1. 圆截面杆受扭转力矩作用,横截面扭矩为M n, 在线弹性范围内横截面剪应力分布规律是() 2.如图所示圆形截面图形的形心为C,直径为d,图形对y轴的惯性矩为()

材料力学重点总结

材料力学阶段总结 一、 材料力学得一些基本概念 1. 材料力学得任务: 解决安全可靠与经济适用得矛盾。 研究对象:杆件 强度:抵抗破坏得能力 刚度:抵抗变形得能力 稳定性:细长压杆不失稳。 2、 材料力学中得物性假设 连续性:物体内部得各物理量可用连续函数表示。 均匀性:构件内各处得力学性能相同。 各向同性:物体内各方向力学性能相同。 3、 材力与理力得关系, 内力、应力、位移、变形、应变得概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、与符号规定。 应力:正应力、剪应力、一点处得应力。应了解作用截面、作用位置(点)、作用方向、与符号规定。 正应力 应变:反映杆件得变形程度 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4、 物理关系、本构关系 虎克定律;剪切虎克定律: ???? ? ==?=Gr EA Pl l E τεσ夹角的变化。剪切虎克定律:两线段 ——拉伸或压缩。拉压虎克定律:线段的 适用条件:应力~应变就是线性关系:材料比例极限以内。 5、 材料得力学性能(拉压): 一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量E ,剪切弹性模量G ,泊松比v , 塑性材料与脆性材料得比较: 安全系数:大于1得系数,使用材料时确定安全性与经济性矛盾得关键。过小,使构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 塑性材料 脆性材料 7、 材料力学得研究方法

1)所用材料得力学性能:通过实验获得。 2)对构件得力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论 应用得未来状态。 3)截面法:将内力转化成“外力”。运用力学原理分析计算。 8、材料力学中得平面假设 寻找应力得分布规律,通过对变形实验得观察、分析、推论确定理论根据。 1) 拉(压)杆得平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2) 圆轴扭转得平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力为零。 3) 纯弯曲梁得平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁得纵向纤维;正应力成线性分布规律。 9 小变形与叠加原理 小变形: ①梁绕曲线得近似微分方程 ②杆件变形前得平衡 ③切线位移近似表示曲线 ④力得独立作用原理 叠加原理: ①叠加法求内力 ②叠加法求变形。 10 材料力学中引入与使用得得工程名称及其意义(概念) 1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷 载。 2) 单元体,应力单元体,主应力单元体。 3) 名义剪应力,名义挤压力,单剪切,双剪切。 4) 自由扭转,约束扭转,抗扭截面模量,剪力流。 5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯 曲,截面核心,折算弯矩,抗弯截面模量。 6) 相当应力,广义虎克定律,应力圆,极限应力圆。 7) 欧拉临界力,稳定性,压杆稳定性。 8)动荷载,交变应力,疲劳破坏。 二、杆件四种基本变形得公式及应用 1、四种基本变形:

金属材料力学性能最常用的几项指标

金属材料力学性能最常用的几项指标 硬度是评定金属材料力学性能最常用的指标之一。 对于金属材料的硬度,至今在国内外还没有一个包括所有试验方法的统一而明确的定义。就已经标准化的、被国内外普通采用的金属硬度试验方法而言,金属材料硬度的定义是:材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种测试方法是最长用的,它们是金属硬度检测的主要测试方法。而洛氏硬度试验又是应用最多的,它被广泛用于产品的检测,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的及不可移动工件的硬度检测。 1.布氏硬度计原理 对直径为D的硬质合金压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验

(答案)材料力学复习考试题解析

材料力学复习题 第2章 1. 如图所示桁架结构,各杆的抗拉刚度均为EA ,则结点C 的竖向位移为:( ) (A ) αcos 2EA Fh (B )α2cos 2EA Fh (C )α3cos 2EA Fh (D )α 3 cos EA Fh 2. 如图所示正方形截面柱体不计自重,在压力F 作用下强度不足,差%20,(即F/A=1.2[σ])为消除这一过载现象(即F/A ‘= [σ]),则柱体的边长应增加约:( ) (A ) %5 (B )%10 (C )%15 (D )%20 3. 如图所示杆件的抗拉刚度kN 1083?=EA ,杆件总拉力kN 50=F ,若杆件总伸长为杆件长度的千分之五,则载荷1F 和2F 之比为:( ) (A ) 5.0 (B )1 (C )5.1 (D )2 4. 如图所示结构,AB 是刚性梁,当两杆只产生简单压缩时,载荷作用点的位置距左边杆件的距离x 为:( ) (A ) 4a (B )3a (C )2a (D )3 2a 5. 图示杆件的抗拉刚度为EA ,其自由端的水平位移为 3Fa/EA ,杆件中间 习题1 图 习题5图 F 2 习题4图 习题3图 1 F 习题2 图

截面的水平位移为 Fa/EA 。 6.图示桁架结构各杆的抗拉刚度均为EA ,则节点C 的水平位移为 F l cos45/EA ,竖向位移为 F l cos45/EA 。 7. 图示结构AB 为刚性梁,重物重量kN 20=W ,可自由地在AB 间移动,两杆均为实心圆形截面杆,1号杆的许用应力为MPa 80,2号杆的许用应力为MPa 100,不计刚性梁AB 的重量。试确定两杆的直径。 8. 某铣床工作台进油缸如图所示,油缸内压为MPa 2=p ,油缸内径mm 75=D ,活塞杆直径mm 18=d ,活塞杆材料的许用应力MPa 50][=σ,试校核活塞杆的强度。 9.如图所示结构,球体重量为F ,可在刚性梁AB 上自由移动,1号杆和2号杆的抗拉刚度分别为EA 和EA 2,长度均为l ,两杆距离为a 。不计刚性梁AB 的重量。(1)横梁中点C 的最大和最小竖向位移是多少?(2)球体放在何处,才不会使其沿AB 梁滚动? 10. 如图所示结构,AB 是刚性横梁,不计其重量。1,2号杆的直径均为mm 20=d ,两杆材料相同,许用应力为MPa 160][=σ,尺寸m 1=a 。求结构的许可载荷][F 。 11. 如图所示结构中的横梁为刚性梁,两圆形竖杆的长度和材料均相同,直径 mm 20=d ,材料的许用拉应力MPa 50][=t σ,不计刚性梁的重量,求结构能承受的最大 F 习题11图 习题9图 A W B 习题10图 B 习题7图 A W B 习题8图 F 习题6图

材料力学重点总结-材料力学重点

材料力学阶段总结 一.材料力学的一些基本概念 1.材料力学的任务: 解决安全可靠与经济适用的矛盾。 研究对象:杆件 强度:抵抗破坏的能力 刚度:抵抗变形的能力 稳定性:细长压杆不失稳。 2.材料力学中的物性假设 连续性:物体内部的各物理量可用连续函数表示。 均匀性:构件内各处的力学性能相同。 各向同性:物体内各方向力学性能相同。 3.材力与理力的关系 , 内力、应力、位移、变形、应变的概念 材力与理力:平衡问题,两者相同; 理力:刚体,材力:变形体。 内力:附加内力。应指明作用位置、作用截面、作用方向、和符号规定。 应力:正应力、剪应力、一点处的应力。应了解作用截面、作用位置(点)、作用方向、 和符号规定。 压应力 正应力拉应力 线应变 应变:反映杆件的变形程度角应变 变形基本形式:拉伸或压缩、剪切、扭转、弯曲。 4.物理关系、本构关系虎 克定律;剪切虎克定律: 拉压虎克定律:线段的拉伸或压缩。 E —— Pl l EA 剪切虎克定律:两线段夹角的变化。Gr 适用条件:应力~应变是线性关系:材料比例极限以内。 5.材料的力学性能(拉压): 一张σ - ε图,两个塑性指标δ 、ψ ,三个应力特征点:p、s、b,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段。 拉压弹性模量,剪切弹性模量,泊松比 v , G E (V) E G 2 1 塑性材料与脆性材料的比较: 变形强度抗冲击应力集中

塑性材料流动、断裂变形明显 较好地承受冲击、振动不敏感 拉压s 的基本相同 脆性无流动、脆断仅适用承压非常敏感 6.安全系数、许用应力、工作应力、应力集中系数 安全系数:大于 1的系数,使用材料时确定安全性与经济性矛盾的关键。过小,使 构件安全性下降;过大,浪费材料。 许用应力:极限应力除以安全系数。 s0 塑性材料 s n s b 脆性材料0b n b 7.材料力学的研究方法 1)所用材料的力学性能:通过实验获得。 2)对构件的力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理 论应用的未来状态。 3)截面法:将内力转化成“外力” 。运用力学原理分析计算。 8.材料力学中的平面假设 寻找应力的分布规律,通过对变形实验的观察、分析、推论确定理论根据。 1)拉(压)杆的平面假设 实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。 2)圆轴扭转的平面假设 实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。横截面上正应力 为零。 3)纯弯曲梁的平面假设 实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分 布规律。 9小变形和叠加原理 小变形: ①梁绕曲线的近似微分方程 ② 杆件变形前的平衡 ③ 切线位移近似表示曲线 ④ 力的独立作用原理 叠加原理: ① 叠加法求内力 ② 叠加法求变形。 10材料力学中引入和使用的的工程名称及其意义(概念) 1)荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶, 极限荷载。 2)单元体,应力单元体,主应力单元体。

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

材料力学填空与判断题解

第1 章 绪论 一、是非判断题 1-1 材料力学是研究构件承载能力的一门学科。( √ ) 1-2 材料力学的任务是尽可能使构件安全地工作。( × ) 1-3 材料力学主要研究弹性范围内的小变形情况。( √ ) 1-4 因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。(×) 1-5 外力就是构件所承受的载荷。( × ) 1-6 材料力学研究的内力是构件各部分间的相互作用力。( × ) 1-7 用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。( √ ) 1-8 压强是构件表面的正应力。( × ) 1-9 应力是横截面上的平均内力。( × ) 1-10 材料力学只研究因构件变形引起的位移。( √ ) 1-11 线应变是构件中单位长度的变形量。( × ) 1-12 构件内一点处各方向线应变均相等。( × ) 1-13 切应变是变形后构件中任意两根微线段夹角的变化量。( × ) 1-14 材料力学只限于研究等截面直杆。( × ) 1-15 杆件的基本变形只是拉(压)、剪、扭和弯四种。如果还有另一种变形,必定是这四种变形的某种组 合。( √ ) 第 2 章 轴向拉伸与压缩 一、是非判断题 2-1 使杆件产生轴向拉压变形的外力必须是一对沿杆轴线的集中力。(×) 2-2 拉杆伸长后,横向会缩短,这是因为杆有横向应力存在。(×) 2-3 虎克定律适用于弹性变形范围内。(×) 2-4 材料的延伸率与试件尺寸有关。(√) 2-5 只有超静定结构才可能有装配应力和温度应力。(√) 二、填空题 2-6 承受轴向拉压的杆件,只有在(加力端一定距离外)长度范围内变形才是均匀的。 2-7 根据强度条件][σσ ≤可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。 2-8 低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。 2-9 铸铁试件的压缩破坏和(切)应力有关。 2-10 构件由于截面的(形状、尺寸的突变)会发生应力集中现象。

材料力学基本概念及公式

第一章 绪论 第一节 材料力学的任务 1、组成机械与结构的各组成部分,统称为构件。 2、保证构件正常或安全工作的基本要求:a)强度,即抵抗破坏的能力;b)刚度,即抵抗变形的能力;c)稳定性,即保持原有平衡状态的能力。 3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提供强度、刚度和稳定性分析的基本理论与计算方法。 第二节 材料力学的基本假设 1、连续性假设:材料无空隙地充满整个构件。 2、均匀性假设:构件内每一处的力学性能都相同 3、各向同性假设:构件某一处材料沿各个方向的力学性能相同。木材是各向异性材料。 第三节 内力 1、内力:构件内部各部分之间因受力后变形而引起的相互作用力。 2、截面法:用假想的截面把构件分成两部分,以显示并确定内力的方法。 3、截面法求内力的步骤:①用假想截面将杆件切开,一分为二;②取一部分,得到分离体;③对分离体建立平衡方程,求得内力。 4、内力的分类:轴力N F ;剪力S F ;扭矩T ;弯矩M 第四节 应力 1、一点的应力: 一点处内力的集(中程)度。 全应力0lim A F p A ?→?=?;正应力σ;切应力τ;p =2、应力单位: (112,11×106 ,11×109 ) 第五节 变形与应变 1、变形:构件尺寸与形状的变化称为变形。除特别声明的以外,材料力学所研究的对象均为变形体。 2、弹性变形:外力解除后能消失的变形成为弹性变形。 3、塑性变形:外力解除后不能消失的变形,称为塑性变形或残余变形。 4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。对构件进行受力分析时可忽略其变形。 5、线应变:l l ?=ε。线应变是无量纲量,在同一点不同方向线应变一般不同。

材料力学期末考试复习题及答案#(精选.)

材料力学期末考试复习题及答案 配高等教育出版社第五版 一、填空题: 1.受力后几何形状和尺寸均保持不变的物体称为刚体。 2.构件抵抗破坏的能力称为强度。 3.圆轴扭转时,横截面上各点的切应力与其到圆心的距离成正比。 4.梁上作用着均布载荷,该段梁上的弯矩图为二次抛物线。 5.偏心压缩为轴向压缩与弯曲的组合变形。 6.柔索的约束反力沿柔索轴线离开物体。 7.构件保持原有平衡状态的能力称为稳定性。 8.力对轴之矩在力与轴相交或平行情况下为零。 9.梁的中性层与横截面的交线称为中性轴。 10.图所示点的应力状态,其最大切应力是 100Mpa 。 11.物体在外力作用下产生两种效应分别是变形效应运动效应。 12.外力解除后可消失的变形,称为弹性变形。 13.力偶对任意点之矩都相等。 14.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则杆中最大正应力 为 5F/2A 。 15.梁上作用集中力处,其剪力图在该位置有突变。 16.光滑接触面约束的约束力沿接触面的公法线指向物体。 17.外力解除后不能消失的变形,称为塑性变形。 18.平面任意力系平衡方程的三矩式,只有满足三个矩心不共线的条件时,才能成为力系 平衡的充要条件。 19.图所示,梁最大拉应力的位置在 C 点处。

20.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是 2τ《=【σ】 。 21.物体相对于地球处于静止或匀速直线运动状态,称为平衡。 22.在截面突变的位置存在应力集中现象。 23.梁上作用集中力偶位置处,其弯矩图在该位置有突变。 24.图所示点的应力状态,已知材料的许用正应力[σ],其第三强度理论的强度条件是。 25.临界应力的欧拉公式只适用于细长杆。 26.只受两个力作用而处于平衡状态的构件,称为而力构件。 27.作用力与反作用力的关系是。 28.平面任意力系向一点简化的结果的三种情形是力,力偶,平衡。 29.阶梯杆受力如图所示,设AB和BC段的横截面面积分别为2A和A,弹性模量为E,则截面C的位移为 7Fa/2EA 。 30.若一段梁上作用着均布载荷,则这段梁上的剪力图为斜直线。 二、计算题: 1.梁结构尺寸、受力如图所示,不计梁重,已知q=10kN/m,M=10kN·m,求A、B、C处的约束力。 2.铸铁T梁的载荷及横截面尺寸如图所示,C为截面形心。已知I z=60125000mm4,y C=157.5mm,材料许用压应力[σc]=160MPa,许用拉应力[σt]=40MPa。试求:①画梁的剪力图、弯矩图。②按正应力强度条件校核梁的强度。

材料力学主要知识点归纳

材料力学主要知识点 一、基本概念 1、构件正常工作的要求:强度、刚度、稳定性。 2、可变形固体的两个基本假设:连续性假设、均匀性假设。另外对于常用工程材料(如钢材),还有各向同性假设。 3、什么是应力、正应力、切应力、线应变、切应变。 杆件截面上的分布内力集度,称为应力。应力的法向分量σ称为正应力,切向分量τ称为切应力。 杆件单位长度的伸长(或缩短),称为线应变;单元体直角的改变量称为切应变。 4、低碳钢工作段的伸长量与荷载间的关系可分为以下四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段。 5、应力集中:由于杆件截面骤然变化(或几何外形局部不规则)而引起的局部应力骤增现象,称为应力集中。 6、强度理论及其相当应力(详见材料力学ⅠP229)。 7、截面几何性质 A 、截面的静矩及形心 ①对x 轴静矩?=A x ydA S ,对y 轴静矩?=A y xdA S ②截面对于某一轴的静矩为0,则该轴必通过截面的形心;反之亦然。 B 、极惯性矩、惯性矩、惯性积、惯性半径 ① 极惯性矩:?=A P dA I 2ρ ② 对x 轴惯性矩:?= A x dA y I 2,对y 轴惯性矩:?=A y dA x I 2 ③ 惯性积:?=A xy xydA I ④ 惯性半径:A I i x x =,A I i y y =。 C 、平行移轴公式: ① 基本公式:A a aS I I xc xc x 22++=;A b bS I I yc yc y 22++= ;a 为x c 轴距x 轴距离,b 为y c 距y 轴距离。 ② 原坐标系通过截面形心时A a I I xc x 2+=;A b I I yc y 2+=;a 为截面形心距x 轴距离, b 为截面形心距y 轴距离。 二、杆件变形的基本形式 1、轴向拉伸或轴向压缩: A 、应力公式 A F = σ B 、杆件伸长量EA F N l l =?,E 为弹性模量。

《材料力学》

《材料力学》

沈阳建筑大学2011年硕士研究生入学考试 初试《材料力学》科目考试大纲 一、考查目标 明确材料力学的研究对象、基本假设,掌握分析、研究问题的基本方法,并熟练应用材料力学问题的基本方法分析、解决工程实际简单问题的综合能力。 二、考试形式与试卷结构 (一)试卷满分及考试时间 满分为150分,考试时间为3小时。 (二)答题方式 答题方式为闭卷、笔试。 (三)试卷内容结构 客观题,包括判断题、选择填空题。主观计算题。 (四)试卷题型结构 客观题40分,计算题110分。 三、考查范围 (一)材料力学概述: 变形体,各向同性与各向异性弹性体,弹性体受力与变形特征;工程结构与构件,杆件受力与变形的几种主要形式;用截面法求指定截面内力。 (二)轴向拉伸与压缩: 轴向拉压杆的内力、轴力图,横截面和斜截面上的应力,轴向拉压的应力、变形,轴向拉压的强度计算,轴向拉压的超静定问题,轴向拉压时材料的力学性质。 (三)剪切与扭转: 连接件剪切面的判定,切应力和挤压应力的计算;切应力互等定理和剪切虎克定律;外力偶矩的计算、扭矩和扭矩图;圆轴扭转时任意截面的扭矩,扭转切应力,圆轴扭转时任意两截面的相对扭转角,圆截面的极惯性矩及抗扭截面模量的计算。

(四)弯曲内力: 剪力和弯矩的计算,根据载荷集度、剪力和弯矩间的微分关系画出剪力图和弯矩图。 (五)弯曲应力: 弯曲正应力及正应力强度的计算,直梁横截面上的正应力、切应力,提高弯曲强度的措施;弯曲惯性矩和抗弯截面系数的计算。 (六)弯曲变形 挠曲线微分方程,用积分法求弯曲变形,用叠加法求弯曲变形,解简单静不定梁,梁的刚度条件。 (七)应力和应变分析与强度理论 应力状态,主应力和主平面的概念,二向应力状态的解析法和图解法;计算斜截面上的应力、主应力和主平面的方位;三向应力状态的应力圆画法;掌握单元体最大剪应力计算方法;各向同性材料在一般应力状态下的应力一应变关系,广义胡克定律,各向同性材料各弹性常数之间的关系;一般应力状态下的应变能密度,体积改变能密度与畸变能密度;四种常用的强度理论。 (八)组合变形 组合变形和叠加原理;拉压与弯曲组合变形杆的应力和强度计算;偏心压缩;扭转与弯曲组合变形下,圆轴的应力和强度计算;组合变形的普遍情况。 (九)压杆稳定 压杆稳定的概念;常见约束下细长压杆的临界压力、欧拉公式;压杆临界应力以及临界应力总图;压杆失效与稳定性设计准则;压杆失效的不同类型,压杆稳定计算;中柔度杆临界应力的经验公式;提高压杆稳定的措施。 (十)动载荷

(完整版)材料力学期末复习试题库(你值得看看)

第一章 一、选择题 1、均匀性假设认为.材料内部各点的是相同的。 A:应力 B:应变 C:位移 D:力学性质 2、各向同性认为.材料沿各个方向具有相同的。 A:力学性质 B:外力 C:变形 D:位移 3、在下列四种材料中. 不可以应用各向同性假设。 A:铸钢 B:玻璃 C:松木 D:铸铁 4、根据小变形条件.可以认为: A:构件不变形 B:构件不破坏 C:构件仅发生弹性变形 D:构件的变形远小于原始尺寸 5、外力包括: A:集中力和均布力 B:静载荷和动载荷 C:所有作用在物体外部的力 D:载荷与支反力 6、在下列说法中.正确的是。 A:内力随外力的增大而增大; B:内力与外力无关; C:内力的单位是N或KN; D:内力沿杆轴是不变的; 7、静定杆件的内力与其所在的截面的有关。 A:形状;B:大小;C:材料;D:位置 8、在任意截面的任意点处.正应力σ与切应力τ的夹角α=。 A:α=90O; B:α=45O; C:α=0O;D:α为任意角。 9、图示中的杆件在力偶M的作用下.BC段上。 A:有变形、无位移; B:有位移、无变形; C:既有位移、又有变形;D:既无变形、也无位移; 10、用截面法求内力时.是对建立平衡方程而求解的。 A:截面左段 B:截面右段 C:左段或右段 D:整个杆件 11、构件的强度是指.刚度是指.稳定性是指。 A:在外力作用下抵抗变形的能力; B:在外力作用下保持其原有平衡态的能力; C:在外力的作用下构件抵抗破坏的能力; 答案:1、D 2、A 3、C 4、D 5、D 6、A 7、D 8、A 9、B 10、C 11、C、B、A 二、填空 1、在材料力学中.对变形固体作了 . . 三个基本假设.并且是在 . 范围内研究的。 答案:均匀、连续、各向同性;线弹性、小变形 2、材料力学课程主要研究内容是:。 答案:构件的强度、刚度、稳定性;

(材料力学部分)判断题和选择题

一、判断题 1、稳定性是构件抵抗变形的能力。 2、外力就是构件所承受的载荷。 3、平面弯曲梁剪力图中,剪力值的突变是由集中的横向力引起的。 4、桁架结构中各杆件均只承受轴向的拉伸或压缩。 5、铅垂直杆在重力的作用下,其轴力图沿轴线必定呈梯形分布。 6、变截面扭转直杆,其扭矩随截面增大而增大。() 7、平面弯曲梁的力仅为剪力。() 8、两端受扭转外力偶作用的直杆轴,其扭矩大小一定等于其中一端的扭转外力偶。() 9、实验表明,当拉(压)杆应力不超过某一限度时,横向线应变与纵向线应变之比的绝对值为一常数。() 10、已知低碳钢的σp=200MPa,E=200GPa,现测得试件上的应变ε=0.002,则其应力能用胡克定律计算为:σ= E ε=200×103×0.002=400MPa。() 11、一轴向拉杆,材料的泊松比为0.2,横截面为(a﹥b)的矩形,受轴向载荷作用变形后截面长边和短边的比值为0.2。( ) 12、变形是相对的,位移是相对的。( ) 13、低碳钢在整个拉伸试验过程致可分为4个阶段。( ) 14、工程上一般认为延伸率的材料为塑性材料,<5%的材料为脆性材料。( ) 15、伸长率(延伸率)公式 中指的是断裂后试件的长度。() 16、混凝土的弹性模量规定以压缩时的 曲线中时的割线来确定。() 17、对于承受扭转的圆杆,在斜截面上既有正应力,也有切应力。 ( ) 18、薄壁圆管和空心圆管的扭转切应力公式完全一样。() 19、空心外轴的外径为、径为,其极惯性矩和扭转截面系数分别为 ,。 () 20、由不同材料制成的两根圆轴,其长度、截面和所受扭转力偶都相同,则其相对扭转角必相同。( ) 21、两圆截面直径之比为四分之一,则其对圆心的极惯性矩之比为二百五十六分之一。() 22、平面图形对两垂直轴的惯性积等于图形各点处微面积与该点分别到这两轴距离乘积平方的代数和。() 23、实心圆截面对某直径的惯性矩等于圆周率乘以该圆直径三次方除以六十四。() 24、正方形截面对其中心对称轴的惯性半径

材料力学知识点总结.doc

一、基本变形 轴向拉压材料力学总结 扭转弯曲 外外力合力作用线沿杆轴 力线 内轴力: N 规定: 力拉为“ +” 压为“-” 几 变形现象: 何 平面假设: 应 方应变规律: 面 d l 常数 dx 力 应 力 N 公 A 式 力偶作用在垂直于轴 的平面内 扭转: T 规定: 矩矢离开截面为“ +” 反之为“ - ” 变形现象: 平面假设: 应变规律: d dx T T I P max W t 外力作用线垂直杆轴,或外力偶作用 在杆轴平面 剪力: Q 规定:左上右下为“ +” 弯矩: M 规定:左顺右逆为“ +” 微分关系: dQ ; dM q Q dx dx 弯曲正应力 变形现象: 平面假设:弯曲剪应力 应变规律: y My QS*z I Z I z b M QS max max max W Z I z b

应 力 分 布 应 等直杆 用 外力合力作用条 线沿杆轴线 件 应力-应 E 变 (单向应力状态)关系 强N max 度 A max u 条 n 件塑材:u s 脆材:u b 圆轴平面弯曲 应力在比例极限内应力在比例极限内 G (纯剪应力状态) 弯曲正应力 T 1.t c max 弯曲剪应力W t max max 2. t c Q max S max max I z b t max t cmac c 轴向拉压扭转弯曲刚 度T 180 0 y max y max GI P 条注意:单位统一max 件 d l N ; L NL d T 1 M ( x) EA 变dx EA dx GI Z ( x) EI TL y '' M (x) GI P EI EA—抗拉压刚度GI p—抗扭刚度EI —抗弯刚度

完整word版材料力学部分判断题和选择题

14、 后试件的长度。 平面弯曲梁剪力图中,剪力值的突变是 由集中的横向力 引起的。 4、桁架结构中各杆件均只承受轴向的拉伸 或压 缩。 b- E 曲线中CT = 0.4巧时的割线来确 定。( ) 5、铅垂直杆在重力的作用下, 其轴力图沿 轴线必定 呈梯形分布。 17、对于承受扭转的圆杆,在斜截面上既 有正应 力,也有切应力。 () 6、变截面扭转直杆,其扭矩随截面增大而 增大。 () 18、 薄壁圆管和空心圆管的扭转切应力公 式完 全一样。() 19、空心外轴的外径为 D 、内径为川, 其极惯性矩和扭转截面系数分别为 8、两端受扭转外力偶作用的直杆轴,其扭 矩大小一定等于其中一端的扭转外力偶。 () 9、实验表明,当拉(压)杆内应力不超过某一 限度 时,横向线应变 比的绝对值为一常数。 10、已知低碳钢的d 现 测得试件上的应变£ 用胡克定律计算为: 0.002=400MPa 。( 20、由不同材料制成的两根圆轴,其长度、 截面和所 受扭转力偶都相同,则其相对扭转 角必相同。 () 21、两圆截面直径之比为四分之一,则其 对圆心的极 惯性矩之比为二百五十六分之 一。() 23、实心圆截面对某直径的惯性矩等于圆周 率乘以该 圆直径三次方除以六十四。 () 13、低碳钢在整个拉伸试验过程中大致可分 为4个阶段。() 工程上一般认为延伸率^^5%的材料 为塑性材 料,応< 5%的材料为脆性材料。 () 24、正方形截面对其中心对称轴的惯性半径 等于正 方形边长的二分之一。 () 25、横截面形状和尺寸完全相同的木梁和 钢梁,在 相同的弯矩作用下,钢梁中的最大 一、判断题 稳定性是构件抵抗变形的能力。 1 、 15、 率(延伸率)公式 2、 外力就是构件所承受的载荷。 xlOO%中A 指的是断裂 11、 材料的泊松比为 0.2,横 截面为门艾h (a > b )的矩形,受轴向载荷作用 变形后截面长边和短边的比值为 一轴向拉杆, 0.2。( 22、平面图形对两垂直轴的惯性积等于图形 各点 处微面积与该点分别到这两轴距离乘 积平方的代数和。() 3、 16、 混凝土的弹性模量规定以压缩时的 7、平面弯曲梁的内力仅为剪力。 () P=200MPa ,E=200GPa =0.002,则其应力能 d = E £ =200 X 103X 12、 变形是相对的,位移是相对的。 (

材料力学复习总结

1、 应力 全应力正应力切应力线应变 外力偶矩 当功率P 单位为千瓦(kW ),转速为n (r/min )时,外力偶矩为 m).(N 9549e n P M = 当功率P 单位为马力(PS ),转速为n (r/min )时,外力偶矩为 m).(N 7024e n P M = 拉(压)杆横截面上的正应力 拉压杆件横截面上只有正应力σ,且为平均分布,其计算公式为 N F A σ= (3-1) 式中N F 为该横截面的轴力,A 为横截面面积。 正负号规定 拉应力为正,压应力为负。 公式(3-1)的适用条件: (1)杆端外力的合力作用线与杆轴线重合,即只适于轴向拉(压)杆件; (2)适用于离杆件受力区域稍远处的横截面; (3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀; (4)截面连续变化的直杆,杆件两侧棱边的夹角0 20α≤时 拉压杆件任意斜截面(a 图)上的应力为平均分布,其计算公式为 全应力 cos p ασα= (3-2) 正应力 2cos ασσα=(3-3) 切应力1 sin 22 ατα= (3-4) 式中σ为横截面上的应力。 正负号规定: α 由横截面外法线转至斜截面的外法线,逆时针转向为正,反之为负。 ασ 拉应力为正,压应力为负。 ατ 对脱离体内一点产生顺时针力矩的ατ为正,反之为负。

两点结论: (1)当0 0α=时,即横截面上,ασ达到最大值,即()max ασσ=。当α=0 90时,即纵截面上,ασ=0 90=0。 (2)当0 45α=时,即与杆轴成045的斜截面上,ατ达到最大值,即max ()2αα τ= 1.2 拉(压)杆的应变和胡克定律 (1)变形及应变 杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。如图3-2。 图3-2 轴向变形 1l l l ?=- 轴向线应变 l l ε?= 横向变形 1b b b ?=- 横向线应变 b b ε?'= 正负号规定 伸长为正,缩短为负。 (2)胡克定律 当应力不超过材料的比例极限时,应力与应变成正比。即 E σε= (3-5) 或用轴力及杆件的变形量表示为 N F l l EA ?= (3-6) 式中EA 称为杆件的抗拉(压)刚度,是表征杆件抵抗拉压弹性变形能力的量。 公式(3-6)的适用条件: (a)材料在线弹性范围内工作,即p σσ?; (b)在计算l ?时,l 长度内其N 、E 、A 均应为常量。如杆件上各段不同,则应分段计算,求其代数和得总变形。即 1 n i i i i i N l l E A =?=∑ (3-7) (3)泊松比 当应力不超过材料的比例极限时,横向应变与轴向应变之比的绝对值。即 ενε ' = (3-8) 表1-1 低碳钢拉伸过程的四个阶段

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

《材料力学 》

材料力学 一、1-5 CCACA 6-10 DDBAD 二、1-5 ABABB 6-10 ABABA 11-15 ABAAA 16-20 ABBBA 21-25 BBAAA 26-30 BABAA 31-35 BBAAB 36-40 ABAAA 一、单选题(共 10 道试题,共 20 分。) V 1. 在以下措施中()将会降低构件的持久极限 A. 增加构件表面光洁度; B. 增加构件表面硬度; C. 加大构件的几何尺寸; D. 减缓构件的应力集中 满分:2 分 2. 如图: A. A

C. C D. D 满分:2 分 3. 截面上的切应力的方向() A. 平行于截面 B. 垂直于截面 C. 可以与截面任意夹角 D. 与截面无关 满分:2 分 4. 如图1:

B. B C. C D. D 满分:2 分 5. 如图2: A. A B. B C. C D. D 满分:2 分 6. 在相同的交变载荷作用下,构件的横向尺寸增大,其()。 A. 工作应力减小,持久极限提高; B. 工作应力增大,持久极限降低; C.

工作应力增大,持久极限提高; D. 工作应力减小,持久极限降低。 满分:2 分 7. 脆性材料的破坏应力是() A. 比例极限 B. 弹性极限 C. 屈服极限 D. 强度极限 满分:2 分 8. 圆截面杆受扭转作用,横截面任意一点(除圆心)的切应力方向() A. 平行于该点与圆心连线 B. 垂直于该点与圆心连线 C.

不平行于该点与圆心连线 D. 不垂直于该点与圆心连线满分:2 分 9. 如图3: A. A B. B C. C D. D 满分:2 分 10. 材料的持久极限与试件的()无关 A. 材料 B. 变形形式 C.

相关主题
文本预览
相关文档 最新文档