当前位置:文档之家› 第三章 生物生产机器人的基本原理与组成

第三章 生物生产机器人的基本原理与组成

第三章 生物生产机器人的基本原理与组成
第三章 生物生产机器人的基本原理与组成

第三章生物生产机器人的基本原理与组成

3.1 基本原理

3.1.1 伺服机构

日本工业标准将伺服机构定义为:“控制变量为机械位置和角度的自动控制机构”,控制被定义为:“为实现特定目的而在系统中增加操作”。自动控制主要分为后向反馈控制、前向反馈控制和连续控制。伺服机构是一种后向反馈控制,广泛应用于机械电子和机器人中。

3.2 基本组成

3.2.1 机械手

3.2.1.1 机械手的结构机械手有许多个一端自由一端固定的链接机构,其若干机构为开环结构。机械手的链接机构虽比较灵活,但它不能承担重物。任一机械手只要具有足够的操作空间和自由度,它就能正常工作。机械手的结构和组成应在对工作目标特性进行研究的基础上确定。

3.2.1.2 机械手的控制当机械手末端的起始点和目标位置之间没有障碍物时,机械手的轨迹作用不大,这时没有必要考虑旋转速度。不必预测机械手轨迹的情况叫做点对点(PTP)控制。而在生物生产系统中,大部分情况需要设定机械手的运动轨迹,因为目标周围可能有茎、叶等。连续路径(CP)控制通过调速实现,主要用于确定运动轨迹的情况(图3.4)。

图 3.4 PTP和CP控制

3.2.1.3 没有机械手的机器人谷物、干草收获机器人和耕地机器人不需要机械手之类的链接机构。在这些操作中,需要较大的功率。但由于机械手只有几个关节和一点固定点,因而,机械手末端不能处理重物,不能输出大功率,也不同高速运作。因此这些机械装置不必安装机械手。

3.2.2 末端执行器

3.2.2.1 末端执行器的结构末端执行器安装在机械手末端,具有与人手类似的功能。末端执行器因作业对象不同,构造也不同,有手指、吸引垫、针、喷嘴、刀片等。另一方面,末端执行器直接与作业对象接触,能影响产品的市场价值。末端执行器应考虑生物物料的某一性质,且针对某一特定用途进行设计。

3.2.2.2 末端执行器的传感器末端执行器通常需要外部和内部传感器一起处理作业对象的不可预测的物理特性。某一传感器可帮助其他传感器补偿测量误差。触觉传感器和接近传感器是末端执行器中最重要的传感器。

3.2.3 传感器

3.2.3.1 生物生产机器人的传感器内部传感器是每个机器人必需的,有些机器人可能不要外部传感器。后一种机器人的工作环境是固定的,其工作对象是标准化和统一化的。外部传感器主要用于生物生产机器人,因为其工作对象的光学特性、形态特性和环境条件特殊且变化不一。

3.2.3.2 传感器的分类主要分为视觉、听觉、嗅觉、味觉和触觉传感器。视觉搜集的信息占所有传感器采集信息的90%以上。听觉传感器在生物生产机器人中较少用到,但它在操作人员和机器人之间的交流界面,以及检查机器时必不可少。嗅觉和味觉主要用于评价生物物料的质量和成熟度。触觉传感器在机器人用末端执行器处理工作对象时是必不可少的。另外,机器人还有接近传感器。

3.2.3.3 传感器的联合传感器获得的信息应组合起来以提高它们的用途。如物体的三维信息不能仅靠一个TV照相机的视觉传感器精确测定。联合的传感器信息能指导机器人,即使有时视觉传感器获得的深度信息不精确。某些操作中,生物生产机器人的传感器不必精确获取对象的信息。传感器的功能和分辨率应根据执行的动作、工作目标性质和其他传感器可获得的信息确定。

3.2.3.4 未来的传感器大部分外部传感器用于移动的机械手、末端执行机构或移动装置中。为避免与人、另一机械或工作对象冲撞,机器人的传感器必须通过范围传感器和接近传感器感知他们并保持一定的安全范围。工作范围较窄或工作对象是形态复杂的生物物料的机器人需要具有感知功能的机器人皮肤或材料。

3.2.4 移动装置

当生物生产机器人的工作对象是温室或田间的植株时,它的工作空间很大。采用移动装置的主要目的就是为了增大工作空间。

轮式移动装置主要用于在温室或田间犁垄间工作的机器人,它的结构简单且易被采用。履带式移动装置适用于大型且重量较大的机器人,并且适用于崎岖不平的路面。轨道式主要用于既定路径,且容易实现对移动装置的控制。

移动装置将机器人从一个地方移到另一个地方,机器人一般在移动装置暂停时进行工作,但也可在移动装置移动时工作。当机器人在移动装置上工作时,移动的机械手使机器人的重心变化,移动装置应通过保持机器人的稳定性使机器人底座的倾斜程度最小。当移动装置移动到地面上时,应测量或补偿轮胎和土壤之间的滑动。有些移动装置上必须安装感知系统以确定其在田间的位置和路径。

但并不是所有的机器人系统都需要移动装置。工作对象很小很轻从而适合运输时,可以通过其他机械装置把工作对象运到机器人前面。移动的工作目标必须统一化和标准化。同时,移动工作目标也得能提高工作空间的利用率。工作目标移动还是机器人移动,由哪一个移动更容易来确定。

3.2.5 控制装置

上述机器人组成由计算机通过一个接口进行控制。图3.5所示为计算机的基本组成图。其中最重要的是中央处理机(CPU):许多其他单元与CPU一起工作,如存储器、外部集成电路、输入/输出端口。这些元件通过地址总线、数据总线和控制总线与CPU相连,从而CPU 能发送和接受数据。

图 3.5 计算机基本组成图

3.2.5.1 CPU计算机的运行速度由它的时钟产生器确定,因为CPU根据时钟发生器的频率发送和接受数据。CPU的注册表和指针使数据计算和传输较为方便。注册表和指针仅能在机器语言程序中直接使用,而要在其他语言程序使用,必须先将其转换成机器语言。

3.2.5.2 存储器存储器的大小也能提高计算机的性能。存储器能存贮数据和编程信息。存储器有两种:采用大量集成电路的内存和软盘、硬盘和光盘等外部存储器。内存主要分为两种:随机存储器(RAM)和只读存储器(ROM)。RAM包括通电中一直记忆的静态RAM和需要周期刷新才能保持记忆的动态RAM。数据一旦写入ROM后即使切断电源所存贮内容也不消失。

3.2.5.3 外部装置外部装置包括中断控制器、计时器、DAM控制器、数值运算处理器和输

入/输出接口。中断控制器是指中断执行中的程序,而执行子程序。计时器用来给来自外部的时钟脉冲及时或计数的功能。DMA控制器向地址总线或控制总线输出信号从而直接控制数据传递。因为不经过CPU,所以这个数据传输速度很快。DMA常用于图像等数据量比较大的数据传输。CPU的运算功能主要有加减乘除和逻辑运算,处理速度比较快。然而,CPU处理其他运算则比较慢。数值运算处理器可使浮动小数点的四则运算和一般的函数计算高速进行。

输入/输出接口非常重要,许多设备连在上面,如显示器、键盘、打印机、机器人的驱动器,TV照相机、传感系统、电路等。数字数据输入通过三态缓冲区,将外部输入信号与数据总线相接来实现。发送信号的过程为:所定的地址被选择后,数字输入信号通过三态缓冲区被送入数据总线。所定的地址没被选择,三态缓冲区变成高阻抗状态,对数据总线的信号不产生任何影响。数据输出是通过将与选定地址对应的数据总线信号用锁存器保持来进行,即执行一次命令后,其地址处可将输出值一直保持到下一命令的执行。数字信号(TTL 或CMOS)可以通过界接口传输,但模拟信号不能直接通过接口直接传输。当计算机控制的是模拟信号时,光电耦合器、驱动电路、继电器或A/D转换器用于将设备连接到接口。当模拟信号从外部设备输入到计算机时,需要A/D转换器进行转换。生物生产机器人常用的是8位到12位的转换器。

3.2.5.4 总线计算机中的数据线叫总线,分为三类:地址总线、数据总线和控制总线。地址总线是为CPU或DMA控制器指定存储器或外部设备的地址而使用的信号总线。若地址总线有20根线,那么CPU可直接指定220字节(1.05M字节)个地址。数据总线用作数据的传输,而控制总线则用于控制从CPU向存储器、外部设备传送数据的时机,也用于接收来自外部的中断信号。

3.2.6 执行机构的分类

上述机器人的组成(机械手、末端执行器和移动装置)都由执行机构组成。执行机构主要分为三类:电动执行机构、液压执行机构和气动执行机构。

3.2.6.1 电动执行机构电动执行机构主要由电力驱动,因而比较容易控制且结构紧凑。在温室中使用机器人时,尽量使用蓄电池和电缆供电。迄今,只有直流伺服电动机、交流伺

服电动机和步进电动机用于生物生产机器人。伺服电动机由闭环系统控制,而步进电机则由开环系统控制。步进电机的转角与发动机驱动器的脉冲数成正比。

此外,形状记忆合金有时也会用作器人末端执行器的执行机构。形状记忆合金具有小型轻便的优点,可用于生物技术机器人。这种执行机构是通过电流加热,然后通过低温或其他方法冷却来获得运动。但是,这种执行机构的位移和输出功率不大,因而它的反应速度也比其他执行机构慢。

3.2.6.2 液压执行机构液压执行机构将液能转换成机械能,输出功率大,能使机器人处理重物。液压缸和液压马达进行回转、摇摆运动。液压泵、驱动部分、油箱和安全阀是液压执行机构必需的,当然连接执行机构和设备的管道也是必不可少的。

3.2.6.3 气动执行机构气动执行机构的优点是便于处理简单轻便物体。它将空气压能转换成机械能,但很难实现对机械手、末端执行器或气动泵、管道和阀门等设备的精确定位。气动执行机构与液压执行机构相同,包括气缸和马达。与液压执行机构相比,气动执行机构适合小型轻便的物体。

生物机器人综述

科技写作 学院(系):医疗器械与食品学院 年级专业:生物医学工程 学生姓名:朱安阳 学号: 152631974 指导教师:袁敏

摘要 20世纪60年代以来,随着仿生技术、控制技术和制造技术进一步发展,现代仿生学和机器人科学相结合,在机器人的结构仿生、材料仿生、功能仿生、控制仿生以及群体仿生等多个方面取得了大量可喜成果和积极进展。然而,伴随着人类医疗诊断、探索太空、建设航天站、开发海洋、军事作战与反恐侦察等任务和需求的增加,人们对机器人的性能也提出了更高的要求,于是生物机器人应运而生。 生物机器人就是完完全全和我们人类一样,用有生命的材料构成的而不是用金属材料构成的机器人。它们是利用自然界中的动物作为运动本体的机器人,通过把微电极植入与动物运动相关的脑核团或者方向感受区,并施加人工模拟的神经电信号,从而达到控制动物运动,利用动物特长代替人类完成人所不能和人所不敢的特殊任务。 与传统的仿生机器人相比,生物机器人在能源供给、运动灵活性、隐蔽性、机动性和适应性方面具有更明显的优势,可以广泛应用在海洋开发、探索太空、反恐侦查、危险环境搜救以及狭小空间检测等各方面。近年来对生物运动规律和动物机器人的研究受到更多的重视。本文主要对对国内外生物机器人的研制工作做了综述,并介绍其应用前景及对其未来发展进行了展望。 关键词:生物机器人;运动诱导;神经控制;研究现状;发展方向

1.课题的研究现状 自20世纪90年代开始,生物机器人的研究历史仅有短短的10年,然而这短短十年又是生物机器人研究成果丰硕的十年,各国科研人员都相继开展了动物机器人的研究工作,尤其是美国,日本等科技发达国家,它们的研究成果代表着这一领域的最高水平,国在这一领域的研究尚在起步阶段,但也已有了不俗的进展。 1.1 国外的研究现状 在国外,美国、日本以及欧盟较早地开始了纳米生物机器人的研究。纳米生物机器人的组件可以是单个的原子或分子,但利用自然界存在的、具有一定结构和功能的原子团或分子的集合分子功能器件组装纳米机器人,更加高效和现实可行,即按照分子仿生学原理,利用大量存在的天然分子功能器件设计、组装纳米生物机器人。美国 2000年开始了国家纳米技术计划,国家卫生研究院(NIH)和国家癌症研究所(NIC)于2002年开展了DNA分子马达的研究。NASA高级概念研究院(NIAC)和Rutgers大学在2002年提出了纳米生物机器人研究50年发展规划;2002年日本Osaka大学启动了生命科学前沿研究计划,其中包括 ATP马达的研究;欧盟2002年正式推出了研究纳米技术的第6框架计划,其中纳米生物技术的研究重点为生物分子或复合物的处理、操纵和探测。 图 1-1 昆虫机器人

机器人的组成与结构

3、简介机器人系统的组成与结构,包括三大部分、六个子系统 答:机器人由三大部分六个子系统组成。三大部分是机械部分、传感部分和控制部分。六个子系统是驱动系统、机械结构系统、感受系统、机器人一环境交换系统、人机交换系统和控制系统。 驱动系统,要使机器人运作起来,各需各个关节即每个运动自由度安置传动装置。这就是驱动系统。驱动系统可以是液压传动、气压传动、电动传动、或者把它们结合起来应用综合系统,可以是直接驱动或者通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接传动。 机械结构传动,工业机器人的机械结构系统由机座、手臂、末端操作器三大部分组成,每一个大件都有若干个自由度的机械系统。若基座不具备行走机构,则构成行走机器人;若基座不具备行走及弯腰机构,则构成单机器人臂。手臂一般由上臂、下臂和手腕组成。末端操作器是直接装在手腕上的一个重要部件,它可以是二手指或多手指的手抓,也可以是喷漆枪、焊具等作业工具。 感受系统由内部传感器模块和外部传感器模块组成,用以获得内部和外部环境状态中有意义的信息。智能传感器的使用提高了机器人的机动性、适应性和智能化的水准。人类的感受系统对感知外部世界信息是极其灵巧的,然而,对于一些特殊的信息,传感器比人类的感受系统更有效。 机器人一环境交换系统是现代工业机器人雨外部环境中的设备互换联系和协调的系统。工业机器人与外部设备集成为一个功能单元,如加工单元、焊接单元、装配单元等。当然,也可以是多台机器人、多台机床或设备、多个零件存储装置等集成为一个去执行复杂任务的功能单元。 人工交换系统是操作人员与机器人控制并与机器人联系的装置,例如,计算机的标准终端,指令控制台,信息显示板,危险信号报警器等。该系统归纳起来分为两大类:指令给定装置和信息显示装置。 控制系统的任务是根据机器人的作业指令程序以及传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。假如工业机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。根据控制原理,控制系统可分为程序控制系统、适应性控制系统和人工智能控制系统。根据控制运行的形式,控制系统可分为点位控制和轨迹控制。

工业机器人控制系统组成及典型结构

工业机器人控制系统组成及典型结构 一、工业机器人控制系统所要达到的功能机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: 1、记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 2、示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 3、与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。 4、坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 5、人机接口:示教盒、操作面板、显示屏。 6、传感器接口:位置检测、视觉、触觉、力觉等。 7、位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。 8、故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。 二、工业机器人控制系统的组成 1、控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32 位、64 位等如奔腾系列CPU 以及其他类型CPU 。 2、示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的 CPU 以及存储单元,与主计算机之间以串行通信方式实现信息交互。 3、操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。 4、硬盘和软盘存储存:储机器人工作程序的外围存储器。 5、数字和模拟量输入输出:各种状态和控制命令的输入或输出。 6、打印机接口:记录需要输出的各种信息。 7、传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 8、轴控制器:完成机器人各关节位置、速度和加速度控制。 9、辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。 10 、通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。 11 、网络接口 1) Ethernet 接口:可通过以太网实现数台或单台机器人的直接PC 通信,数据传输速率高达 10Mbit/s ,可直接在PC 上用windows 库函数进行应用程序编程之后,支持TCP/IP 通信协议,通过Ethernet 接口将数据及程序装入各个机器人控制器中。

工业机器人在工业生产中的应用探讨

此文章枪手代写的并且没有付费,严重侵害版权,客户要用就会告的其没 工作 工业机器人在工业生产中的应用探讨摘要:工业机器人是可以自己执行工作的机器,是依靠自身的动力与自身的控制能力来完成各种功能的一种机械装置。它既可以按照人们的指挥来完成工作,也可以按照事先编好的程序进行工作,现代社会的工业机器人还能依据人工的智能技术制定的纲领行动。本篇文章主要内容是就工业机器人在工业生产中的应用进行探讨。 关键词:工业机器人;工业生产;应用;探讨 最早应用工业机器人的行业应为汽车制造行业,机器人常用于焊接、喷漆以及搬运等工作。工业机器人的加入有效的增大了人们的手和足以及大脑的功能,工业机器人可以替代人们完成危险的工作以及一些复杂单调的重复劳动,有效的提高了工业生产的效率,同时也提高了产品的质量。实现工业自动化需要工业机器人与数控加工中心等各方面的相互配合。 一.工业机器人的简介 到今天机器人的历史也算不上长,1959年美国的英格伯格与德沃尔两位科学家联合制造出了世界上第一台工业类机器人,自那时起,机器人的历史才真正的拉开帷幕。 工业机器人一般由主体、驱动系统以及控制系统三个主要部分组成。机器人的主体为机座和执行机构组成,并且包括腕部以及手部等部位。大部分的工业机器人都有三个以上六个以下的运动自由度。然而驱动系统则是使执行的机构实行相应的动作,控制系统则是依据输入的程序来发号施令,并进行有效的控制。 二.工业机器人的主要应用 1.有一些安全因素很不稳定且不适宜由人去做的作业工作以及一些危险的工作军事领域或核工业领域等危及人类生命安全的工作用工业机器人去担任是最合适不过的。例如在核工厂的设备维修及检验类机器人,核工业上的沸腾水式反应堆燃料的自动交换机。

生物生产机器人考试资料

生物生产机器人去年试题(回忆版) 1.写出系统分析的8个步骤(见教材) [1]Define a system and its objective. [2]Identify the descriptors of the system. [3]Establish the relationships among the descriptors. [4]Designate system performance indicators. [5]Develop a model to represent the system. [6]Verify and validate the model [7]Perform simulation with the model [8]Draw conclusions about the system 2.自由度和工作空间的计算(和平时作业类似) First we need to calculate the operational space from top view and side view,then multiply them finally we got the operational space.Also the normalized volume index V n can be computed by V n=V/(4πL3/3) 3.模糊控制的相关计算(与kondo教授资料上第58页题目类似) 4.从5种机械手中取3种举例说明(见kondo资料上4-5页) 5.表示颜色的几种方法(见kondo资料13-15页) Munsell Renotation: Chromaticity: L*a*b*: HSI(Hue,Saturation,Intensity): 6.偏振光相关题目(稻田反射阳光和人站的位置的那道题,见kondo资料22页左上) 7.根据所给图表简述不同物质的光学性质(见kondo资料24页中间的图) 8.用镜头捕获对象位置的计算(与作业类似,见kondo资料26页、43页) 题型以简答和计算为主,其他还有什么不记得了… 复习建议:以kondo教授资料为主,教材上看一下讲过的部分,重点单词要会写,可以结合精品课程网站上的资料复习 考试建议:尽量用英文作答;题目要能看懂;考试时间可能有点紧,需注意 By HY 祝好运

工业机器人的基本参数和性能指标知识讲解

工业机器人的基本参数和性能指标

工业机器人的基本参数和性能指标 表示机器人特性的基本参数和性能指标主要有工作空间、自由度、有效负载、运动精度、运动特性、动态特性等。 (1)工作空间(Work space)工作空间是指机器人臂杆的特定部位在一定条件下所能到达空间的位置集合。工作空间的性状和大小反映了机器人工作能力的大小。理解机器人的工作空间时,要注意以下几点: 1)通常工业机器人说明书中表示的工作空间指的是手腕上机械接口坐标系的原点在空间能达到的范围,也即手腕端部法兰的中心点在空间所能到达的范围,而不是末端执行器端点所能达到的范围。因此,在设计和选用时,要注意安装末端执行器后,机器人实际所能达到的工作空间。 2)机器人说明书上提供的工作空间往往要小于运动学意义上的最大空间。这是因为在可达空间中,手臂位姿不同时有效负载、允许达到的最大速度和最大加速度都不一样,在臂杆最大位置允许的极限值通常要比其他位置的小些。此外,在机器人的最大可达空间边界上可能存在自由度退化的问题,此时的位姿称为奇异位形,而且在奇异位形周围相当大的范围内都会出现自由度进化现象,这部分工作空间在机器人工作时都不能被利用。 3)除了在工作守闻边缘,实际应用中的工业机器人还可能由于受到机械结构的限制,在工作空间的内部也存在着臂端不能达到的区域,这就是常说的空洞或空腔。空腔是指在工作空间内臂端不能达到的完全封闭空间。而空洞是指在沿转轴周围全长上臂端都不能达到的空间。

(2)运动自由度是指机器人操作机在空间运动所需的变量数,用以表示机器人动作灵活程度的参数,一般是以沿轴线移动和绕轴线转动的独立运动的数目来表示。 自由物体在空间自六个自由度(三个转动自由度和三个移动自由度)。工业机器人往往是个开式连杆系,每个关节运动副只有一个自由度,因此通常机器人的自由度数目就等于其关节数。机器人的自由度数目越多,功能就越强。日前工业机器人通常具有4—6个自由度。当机器人的关节数(自由度)增加到对末端执行器的定向和定位不再起作用时,便出现了冗余自由度。冗余度的出现增加了机器人工作的灵活型,但也使控制变得更加复杂。 工业机器人在运动方式上,总可以分为直线运动(简记为P)和旋转运动(简记为R)两种,应用简记符号P和R可以表示操作机运动自由度的特点,如RPRR表示机器人操作机具有四个自由度,从基座开始到臂端,关节运动的方式依次为旋转-直线-旋转-旋转。此外,工业机器人的运动自由度还有运动范围的限制。 (3)有效负载(Payload) 有效负载是指机器人操作机在工作时臂端可能搬运的物体重量或所能承受的力或力矩,用以表示操作机的负荷能力。 机器人在不同位姿时,允许的最大可搬运质量是不同的,因此机器人的额定可搬运质量是指其臂杆在工作空间中任意位姿时腕关节端部都能搬运的最大质量。

工业机器人技术课后题答案

第一章课后习题: 3、说明工业机器人的基本组成及各部分之间的关系。 答:工业机器人由三大部分六个子系统组成。三大部分是机械部分、传感部分和控制部分。六个子系统是驱动系统、机械结构系统、感受系统、机器人-环境交互系统、人机交互系统和控制系统。各部分之间的关系可由下图表明: 4、简述工业机器人各参数的定义:自由度、重复定位精度、工作范围、工作速度、承载能力。 答:自由度是指机器人所具有的独立坐标轴运动的数目,不应包括手爪(末端操作器)的开合自由度。 重复定位精度是指机器人重复定位其手部于同一目标位置的能力, 可以用标准偏差这个统计量来表示, 它是衡量一列误差值的密集度(即重复度)。 工作范围是指机器人手臂末端或手腕中心所能到达的所有点的集合, 也叫工作区域。 工作速度一般指工作时的最大稳定速度。 承载能力是指机器人在工作范围内的任何位姿上所能承受的最

大质量。承载能力不仅指负载, 而且还包括了机器人末端操作器的质量。 第二章课后习题: 1、 答:工业上的机器人的手一般称之为末端操作器, 它是机器人直接用于抓取和握紧(吸附)专用工具(如喷枪、扳手、焊具、喷头等)进行操作的部件。具有模仿人手动作的功能, 并安装于机器人手臂的前端。大致可分为以下几类: (1) 夹钳式取料手;(2) 吸附式取料手;(3) 专用操作器及转换器;(4) 仿生多指灵巧手。 4、 答:R关节是一种翻转(Roll)关节。B关节是一种折曲(Bend)关节。Y关节是一种偏转(Yaw)关节。具有俯仰、偏转和翻转运动, 即RPY运动。 5、 答:行走机构分为固定轨迹式和无固定轨迹式。无固定轨迹式又分为与地面连续接触(包括轮式和履带式)和与地面间断接触(步行式)。轮式在平地上行驶比较方便,履带式可以在泥泞道路上和沙漠中行驶。步行式有很大的适应性, 尤其在有障碍物的通道(如管道、台阶或楼梯)上或很难接近的工作场地更有优越性。 第三章课后习题:

工业机器人内部结构及基本组成原理详解

工业机器人内部结构及基本组成原理详解 工业机器人详解你对工业机器人有着什么样的了解?关于工业机器人,我们过去也反反复复推送了很多的文章,在这一次,我们将尝试解决有关--- 在工业环境中使用的最常见的机器人和作业时经常会遇到的问题。关于工业机器人定义什么可以被认为是一个工业机器人?什么不能被称为工业机器人?工业机器人直到最近才能避开这种混乱。不是在工业环境中使用的每个机电设备都可以被认为是机器人。根据国际标准组织的定义,工业机器人是一种可编程的三自由度或多轴自动控制的可编程多用途机械手。这几乎是在谈论工业机器人时被接受的定义。工业机器人自中年以来发生了什么变化?越来越多的工程师和企业家正在寻找越来越多的机器人技术,帮助在工业环境中优化工作流程的方式。随着时代的发展和机器人技术的进步,机器人手臂必须为诸如仓储中使用的群组AGV 等新手铺路。我们经常说典型的工业机器人由工具,工业机器人手臂,控制柜,控制面板,示教器以及其他外围设备组成。那么这些是什么?这些部分通常都在一起,控制柜类似于机器人的大脑。控制面板和示教器构成用户环境。工具(也称为末端执行器)是为特定任务设计的设备(例如焊接或喷涂)。机器人手臂基本上是移动工具的 东西。但并不是每个工业机器人都像一个手臂。不同机器人有不同 类型的结构。控制面板--- 操作员使用控制面板来执行一些常规任

务。(例如:改变程序或控制外围设备)。应用“机器人工人” --------------- 什么时候应该使用工业机器人而不是 人工?相信这个问题大家思考的次数并不少了。理想情况下,这应该是双赢的。想快速看到效果,你需要知道什么是别人最不喜欢的工作。想得最多的是那些重复的,乏味的工作,需要从工作人员那边进行大量单调的行动,这个思考是正确的,因为正是如此,例如从一个输送机到另一个输送机。如果总是相同的任务,您可以使用专门针对您的需求量身定制的自动化解决方案。工厂的工作处理需要越来越灵活,在这些情况下,正确的解决方案是:可以试用用于不同任务的可重新编程的机器人进行任务操作。此外,就是那些对人类工作有害的任务。(例如:用危险化学品进行表面处理,这是在有害环境中工作。在许多情况下,长期使用机器人比聘用工人更聪明和便宜。)当然,还有的是人类难以操作的工作。(例如:举或搬运重物或在不适合人类生活的条件下工作。)同样,在许多这些情况下,可以应用特定的自动化解决方案。然而,如果任务需要灵活性处理,还需要考虑要用到的机器人。以下是最常见的机器人应用程序列表:电弧焊、部件、涂层、去毛刺、压铸、造型、物料搬运、选择、码垛、打包、绘画、点焊、运输,仓储关于工 业机器人的结构-- 如何构建机器人手臂?(这很重要)在 本文中,将只列出工业机器人中使用的最常见的机器人结构类型。(详细内容公众号历史记录在“机器人类型”部分深入介绍这些类

生活中及生产中生物技术的应用

生物技术应用 生物技术应用(Biotechnology applications)是指生物技术在各方面的应用。生物技术是应用生物的领域。生物技术是利用有机体和生物过程在工程,技术,医药和其它要求生物产品的领域制成产品。 生物技术需要纯生物科学(遗传学,微生物学,动物细胞培植,分子生物学,生物化学,细胞生物学等)以及生物学外的领域(化学工程,生物加工工程,信息技术,生物机器人)的知识。相反,现代的生物科学(包括分子生态学概念)是和生物技术的发展密切相关的。现代的生物技术还包括遗传工程和细胞及组积培植技术。 中文名:生物技术应用,英文名:Biotechnology applications,含义:生物技术在各方面的应用,应用领域:农业、医药、轻工食品、海洋开发等。 应用: 生物技术在四个主要工业领域应用;包括医疗保健,谷物生产和农业,谷物非食品利用和其它产品(生物所能分解的塑料,植物油,生物燃料)及环境的使用。例如,生物技术的一种应用是直接用有机体生产有机产品(例,包括蜜蜂和牛奶的生产)。另外的例是生物浸矿采矿工业用已有的细菌。生物技术还用到回收,废品处理,清理污物(生物处理法)和生产武器。 一系列发展产生了生物技术的一些分支,例如: 生物信息学是利用计算技术处理生物问题的多学科领域。使很快组织和分析生物数据成为可能。它可称为计算生物学。 生物信息学在各领域内起作关键的作用;如功能基因组学,结构基因组学和蛋白组学;并在生物技术和制药方面形成了关键成份。

兰色生物技术是一项用到海里和水生应用的生物技术,但较少用。 绿色生物技术是一项用到农业生产的技术。一个例子是通过微细菌增殖,选择和驯化植物。另一例子是设计转基因植物在有或无化学药品特别环境中生长。希望绿色生物技术可产生比传统工业和农业更好的效果。 红色生物技术是应用医药方面的技术。一些例子是设计生产抗菌素,以及改变基因治疗疾病的基因工程。 白色生物技术,也称工业生物技术,是应用到工业生产的技术。例子是设计一个有机体去产生有用的化学医药。 现代生物技术可在医药的下列方面应用: 遗传药理学 遗传药理学研究个体遗传如何影晌他/她的身体对药物的反应。遗传药理学的着眼点在能设计和生产适合每个个体遗传特性的药物。 制药产品 大多数传统制药用简单分子;这些是由经验处理疾病的痛症而得来。生物制药用生物大分子,如蛋白和从疾病产生的机理有针对性地选用。这是一个相对年轻的工业。 小分子用化学制造,但大分子要用在人体内的活细胞:如细菌细胞,动物或植物细胞。小细胞的药可制成药片;但大分子的药则要注射。 基因测试 基因测试可直接试验DNA 分子本身。可测出它是否有变异。 基因疗法 可用正常基因补充或替换有缺陷的基因治病。 克隆

生物生产机器人

生物生产机器人 机器人(Robot)是自动执行工作的机器装置。它既可以接受人类指挥,又可以运行预先编排的程序,也可以根据以人工智能技术制定的原则纲领行动。它的任务是协助或取代人类工作的工作,例如生产业、建筑业,或是危险的工作。 生物生产是指以植物和动物等生物为加工对象的生产活动。 在生物生产领域有很多种无人操作的机械系统,例如无人驾驶拖拉机、联合收割机、移植机以及自动推进器等都正在发展,它们通过联合传感系统自行在田间行走。在植物工厂,许多种植、间苗、施肥、收获及包装等过程都发展成为无人操作的自动化机械系统;许多谷物干燥机、水稻磨粉机和剥壳去皮机也都已能完全自动地执行整个任务过程并达到一定的智能化水平。 为什么生物生产机器人是必需的呢?理由如下:(1)虽然已有很多农业作业实现了机械化,但仍然存在不少危险、费力又单调乏味的作业,不适合人力去完成却又需要一定的人类智能才能实现;(2)许多国家农业劳动人口的可利用率正以令人担忧的速度下降,从当前趋势来看,相比于其它许多产业,农业对年轻一代的吸引力较小,这表明在不远的将来,农业人力资源的供应量将会继续下降。生物生产机器人的发展,尤其是具有专业知识的那一类型的生物生产机器人的发展,将能满足保存某些农业专业技能的需要;(3)如果生产要继续,那么劳力缺乏问题必将导致劳动力价格的上涨;(4)市场对产品质量的要求已成为生物生产的一个重要因素,而产品质量的评估主要是靠人来判断的,虽然人的感觉和判断能力还未完全被机器所替代,但人的判断的稳定性和一致性是不可靠的,为此人们花费了相当大的精力来解决机器的感知能力问题,这也是生物生产机器人的一项重要特征。 生物生产机器人需要处理处于生长状态的生物体。处于生长状态的植物和动物的属性是动态变化的,生物生产机器人常需适应作业对象的个别变化特性。 要使生物生产机器人适合生物体的特征,生物生产机器人的组成和性能就可能不同与工业机器人。首先,生物体的属性是各种各样且多变的,因而生物生产机器人在处理生物体时必须是灵活的、多功能的,在大多数情况下,当末端执行器与生物体相接触时柔性处理是必要的。第二,在识别周围环境时常希望机器人具有一定程度的智能。第三,机器人常要在非结构化的、苛刻的和变化的环境下作业。第四,除了那些传统机器人所具备的安全装置之外,当生物生产机器人与操作人员一起作业时可能还需要一些特殊的安全装置。最后,为使机器人能获得潜在的使用者的认可,它的操作界面必须简单,且货币投资要有成本效益。

工业机器人基础复习题知识讲解

1、机器人安应用类型可以分为工业机器人、极限作业机器人和娱乐机器人。2﹑机器人按照控制方式可分为点位控制方式、连续轨迹控制方式、力(力矩)控制方式和智能控制方式。 3、工业机器人的坐标形式主要有直角坐标型、圆柱坐标型、球坐标型、关节坐标型和平面关节型。 4、直角坐标机器人的工作范围是长方形形状;圆柱坐标机器人的工作范围是圆柱体形状;球坐标机器人的工作范围是球面一部分状。 5、工业机器人的参考坐标系主要有关节坐标系、工具参考坐标系、全局参考系坐标系。 6、工业机器人的传动机构是向手指传递运动和动力,该机构根据手指的开合动作特点可以分为回转型和移动型。 7、吸附式取料手靠吸附力取料,根据吸附力的不同分为磁吸附和气吸附两种。 8、气吸附式取料手是利用吸盘内的压力和大气压之间的压力差而工作。按形成压力差的方法,可分为真空吸盘吸附、气流负压气吸附、挤压排气负压气吸附几种。 9、手臂是机器人执行机构的重要部件,它的作用是支待手腕并将被抓取的工件运送到指定位置上,一般机器人的手臂有3个自由度,即手臂的伸缩升降及横向移动、回转运动和复合运动。 10、机器人的底座可分为固定式和移动式两种。 11、谐波齿轮传动机构主要有柔轮、刚轮和波发生器三个主要零件构成。 12、谐波齿轮通常将刚轮装在输入轴上,把柔轮装在输出轴上,以获得较大的齿轮减速比。 13、机器人的触觉可以分为接触觉、接近觉、压觉、滑觉和力觉五种。 14、机器人接触觉传感器一般由微动开关组成,根据用途和配置不同,一般用于探测物体位置,路径和安全保护。 二、选择题 1、世界上第一台工业机器人是(B ) A、Versatran B、Unimate C、Roomba D、AIBO 2、通常用来定义机器人相对于其它物体的运动、与机器人通信的其它部件以及运动部件的参考坐标系是( C ) A、全局参考坐标系 B、关节参考坐标系 C、工具参考坐标系 D、工件参考坐标系 3、用来描述机器人每一个独立关节运动参考坐标系是( B ) A、全局参考坐标系 B、关节参考坐标系 C、工具参考坐标系 D、工件参考坐标系 4、夹钳式取料手用来加持方形工件,一般选择(A )指端。 A、平面 B、V型 C、一字型 D、球型 5、夹钳式取料手用来加持圆柱形工件,一般选择( B )指端。 A、平面 B、V型 C、一字型 D、球型 6、夹钳式手部中使用较多的是( D ) A、弹簧式手部 B、齿轮型手部 C、平移型手部 D、回转型手部 7、平移型传动机构主要用于加持( C )工件。

机器人基本构成

机器人基本构成 机器人系统通常分为三大部分:机械部分、传感部分和控制部分;六个子系统:驱动系统、机械系统、感知系统、人机交互系统、机器人环境交互系统、控制系统等组成(如图1所示)。 图1 机器人系统的基本构成 1.机械系统 机械系统又称操作机或执行机构系统,由一系列连杆、关节或其他形式的运动部件组成,通常包括机座、立柱、腰关节、臂关节、腕关节和手爪等,构成多自由度机械系统。 工业机器人机械系统由机身、手臂和末端执行器组成,机身可具有行走机构,手臂一般有上臂、下臂和手腕组成,末端执行器直接装在手腕上,可以是两手指或多手指手爪,可以是喷漆枪、焊枪等作业工具。 2.驱动系统 驱动系统主要指驱动机械系统的机械装置,根据驱动源不同可分为电动、液压、气动三种或三者结合一起的综合系统;驱动系统可以直接与机械系统相连,或通过皮带、链条、齿轮等机械传动机构间接相连。 3.感知系统 感知系统由内部传感器模块和外部传感器模块组成,获取内部和外部环境状态信息,确定机械部件各部分的运行轨迹、状态、位置和速度等信息,使机械部件各部分按预定程序和

工作需要进行动作。智能传感器的使用提高了机器人的机动性、适应性和智能化水平。人类感知系统对外部信息获取比较灵巧,但一些特殊信息传感器感知更有效。 4.控制系统 控制系统的任务是根据机器人的作业指令程序以及从传感器反馈回来的信号支配机器人的执行机构完成规定的运动和功能。若不具备信息反馈特种,则为开环控制系统;具备信息反馈特征则为闭环控制系统。根据控制原理可分为程序控制系统,适应性控制系统,人工智能控制系统;根据控制运动形式分为点位控制和轨迹控制。 5.交互系统 机器人-环境交互系统是实现机器人与外部环境中的设备相互联系和协调的系统。机器人可以与外部设备集成为一个功能单元,如加工制造单元、焊接单元、装配单元等;也可以是多台机器人、多台机床、设备、零件存储装置等集成为一个可执行复杂任务的功能单元。 人机交互系统是操作人员参与机器人控制并与机器人进行联系的装置,如计算机终端、指令控制台、信息显示板及危险信号报警器等。主要有两类:指令给定装置和信息显示装置。

工业机器人分类本体结构及技术指标

工业机器人分类、本体结构和技术指标 “工业机器人”专项技能培训——杜宇 英属哥伦比亚大学(UBC)博士 大连大华中天科技有限公司CEO 主要内容 一、常用运动学构型 二、机器人的主要技术参数 三、机器人常用材料 四、机器人主要结构 五、机器人的控制系统 一、常用运动学构形 1、笛卡尔操作臂 优点:很容易通过计算机控制实现,容易达到高精度。 缺点:妨碍工作, 且占地面积大, 运动速度低, 密封性不好。 ①焊接、搬运、上下料、包装、码垛、拆垛、检测、探伤、 分类、装配、贴标、喷码、打码、(软仿型)喷涂、目标跟 随、排爆等一系列工作。 ②特别适用于多品种,便批量的柔性化作业,对于稳定,提 高产品质量,提高劳动生产率,改善劳动条件和产品的快速 更新换代有着十分重要的作用。 2、铰链型操作臂(关节型) 关节机器人的关节全都是旋转的, 类似于人的手臂,工业机器人中最 常见的结构。它的工作范围较为复杂。 ①汽车零配件、模具、钣金件、塑料制品、运动器材、玻璃制品、陶 瓷、航空等的快速检测及产品开发。 ②车身装配、通用机械装配等制造质量控制等的三坐标测量及误差检 测。 ③古董、艺术品、雕塑、卡通人物造型、人像制品等的快速原型制作。 ④汽车整车现场测量和检测。 ⑤人体形状测量、骨骼等医疗器材制作、人体外形制作、医学整容等。 3、SCARA操作臂 SCARA机器人常用于装配作业, 最显著的特点是它们 在x-y平面上的运动具有较大的柔性, 而沿z轴具有 很强的刚性, 所以, 它具有选择性的柔性。这种机器 人在装配作业中获得了较好的应用。 ①大量用于装配印刷电路板和电子零部件 ②搬动和取放物件,如集成电路板等 ③广泛应用于塑料工业、汽车工业、电子产品工业、 药品工业和食品工业等领域. ④搬取零件和装配工作。

浙江大学生物系统工程-生物生产机器人-复习整理

Definition of a bio-production robot Bio-production robot is a machine system, with or without a manipulator, is able to work in some area people cannot reach and bear or operate some task more efficiency than human. It has its own control algorithm and sensing system to manage a human intelligence. Why necessary? 1. Some task are not suitable to human but require human intelligence to perform. 2. The availability of farming labor is decreasing quickly in recent years. 3. Labor shortage result in the increasing of workforce cost, making a increasing of this robot demanding. 4. The demanding of product quality and quantity has become an important factor in bio-production and economic. Main physical properties of biological objects Basic physical properties are shape, size, mass, density, surface texture; Dynamic properties are cutting resistance, frictional resistance, elasticity and viscostiry; Optical properties are reflectance and transmittance; Sonic properties are vibration property and wave propagation; Electrical properties are electrical resistance, capacitance and static electrical property. Features of bio-production robot 1. Needs to be flexible and versatile in handling objects. 2. Has the intelligence to recognize the surrounding of the objects. 3. Able to work in a changeable, unstructured environments. 4. Safety assurance is available when working with human in tandem. 5. Easy to operate by human and cost effective in its monetary investment. Difference between bio-production robot and industrial robot. Industrial robot is good at handling objects with regular and static properties, but bio-production robot is often required to manipulate object of various properties.

机器人的基本结构原理

教案首页 课程名称农业机器人任课教师李玉柱第2章机器人的基本结构原理计划学时 3 教学目的和要求: 1.弄清机器人的基本构成; 2.了解机器人的主要技术参数; 3.了解机器人的手部、腕部和臂部结构; 4.了解机器人的机身结构; 5.了解机器人的行走机构 重点: 1.掌握机器人的基本构成 2.弄清机器人都有哪些主要技术参数 3.机器人的手部、腕部和臂部结构 难点: 机器人的手部、腕部和臂部结构 思考题: 1.机器人由哪些部分组成? 2.机器人的主要技术参数有哪些? 3.机器人的行走机构共分几类,请想象未来的机器人能 否有其它类型的行走机构?

第2章概论 教学主要内容: 2.1机器人的基本构成 2.2机器人的主要技术参数 2.3人的手臂作用机能初步分析 2.4机器人的机械结构构成 2.5机器人的手部 2.6机器人的手臂 2.7机器人的机身 2.8机器人的行走机构 本章介绍了机器人的基本构成、主要技术参数,人手臂作用机能,在此基础上对机器人的手部、手腕、手部、。机身、行走机构等原理及相关的结构设计进行讨论,使学生对机器人的机构和原理有较为清楚的了解。 2.1机器人的基本构成 简单地说:机器人的原理就是模仿人的各种肢体动作、思维方式和控制决策能力。 不同类型的机器人其机械、电气和控制结构也不相同,通常情况下,一个机器人系统由三部分、六个子系统组成。这三部分是机械部分、传感部分、控制部分;六个子系统是驱动系统、机械系统、感知系统、人机交互系统、机器人-环境交互系统、控制系统等。如图2-1所示。

●是由关节连在一起的许多机械连杆的集合体, 关节通常分为转动关节和移动关节,移动关节允许连杆做直线移动,转动关节仅允许连杆之间发生旋转运动。 个主要部●常规的驱 接地与臂、腕或手上的机械连杆或关节连接在一起,也可以使用齿轮、带、链条等机械传动机构间接传动。 ●感知系统 ....由一个或多个传感器组成,用来获取内部和外部环境中的有用信息,通过这些信息确定机械部件各部分的运行轨迹、速度、位置和外部环境状态,使机械部件的各部分按预定程序或者工作需要进行动作。传感器的使用提高了机器人的机动性、适应性和智能化水平。 ●控制系统 ....其任务是根据机器人的作业指令程序以及从传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。若机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。根据控制原理,控制系统又可分为程序控制系统、

工业机器人的结构与组成

. ..工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座和执行机构, 包括臂部、腕部和手部,有的机器人还有行走机构。大多数工业机器人有3~6个运动自由度,其中腕部通常有1~3个运动自由度;驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作;控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。 工业机器人按臂部的运动形式分为四种。直角坐标型的臂部可沿三个直角坐标移动;圆柱坐标型的臂部可作升降、回转和伸缩动作;球坐标型的臂部能回转、俯仰和伸缩;关节型的臂部有多个转动关节。 工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。点位型只控制执行 机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。 工业机器人按程序输入方式区分有编程输入型和示教输入型两类。编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。 示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演一遍。在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。示教输入程序的工业机器人称为示教再现型工业机器人。 具有触觉、力觉或简单的视觉的工业机器人,能在较为复杂的环境下工作;如具有识别功能或更进一步增加自适应、自学习功能,即成为智能型工业机器人。它能按照人给的“宏指令”自选或自编程序去适应环境,并自动完成更为复杂的工作。

浙江大学生物系统工程-生物生产机器人-卷子2

1.生物生产机器人的组成和性能与工业机器人相比有什么不同?答:首先,生物体的属性是各种各样且多变的,因而生物生产机器人在处理生物体时必须是灵活的、多功能的,在大多数情况下,当末端执行器与生物体相接触时柔性处理是必要的。第二,在识别周围环境时常希望机器人具有一定程度的智能。第三,机器人常要在非结构化的、苛刻的和变化的环境下作业。第四,除了那些传统机器人所具备的安全装置之外,当生物生产机器人与操作人员一起作业时可能还需要一些特殊的安全装置。最后,为使机器人能获得潜在的使用者的认可,它的操作界面必须简单,且货币投资要有成本效益。 2.比较北美、东亚和欧洲的生物生产系统的不同特点及对生物生产机器人的要求? 答:在北美(美国和加拿大),常是只有很少农民的大型农场及用于大块田地的大型机械。当机器人引入大型系统时,通过各种全球定位系统进行控制会很有效。在这种系统中,由于是大型的单一作物区域,一个农场主所需的机器人数量比较少。 在东亚,主要是小规模的生物生产系统和有许多农民的密集型农业,在他们的生产系统中,优质产品是在较小区域里耗费大量的劳力、精力和时间获得的。东亚的褶皱地型形成了各种小平原、丘陵、流域、小山、温室和植物工厂,还有在这些区域的各种各样的环境条件。为了获得较高的产量和质量,必须在适宜的季节和区域种植适宜的生物种类。在一个含多种种植地型的生产系统,需要一个单操作器多机器人(one-operator-several-robots)系统。 欧洲的情况在东亚和北美之间。 3.生物生产机器人开发的三大推动力是什么? 答:(1) 工程理论和技术,包括机械学、电子学、机器视觉、模糊控制、人工智能、神经网络等; (2) 生物科学,包括因为植物学、动物学、食品科学、生物原料加工过程等;

《工业机器人技术基础》课程试卷C卷

xxxxxxxxx职业学院 xxxxxx学年第xx学期期末考试 《工业机器人技术基础》课程试卷C卷 (适用于工业机器人技术专业) 考试形式:闭卷答题时间:90 分钟 一、填空题(1~10题,每空1分,共20分) 1.工业机器人是由、电动机、减速机和组成的,用于从事工业生产,能够自动执行工作指令的机械装置。 2. 目前,国际上的工业机器人公司主要分为日系和欧系。日系中主要有安川、OTC、松下和发那 科。欧系中主要有德国的、CLOOS、瑞士的、意大利的COMAU,英国的Autotech Robotics。 3. 按作业任务的不同,工业机器人通常可以分为焊接、、装配、、喷涂等类型机器。4.机器人运动学是研究末端执行器的位置和姿态与之间的关系,而与产生该位姿所需的无关。 5. 在机器人学科里经常用和来描述空间机器人的位姿。 6. 机器人臂部是为了让机器人的末端执行器达到任务所要求的。机器人腕部是臂部和手部的 连接部件,起支承手部和改变手部的作用。 7. 夹钳式是工业机器人最常用的一种手部形式。夹钳式一般由、驱动装置、和支架等组 成。 8. 目前应用于工业机器人的减速器产品主要有三类,分别是、RV减速器和三大类。 9. 机器人控制系统按其控制方式可分为、主从控制系统、。 10. 机器人语言系统包括三个基本状态:、编辑状态、。二、选择题(11~20题,每小题2分,共20分) 11.()是指机器人末端执行器的实际位置和目标位置之间的偏差,由机械误差、控制算法与系统分辨率等部分组成。 A. 定位精度 B. 作业范围 C. 重复定位精度 D. 承载能力12.下列所述的()项为水平多关节机器人。 A. Versatran B. SCARA C. Unimate D. PUMA562 13. 刚体在三维空间中的位姿可用()来描述。 A. 由位置矢量和方向余弦阵组成的3x4矩阵 B. 由位置矢量组成的3x1矩阵 C. 由位置矢量和方向余弦阵组成的4x4矩阵 D. 由方向余弦阵组成的3x3矩阵14.坐标变换中相对固系或动系的变换说法正确的有()。 A. 若相对固系变换则变换矩阵需依次右乘 B. 若相对动系变换则变换矩阵需依次左乘 C. 相对固系或动系变换其矩阵相乘顺序不变 D. 若相对动系变换则变换矩阵需依次右乘 15. D-H法规定:{n}系变换到{n+1}系的核心变换步骤为:()。 A. z n转→z n移→x n移→x n转 B. z n转→x n转→z n移→x n移 C. z n移→x n移→z n转→x n转 D. x n转→z n转→z n移→x n移 16. 对选择工业机器人传感器需要考虑的因素表述错误的有()。 A. 传感器选择需要考虑其灵敏度、线性度 B. 传感器选择仅需要考虑其价格和响应时间 C. 传感器选择需要考虑其分辨率、重复性 D. 传感器选择需要考虑其测量范围、测量精度 17. 假设检测角度精度为0.1,则增量式光电编码器的透光缝隙数不少于()。 A. 500; B. 1800; C. 3600; D.无法确定。 18. 下列传感器不可归类于机器人外部传感器的有()。 A. 触觉传感器 B. 应力传感器 C. 接近度传感器 D. 力学传感器 19. 新型机器人控制器应具有不属于()项所描述的特色。 A. 系统结构开放 B. 模块化设计合理 C. 任务划分有效 D. 实时性少任务要求 20 工业机器人常用的编程方式是:()。 A. 示教编程和离线编程 B.示教编程和在线编程 C. 在线编程和离线编程 D.示教编程和软件编程

相关主题
文本预览
相关文档 最新文档