当前位置:文档之家› 柔性材料与可穿戴电子传感器前景资料报告.docx

柔性材料与可穿戴电子传感器前景资料报告.docx

柔性材料与可穿戴电子传感器前景资料报告.docx
柔性材料与可穿戴电子传感器前景资料报告.docx

柔性材料与可穿戴电子传感器前景资料报告通过这个学期的学习我对柔性材料和电子传感器有了一些了解。

一:柔性与柔性材料

1.1柔性材料的定义

柔性英文为Flexible,也可解释为挠性,是相对刚性而言的一种物体特性。挠性是指物体受力后变形,作用力失去之后物体自身不能恢复原来形状的一种物理性质。而刚性物体受力后,在宏观来看其形状可视为没有发生改变。弹性是指物体受力后变形,作用力失去之后物体自身能恢复原来形状的一种物理性质。其侧重物体的变形结果,而挠性侧重物体自身性质。因而柔性材料是指可伸缩,弯曲,扭转,变形而不失去性能的材料。通过这一性能我们可以得到许多延展性及曲度很高的电子材料。在查阅资料的过程中我还了解到了一种与本课题有关的但是处于初步阶段的电子技术——柔性电子技术。

1.2柔性材料的发展前景

柔性电子可概括为是将有机/无机材料电子器件制作在柔性/可延性塑料或薄金属基板上的新兴电子技术,以其独特的柔性/延展性以及高效、低成本制造工艺,在信息、能源、医疗、国防等领域具有广泛应用前景,如柔性电子显示器、有机发光二极管OLED、印刷RFID、薄膜太阳能电池板、电子用表面粘贴(Skin Patches)等。与传统IC技术一样,制造工艺和装备也是柔性电子技术发展的主要驱动力。柔性电子制造技术水平指标包括芯片特征尺寸和基板面积大小,其关键是如何在更大幅面的基板上以更低的成本制造出特征尺寸更小的柔性电子器件。柔性电子技术有可能带来一场电子技术革命,引起全世界的广泛关注并得到了迅速发展。美国《科学》杂志将有机电子技术进展列为2000年世界十大科技成果之一,与人类基因组草图、生物克隆技术等重大发现并列。美国科学家艾伦黑格、艾伦·马克迪尔米德和日本科学家白川英树由于他们在导电聚合物领域的开创性工作获得2000年诺贝尔化学奖。西方发达国家纷纷制定了针对柔性电子的重大研究计划,如美国FDCASU计划、日本TRADIM计划、欧盟第七框架计划中PolyApply和SHIFT计划等,仅欧盟第七框架计划就投入数十亿欧元的研发经费,重点支持柔性显示器、聚合物电子的材料/设计/制造/可靠性、柔性电子器件批量化制造等方面基础研究。

在最近的10年间,康奈尔大学、普林斯顿大学、哈佛大学、西北大学、剑桥大学等国际著名大学都先后建立了柔性电子技术专门研究机构,对柔性电子的

材料、器件与工艺技术进行了大量研究。柔性电子技术同样引起了我国研究人员的高度关注与重视,在柔性电子有机材料制备、有机电子器件设计与应用等方面开展了大量的基础研究工作,并取得了一定进展。中国科学院长春应用化学研究所、中国科学院化学研究所、中国科学技术大学、华南理工大学、清华大学、西安电子科技大学、天津大学、浙江大学、武汉大学、复旦大学、南京邮电大学、上海大学等单位在有机光电(高)分子材料和器件、发光与显示、太阳能电池、场效应管、场发射、柔性电子表征和制备、平板显示技术、半导体器件和微图案加工等方面进行了颇有成效的研究。近年来,华中科技大学在RFID封装和卷到卷制造、厦门大学在静电纺丝等方面取得了研究进展。在SpringerLink上也有着一些相关的文献。·

二:可穿戴的电子传感器

随着智能终端的普及,可穿戴电子设备呈现出巨大的市场前景。传感器作为核心部件之一,将影响可穿戴设备的功能设计与未来发展。柔性可穿戴电子传感器具有轻薄便携、电学性能优异和集成度高等特点,使其成为最受关注的电学传感器之一。

传感器在人体健康监测方面发挥着至关重要的作用。近年来,人们已经在可穿戴可植入传感器领域取得了显著进步,例如利用电子皮肤向大脑传递皮肤触觉信息,利用三维微电极实现大脑皮层控制假肢,利用人工耳蜗恢复病人听力等。然而,实现柔性可穿戴电子传感器的高分辨、高灵敏、快速响应、低成本制造和复杂信号检测仍然是一个很大的挑战。

2.1柔性可穿戴电子传感器机械力信号转换

有效地将外部刺激转化为电信号是柔性可穿戴电子传感器监测身体健康状况的关键技术。柔性可穿戴电子传感器的信号转换机制主要分为压阻、电容和压电三大部分。

压阻:压阻传感器可以将外力转换成电阻的变化(与施加压力的平方根成正比),进而可以方便地用电学测试系统间接探测外力变化。而导电物质间导电路径的变化是获得压阻传感信号的常见机理。由于其简单的设备和信号读出机制,这类传感器得到广泛应用。

电容:电容是衡量平行板间容纳电荷能力的物理量。传统的电容传感器通过改变正对面积s和平行板间距d来探测不同的力,例如压力,剪切力等。电容式传感器的主要优势在于其对力的敏感性强,可以实现低能耗检测微小的静态力。鲍哲楠等在弹性基底上制备了电容型透明可拉伸的碳纳米管传感器,对压力和拉力同时有响应。

压电:压电材料是指在机械压力下可以产生电荷的特殊材料。这种压电特性是由存在的电偶极矩导致的。电偶极矩的获得是靠取向的非中心对称晶体结构变形,或者孔中持续存在电荷的多孔驻极体。压电系数是衡量压电材料能量转换效率的物理量,压电系数越高,能量转换的效率就越高。高灵敏,快速响应和高压电系数的压电材料被广泛应用于将压力转换为电信号的传感器。

2.2.柔性可穿戴电子的常用材料

有机材料:典型的场效应晶体管是由源极、漏极、栅极、介电层和半导体层五部分构成。根据多数载流子的类型可以分为p型(空穴)场效应晶体管和 n 型(电子)场效应晶体管。传统上用于场效应晶体管研究p型聚合物材料主要是噻吩类聚合物,其中最为成功的例子便是聚(3-己基噻吩)(P3HT)体系。萘四酰亚二胺

(NDI)和苝四酰亚二胺(PDI)显示了良好的 n型场效应性能,是研究最为广泛的n 型半导体材料,被广泛应用于小分子n型场效应晶体管当中。通常晶体管参数有载流子迁移率、运行电压和开/关电流比等。与无机半导体结构相比,有机场效应晶体管(OFET)具有柔性高和制备成本低的优点,但也有载流子迁移率低和操作电压大的缺点。近来,鲍哲楠等设计了一种具有更高噪声限度的逻辑电路。通过优化掺杂厚度或浓度,基于n型和 p 型碳纳米管晶体管的设计可用来调节阈值电压。

碳材料:柔性可穿戴电子传感器常用的碳材料有碳纳米管和石墨烯等。碳纳米管具有结晶度高、导电性好、比表面积大、微孔大小可通过合成工艺加以控制,比表面利用率可达 100%的特点。石墨烯具有轻薄透明,导电导热性好等特点。在传感技术、移动通讯、信息技术和电在碳纳米管的应用上,Chu等利用多臂碳纳米管和银复合并通过印刷方式得到的导电聚合物传感器,在 140%的拉伸下,导电性仍然高达20 S?cm-1在碳纳米管和石墨烯的综合应用上,Lee 等制备了可以高度拉伸的透明场效应晶体管,其结合了石墨烯/单壁碳纳米管电极和具有褶皱的无机介电层单壁碳纳米管网格通道。由于存在褶皱的氧化铝介电层,在超过一千次20%幅度的拉伸-舒张循环下,没有漏极电流变化,显示出了很好的可持续性。

2.3.柔性电子传感器的印刷制造

与传统自上而下的光刻技术相比,印刷电子技术拥有弯曲与拉伸性好、可以在柔性基底大规模制备、加工设备简单、成本低和污染小等优点。

通过调控墨水、基材等打印条件,成功制备了一系列特殊结构和图案: 利用“咖啡环”现象制备线宽可达5 μm的金属纳米粒子图案;提出了一种通过控制液膜破裂实现了多种纳米粒子大面积精确组装的普适方法,这种新型图案化技术可以简便地进行纳米粒子微、纳米尺度图案的精确组装,可以通过“印刷”方式大面积制备纳米粒子组装的精细图案和功能器件,乃至实现单个纳米粒子的组装与图案化;通过喷墨打印技术构筑微米尺度的电极图案作为“模板”,控制纳米材料的组装过程成功制备了最高精度可达30 nm的图案,并实现了柔性电路的应用。这种新型的图案化技术非常简便地实现了功能纳米材料的微纳米精确图案化组装,在过程中完全避免了传统的光刻工艺,这种“全增材制造”的方法通过“先打印,再印刷”的方式,能够大面积制备纳米材料组装的精细图案和功能器

件;利用特殊图案化硅柱阵列为模板制备了周期与振幅可控的曲线阵列,真空蒸镀上金电极,得到对微小形变有稳定电阻变化的传感器芯片。

2.4.可穿戴传感器的应用

可穿戴传感器除了具有压力传感功能,还具有现实和潜在应用的多种功能,体温和脉搏检测、表情识别和运动监测等。

温度检测:人体皮肤对温度的感知帮助人们维持体内外的热量平衡。电子皮肤的概念最早由 Rogers 等提出,由多功能二极管、无线功率线圈和射频发生器等部件组成。这样的表皮电子对温度和热导率的变化非常敏感,可以评价人体生理特征的变化,比如皮肤含水量,组织热导率,血流量状态和伤口修复过程。为了提高空间分辨率、信噪比和响应速度,有源矩阵设计成为了最优选择之一。Ha 等制备了包含单壁碳纳米管薄膜晶体管的,可拉伸的聚苯胺纳米纤维温度传感器有源矩阵。其展示了 1.0%?℃-1的高电阻灵敏性,在15到45 ℃范围内得到了1.8 s 的响应时间,在双向拉伸 30%下依然保持稳定。

脉搏检测:可穿戴个人健康监护系统被广泛认为是下一代健康监护技术的核心解决方案。监护设备不断地感知、获取、分析和存储大量人体日常活动中的生理数据,为人体的健康状况提供必要的、准确的和长期的评估和反馈。在脉搏监测领域,可穿戴传感器具有以下应用优势: (1)在不影响人体运动状态的前提下长时间的采集人体日常心电数据,实时的传输至监护终端进行分析处理; (2)数

据通过无线电波进行传输,免除了复杂的连线。可以粘附在皮肤表面的电学矩阵在非植入健康监测方面具有明显优势,而且超轻超薄,利于携带。最近,鲍哲楠等发展了一种基于微毛结构的柔性压力传感器(见图6)。这种传感器对信号的放大作用很强。通过传感器与不规则表皮的有效接触最大化,观察到了大约12倍的信噪比增强。另外,这种 PDMS 的微毛结构表面层提供了生物兼容性的非植入皮肤共形附着。最后,这种便携式的传感器可以无线传输信号,即使微弱的深层颈内静脉搏动也可以获取到。

三:总结

通过目前所收集到的资料和导师的指导,针对于可穿戴设备和传感器这一方面,我觉得我们可以做一个能实时准确地监控人的脉搏检查人体健康的产品。

柔性电子传感器详解

柔性电子传感器详解 目前,许多智能化的检测设备已经大量地采用了各种各样的传感器,其应用早已渗透到诸如工业生产、海洋探测、环境保护、医学诊断、生物工程、宇宙开发、智能家居等方方面面。随着信息时代的应用需求越来越高,对被测量信息的范围、精度和稳定情况等各性能参数的期望值和理想化要求逐步提高。针对特殊环境与特殊信号下气体、压力、湿度的测量需求,对普通传感器提出了新的挑战。 面对越来越多的特殊信号和特殊环境,新型传感器技术已向以下趋势发展:开发新材料、新工艺和开发新型传感器;实现传感器的集成化和智能化;实现传感技术硬件系统与元器件的微小型化;与其它学科的交叉整合的传感器。同时,希望传感器还能够具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点。随着柔性基质材料的发展,满足上述各类趋势特点的柔性传感器在此基础上应运而生。 柔性传感器的特点与分类 1、柔性传感器的特点 柔性材料是与刚性材料相对应的概念,一般,柔性材料具有柔软、低模量、易变形等属性。常见的柔性材料有:聚乙烯醇( P V A ) 、聚酯( P E T ) 、聚酰亚胺( P I ) 、聚萘二甲酯乙二醇酯( P E N ) 、纸片、纺织材料等

而柔性传感器则是指采用柔性材料制成的传感器,具有良好的柔韧性、延展性、甚至可自由弯曲甚至折叠,而且结构形式灵活多样,可根据测量条件的要求任意布置,能够非常方便地对复杂被测量进行检测。新型柔性传感器在电子皮肤、医疗保健电子、电工、运动器材、纺织品、航天航空、环境监测等领域受到广泛应用。 2、柔性传感器的分类 柔性传感器种类较多,分类方式也多样化。 按照用途分类,柔性传感器包括柔性压力传感器、柔性气体传感器、柔性湿度传感器、柔性温度传感器、柔性应变传感器、柔性磁阻抗传感器和柔性热流量传感器等;按照感知机理分类,柔性传感器包括柔性电阻式传感器、柔性电容式传感器、柔性压磁式传感器和柔性电感式传感器等。 柔性传感器的常用材料 1、柔性基底为了满足柔性电子器件的要求,轻薄、透明、柔性和拉伸性好、绝缘耐腐蚀等性质成为了柔性基底的关键指标。 在众多柔性基底的选择中,聚二甲基硅氧烷(PDMS成为了人们的首选。它的优势包括方便易得、化学性质稳定、透明和热稳定性好等。尤其在紫外光下粘附区和非粘附区分明的特性使其表面可以很容易的粘附电子材料。很多柔性电子设备通过降低基底的厚度来获得显著的

柔性可穿戴电子传感器常用材料

毕业论文设计

柔性可穿戴电子传感器常用材料 摘要随着智能终端的普及,可穿戴电子设备呈现出巨大的市场前景。传感器作为核心部件之一,将影响可穿戴设备的功能设计与未来发展。柔性可穿戴电子传感器具有轻薄便携、电学性能优异和集成度高等特点,使其成为最受关注的电学传感器之一。经过分析近年来柔性传感器的研究、设计和制造现状后,综述了柔性可穿戴电子传感器的常用材料,最后并提出了柔性可穿戴电子传感器面临的挑战与未来的发展方向。 关键词可穿戴电子;柔性传感器 The Common Materials of Flexible Wearable Electronic Sensors Abstract With the development of intelligent terminals, wearable electronic devices show a great market prospect. As one core component of the wearable electronic device, the sensor will exert a significant influence on the design and function of the wearable electronic device in the future. Compared with the traditional electrical sensors, flexible wearable sensors have the advantages of being light, thin, portable, highly integrated and electrically excellent. It has become one of the most popu-lar electronic sensors. This review focused on recent research advances of flexible wearable sensors, including signal trans-duction mechanisms, general materials, manufacture processes and recent applications. Piezoresistivity, capacitance and pie-zoelectricity are three traditional signal transduction mechanism. For accessing the dynamic pressure in real time and devel-oping stretchable energy harvesting devices, sensors based on the mechanoluminescent mechanism and triboelectric mecha-nism are promising. Common materials used in flexible wearable electronic sensors, such as flexible substrates, metals, inor-ganic semiconductors, organics and carbons, are also introduced. In addition to the continuously mapping function, wearable sensors also have the practical and potential applications, which focused on the temperature and pulse detection, the facial expression recognition and the motion monitoring. Finally, the challenges and future development of flexible wearable sen-sors are presented. Keywords wearable electronics; flexible sensor; printing manufacture; body monitoring 目录 1 引言 (4)

SI4-G柔性压力传感器

?已通过ROHS 认证 笔尖柔性压力传感器 SI4-G SI4-G 柔性压力传感器是苏州能斯达电子科技有限公司融合了纳米敏感材料和先进印刷制程,采用自主独立知识产权最新开发并可以满足客户需求的标准型压力传感器。 标识 尺寸(mm) 长度16敏感区外径5敏感区内径 3.4Pin 脚距离 1.0 尺寸表 尺寸图 产品特性

SI4-G 柔性压力传感器由机械性能优异的超薄膜、优异导电材料和纳米压力敏感层组成。当传感器感知到外界压力时,传感器电导率发生变化,外界压力越大传感器电导率就越高。即传感器零负载时为高阻值显示,当传感器感知外界压力后,阻值会相应变化,力度越大阻值越小。采用简单的电路即可将这种电导率的变化转化为与外界压力相匹配的输出电信号。 力敏特性 注意: 图表中曲线是由在实验室条件下测得的数据绘制而成,曲线关系仅供参考,实际数据请根据具体应用情况安装后测试。 性能参数量程0-500g 厚度<0.25mm 外观尺寸见尺寸表响应点<30g 重复性<±7.7%(50%负载) 一致性±10%耐久性>100万次初始电阻>10M Ω(无负载) 响应时间<1ms 恢复时间<15ms 测试电压典型值DC 3.3V 工作温度-20°C -60°C 电磁干扰EMI 不产生静电释放EDS 不敏感 参数表 产品特性

参考电路 参考电路一: 采用分压方式测量。将压力变化在 传感器上产生的电阻值的变化,转 换为电压的变化,Vout为输出电 压,可接到后端电路。 ●根据实际情况选择R1,通常 可取47kΩ~1MΩ; ●无压力时,传感器阻值在 10MΩ以上,等效于断路。 参考电路二: 在分压测量的基础上,增加运算放 大器电路,可提高电压测量分辨 率;增大驱动电流。 ●根据实际情况选择电路参数; ●无压力时,传感器阻值在 10MΩ以上,近似断路。 注意事项 传感器使用时尽量使所受负载均匀,避免尖锐物体直接接触传感器; 超量程使用会降低传感器性能甚至破坏传感器; 力敏特性曲线仅供参考; 传感器端子为铜镀锡材质,可根据需求自行焊接引线。需注意,焊接温度不宜太高,建议不超过300℃,接触时间不超过1秒,以免高温使薄膜衬底融化变形。

可穿戴式柔性电子应变传感器_蔡依晨

2017年 第62卷 第7期:635 ~ 649 引用格式: 蔡依晨, 黄维, 董晓臣. 可穿戴式柔性电子应变传感器. 科学通报, 2017, 62: 635–649 Cai Y C, Huang W, Dong X C. Wearable and flexible electronic strain sensor (in Chinese). Chin Sci Bull, 2017, 62: 635–649, doi: 10.1360/N972015-01445 ? 2016《中国科学》杂志社 https://www.doczj.com/doc/c82957485.html, https://www.doczj.com/doc/c82957485.html, 《中国科学》杂志社 SCIENCE CHINA PRESS 自然科学基金项目进展专栏 评 述 可穿戴式柔性电子应变传感器 蔡依晨1,2, 黄维1,2*, 董晓臣1,2* 1. 南京工业大学, 江苏省柔性电子重点实验室, 南京 211816; 2. 南京工业大学海外人才缓冲基地(先进材料研究院), 国家级“江苏先进生物与化学制造协同创新中心”柔性电子研究部, 南京 211816 * 联系人, E-mail: iamxcdong@https://www.doczj.com/doc/c82957485.html,; iamwhuang@https://www.doczj.com/doc/c82957485.html, 2016-09-29收稿, 2016-10-20修回, 2016-10-22接受, 2016-12-30网络版发表 国家杰出青年科学基金(61525402)和国家重点基础研究发展计划(2014CB660808)资助 摘要 传统的电子应变传感器大多基于金属和半导体材料, 其便携性、柔韧性和可穿戴特性差. 随着柔性电子材料和传感技术的快速发展, 柔性应变传感器在电子皮肤和机器人等领域的应用引起人们越来越广泛的关注. 由于生物相容性好, 同时兼具可穿戴性、实时监测、非侵入式等一系列优点, 高弹性和可拉伸性应变传感器的开发逐渐成为研究热点. 本文综述了近年来可穿戴式柔性电子应变传感在材料发展、传感机理、集成输出及潜在应用等方面的研究进展, 对可穿戴式柔性电子传感器所面临的挑战做了简单讨论, 提出了一系列可能的优化及解决方案, 并对其未来的发展方向进行了展望. 关键词 可穿戴式, 柔性电子, 应变传感, 电子器件 近年来, 柔性电子应变传感器件的发展非常迅速, 可以用来检测各种人体生理活动, 包括较大幅度的手、胳膊和腿的弯曲移动以及较小幅度的呼吸、吞咽、发声时肌肉震动、血压和眼压等[1,2]. 可穿戴电子传感器以信号传导的形式将生理活动信号转换为可视的电信号, 在人体临床诊断、健康评估、健康监控、虚拟电子、柔性触摸屏、柔性电子皮肤, 甚至工业机器人等领域[3~5]拥有很大的应用潜力. 传统的应变电子传感器件大多基于金属和半导体材料[6~8], 其拉伸性和敏感性受到很大限制, 不适用于检测人体活动. 与传统的电子应变传感检测器相比, 柔性电子应变传感器克服了易脆的缺点, 并且具较好的生物相容性、可拉伸性、透明性及可穿戴性和连续检测等优势[9,10]. 目前报道的柔性电子应变传感器常用的材料包括: 纳米粒子、纳米线、碳纳米管、石墨烯和有机材料等, 其中基于有机材料的柔性电子应变传感器的发展最为迅速, 在敏感性方面甚至 可以和人体的皮肤相媲美[11~13]. 因此, 通过将柔性电子器件集成并形成活性感知矩阵可以用于制备电子皮肤, 甚至包括人工智能机器人、仿生假体、人机互动系统等更多的人造智能系统. 在柔性电子传感众多应用中, 研究最为广泛的是电子皮肤. 然而人类的皮肤是一个非常敏感的器官, 它具有集成化、可伸缩的网络传感功能, 能够将外界的温度、湿度和触觉等刺激信号传递到大脑并接收大脑发送的指令做出反馈, 使我们能够避开危险或感受环境变化. 人们期待将柔性电子传感技术用于可穿戴式电子皮肤并期望其可以像人的皮肤一样感受外界的温度、压力、形变或纹理等复杂信号, 并且通过电子皮肤将外界刺激转化为可传输的电信号来输出甚至传达大脑的命令[14~16]. 为了模拟人类皮肤的功能, 常用的方法是通过柔性电子传感器的多功能化来提高自身性能, 例如: 结合化学和物理传感特性、提高生物降解性、增加自供电能力等, 通过不

可穿戴设备里鲜为人知的几种传感器

可穿戴设备里鲜为人知的几种传感器 2015年可穿戴市场一片火热,有大量的可穿戴设备问世,从加速度计到光学心率监测器,其实许多消费者对这些产品并不了解。下面让我们来详细了解下这些可穿戴设备。 加速度计 做为最基本的传感器,加速度计可以用来测量运动的方向和速度。苹果iPhone是首款使用加速度计的量产机型,并且可以用来检测手机的方向和运动轨迹。虽然这件事发生在2007年,但是对于今 天却有深远的影响。 在可穿戴设备中,加速度计也是最常见的传感器,可以用来确定锻炼的步数和睡眠质量。通过测量你的移动速度,可穿戴设备可以告诉你走了多远;而当你相当长一段时间没有动作,它就知道你也许是 睡着了。 测高计 侦测体重变化也是可穿戴设备最重要的功能之一,而测高计就可以帮助你统计消耗了多少卡路里、爬了几层楼或变胖还是变瘦。测高计可以感受大气压的变化,因此通过这一点检测你爬了几层楼。而通

过对总步数的整合,可以让计算的热量消耗更准确。 气压计 这个相当方便的小装置可以告诉你今天是否会下雨还是艳阳高照,而这个传感器最常被用于运动类可穿戴设备,比如像 GarminFenix3或PolarV800这样的手环。手势控制传感器 这是此类技术的总称,可以检测身体各个部分的动作变化。通过一些简单的动作,包括手腕和手势可以控制其他设备。另外,还有产品可以让你动动手指就能控制电视音量,也非常神奇。 目前,这将技术仍然发展阶段,未来在该领域如何被运用也相当 让人期待。 陀螺仪 这个小装置可以提高你追踪运动的准确性,通常陀螺仪的数量越多越好,比如Jawbone或Fitbit这样的产品,就可以通过陀螺仪分辨 出你是在跑步还是骑车。GPS 这个功能仍然局限于一些高端运动手表中,不过像Moto360也

石墨烯柔性压力传感器

石墨烯柔性压力传感器 传感技术被认为是21世纪科学技术发展的重要组成部分,传感技术、计算机技术和通信技术被称为现代信息产业的三大支柱,广泛应用于电子、航天航空、国防、科研等领域。 石墨烯因其优异的电学和力学性能成为科研的热点,近年来由于石墨烯在柔性基底材料和导电材料方面的进展和突破,使石墨烯柔性压力传感器拥有更多更优异的性能,如传感器质量更轻、使用更方便、灵敏度更高、稳定性更好等。 一、石墨烯柔性压力传感器原理 石墨烯柔性压力传感器是用石墨烯作为柔性基底材料。基底材料对于传感器而言是作为支架而存在的,同时因石墨烯优异的物理特性、晶格结构,使石墨烯基底材料具有高电子迁移率和很好的拉伸性。 石墨烯薄膜是柔性传感器的核心,生长参数的设置会影响石墨烯的质量以及层数,所以必须严格的控制石墨烯的生长参数。相较于单层的石墨烯而言,少层石墨烯的稳定更好,能够提高传感器的检测范围。因此制备少层石墨烯薄膜作为柔性传感器的敏感层。

石墨烯复合材料的压力传感器 二、柔性压力传感器的分类 柔性压力传感器一般是用柔性基底材料和敏感材料制备,敏感材料作为柔性压力传感器的核心部分,必须具有很好的导电性、柔性以及机械强度。随着材料科学和力学研究的进步,传感器的敏感材料从最初的硅到现在以碳纳米管、石墨烯、氧化石墨烯为主的纳米材料,因纳米材料具备很好的柔性、很高的的机械强度、良好的导电性等特性成为最炙手可热的柔性传感器敏感材料,因此石墨烯成为21世纪研究最广泛的纳米材料。 1、电阻式柔性压力传感器 电阻式柔性压力传感器是将感知的压力值大小转化为电阻值或者电压值输出的器件。按照电阻式压力传感器的工作机理可以分为两类:应变式和压阻式。应变式压力传感器受力产生形变,引起电阻值发生变化。 压阻式压力传感器的工作机理:传感器受到压力后敏感元件发生形变导致传感器的电阻也发生改变,再通

可穿戴组合式表面肌电传感器的制作方法

图片简介: 本技术介绍了一种可穿戴组合式表面肌电传感器,单个表面肌电传感器包括可穿戴的壳体,壳体内分别安装有可与体表接触的嵌入式电极和引线电极、电路板和电池,其中,嵌入式电极作为一检测通道,与电路板电连接;引线电极作为另一检测通道,通过插接连接器可选择性与电路板电连接;电路板采用电池供电,将嵌入式电极/和引线电极获得的肌电信号进行采集、处理后,传送给上位机;本技术可实现单、双通道的便捷模式切换,且安装结构简单紧凑,通用性好,成本相对较低。 技术要求 1.一种可穿戴组合式表面肌电传感器,其特征在于,单个表面肌电传感器包括可穿戴的壳体,所述壳体内分别安装有可与体表接触的嵌入式电极和引线电极、电路板和电池,其中, 所述嵌入式电极作为一检测通道,与所述电路板电连接; 所述引线电极作为另一检测通道,通过插接连接器可选择性与所述电路板电连接; 所述电路板采用电池供电,将所述嵌入式电极/和引线电极获得的肌电信号进行采集、处理后,传送 给上位机。

2.根据权利要求1所述的可穿戴组合式表面肌电传感器,其特征在于,所述电路板上设有分别电连接的前置放大器、滤波器、模数转换器、MCU模块和通信模块,所述通信模块采用有线通信和/或无线通信;其中,所述前置放大器分别与所述嵌入式电极和引线电极电连接,用于对所述电极采集到的肌电信号进行放大处理,所述模数转换器与所述MCU模块电连接,用于将放大、滤波处理后的信号进行模数转换得到数字化肌电信号,通过所述通信模块将所述数字化肌电信号发送给上位机。 3.根据权利要求2所述的可穿戴组合式表面肌电传感器,其特征在于,所述壳体内分别安装有电连接的第一电路板和第二电路板,其中, 所述第一电路板和第二电路板均采用电池供电; 所述第一电路板上设有所述前置放大器、滤波器和模数转换器,所述前置放大器分别与所述嵌入式电极和引线电极电连接; 所述第二电路板上设有所述MCU模块和通信模块。 4.根据权利要求3所述的可穿戴组合式表面肌电传感器,其特征在于,所述第一电路板和第二电路板之间设有所述电池。 5.根据权利要求3所述的可穿戴组合式表面肌电传感器,其特征在于,所述第一电路板和第二电路板之间采用柔性电路板和/或插针进行电连接。 6.根据权利要求1或2所述的可穿戴组合式表面肌电传感器,其特征在于,所述嵌入式电极采用焊针与所述电路板进行固定式电连接;所述电路板设有与所述插接连接器进行活动式电连接的插接口。 7.根据权利要求2所述的可穿戴组合式表面肌电传感器,其特征在于,所述电路板上设有加速度传感器模块和/或IMU惯性测量单元,用于检测可穿戴的壳体所附的人体部位对应的运动参数,将该运动参数发送给所述MCU模块,并通过所述通信模块发送给上位机。 8.根据权利要求2所述的可穿戴组合式表面肌电传感器,其特征在于,所述电路板设有用于电池自动充电的电池充电接口,当电池处于充电状态时,所述表面肌电传感器处于关机状态。 9.根据权利要求1所述的可穿戴组合式表面肌电传感器,其特征在于,所述壳体包括安装为一体的壳基体和壳盖,所述壳基体具有用于安装嵌入式电极和引线电极插接连接器、电路板和电池的安装空间,所述壳盖上设有与电路板电连接的按键面。 10.根据权利要求9所述的可穿戴组合式表面肌电传感器,其特征在于,设有所述嵌入式电极的所述壳基体表面采用粘胶面,用于与体表粘接接触。

可穿戴设备的传感器技术

第二部分研究报告 基于传感器技术在可穿戴设备中的应用研究 (机械工程学院机械三班张志忠 2014201289) 摘要:可穿戴设备是一种可以安装在人、动物和物品上,并能感知、传递和处理信息的计算设备,传感器是可穿戴设备的核心器件,可穿戴设备中的传感器是人类感官的延伸,增强了人类“第六感”功能。随着生物科技的发展,以及传感器小微型化与智能化方向的发展,可穿戴设备也许将会进化成植入人体的智能设备。 2.1传感器简介 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。 传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。 2.2可穿戴等智能终端设备应用 2013年是可穿戴设备元年,谷歌、三星、苹果、微软等科技界的佼佼者都有计划或已推出可穿戴设备。“互联网女皇”玛丽?米克尔也在《互联网报告2013版》中强调了可穿戴设备的增长潜力,认为这是下一个热门领域。目前上市的可穿戴设备五花八门,从智能眼镜到智能手表,从智能服装到智能鞋子,从高尔夫手套到拳击手套,但都和传感器技术有着千丝万缕的联系。回顾信息技术发展历程,人类经历了计算时代、通讯时代,当前正步入“感知时代”,以智能手机、可穿戴设备为代表的智能终端促使传感器需求呈现爆发式增长。 随着传感器集成性,功能性和智能化的提升,可穿戴设备已经不仅仅局限在人体的具体部位,而是在向全身布局,使其除了信息交互和通信,更具有了医疗意义,甚至具备了外部环境,建筑等数据的收集,监控和传输服务。 可穿戴设备的主要应用领域包括:以血糖、血压和心率监测为代表的医疗领域,以运动监测为代表的保健领域,以信息娱乐为代表的消费领域,以数据采集和显示为代表的工业和军事领域。IMS研究指出,保健和医疗领域的可穿戴设备占据今年60%市场份额,未来的份额可能会进一步提升。 2.3可穿戴设备中的传感器分类 可穿戴设备中的传感器根据功能可以分为以下几类:

柔性薄膜压力传感器规格书ZNX-01

苏州能斯达电子科技有限公司 ?已通过ROHS 认证 柔性薄膜压力传感器 ZNX-01 超薄柔软,厚度小于0.45mm 便于集成 响应速度快、分辨率高 寿命长,耐弯折,通过100万次以上按压测试 检测电路简单 防水、防潮、透气 不同尺寸外形传感器可定制 ZNX-01柔性薄膜压力传感器是苏州能斯达电子自主知识产权研发,采用印刷技术在柔韧轻薄衬底材料上印刷压力敏感纳米功能材料,实现足底压力的分布式检测。 ZNX-01是基于电阻式传感器,输出电阻随着施加于传感器表面压力的增大而减小,通过特定的压力-电阻关系,可以测量出压力大小。将ZNX-01传感器置于鞋底,能够检测出人体站立和行走时的足底压力,检测数据可用于足底压力分析。 尺寸规格 单位:mm 产品特点 产品描述

接口定义 性能指标 项目参数 型号ZNX-01 量程10kg 厚度小于0.45mm 外观尺寸41码(其他尺寸大小可以定制) 响应点400g 耐久性>100万次 初始电阻>10MΩ(无负载) 响应时间<1ms 恢复时间<15ms 测试电压典型值DC3.3V 工作温度-20℃-60℃ 电磁干扰EMI不产生 静电释放ESD不敏感 力敏特性 以下为柔性薄膜压力传感器ZNX-01中一个点的压力-电阻值变化曲线图。图表显示了全部电阻范围内的压力-电阻值关系。 注意: 图表中曲线是在特定的条件下测得的数据绘制而成,曲线关系仅供参考,实际数据请根据具体应用情况安装后测试。

参考电路 图示电路中ZNX-01是以前文接口定义中的左脚传感器图示为例,本图中传感器座1#~10#引脚对应A~J。输出信号Vout 的标号1~10对应接口定义图中的1~10个检测点。 图中电路是用电阻分压原理测量传感器电阻值,根据测量到的Vout 电压值和分压电阻值计算传感器敏感点受力后的电阻值。再根据压力-电阻曲线可计算出压力值。 特别的,如果将Vout 接到MCU 的ADC 端口,通过标定算法,可将采集到的AD 值和压力值对应起来,从而无需计算中间过程量(电压值、电阻值)。 如果对信号的输出阻抗有特殊要求,可在Vout 后端增加运放电路。

柔性材料与可穿戴电子传感器前景资料报告.docx

柔性材料与可穿戴电子传感器前景资料报告通过这个学期的学习我对柔性材料和电子传感器有了一些了解。 一:柔性与柔性材料 1.1柔性材料的定义 柔性英文为Flexible,也可解释为挠性,是相对刚性而言的一种物体特性。挠性是指物体受力后变形,作用力失去之后物体自身不能恢复原来形状的一种物理性质。而刚性物体受力后,在宏观来看其形状可视为没有发生改变。弹性是指物体受力后变形,作用力失去之后物体自身能恢复原来形状的一种物理性质。其侧重物体的变形结果,而挠性侧重物体自身性质。因而柔性材料是指可伸缩,弯曲,扭转,变形而不失去性能的材料。通过这一性能我们可以得到许多延展性及曲度很高的电子材料。在查阅资料的过程中我还了解到了一种与本课题有关的但是处于初步阶段的电子技术——柔性电子技术。 1.2柔性材料的发展前景 柔性电子可概括为是将有机/无机材料电子器件制作在柔性/可延性塑料或薄金属基板上的新兴电子技术,以其独特的柔性/延展性以及高效、低成本制造工艺,在信息、能源、医疗、国防等领域具有广泛应用前景,如柔性电子显示器、有机发光二极管OLED、印刷RFID、薄膜太阳能电池板、电子用表面粘贴(Skin Patches)等。与传统IC技术一样,制造工艺和装备也是柔性电子技术发展的主要驱动力。柔性电子制造技术水平指标包括芯片特征尺寸和基板面积大小,其关键是如何在更大幅面的基板上以更低的成本制造出特征尺寸更小的柔性电子器件。柔性电子技术有可能带来一场电子技术革命,引起全世界的广泛关注并得到了迅速发展。美国《科学》杂志将有机电子技术进展列为2000年世界十大科技成果之一,与人类基因组草图、生物克隆技术等重大发现并列。美国科学家艾伦黑格、艾伦·马克迪尔米德和日本科学家白川英树由于他们在导电聚合物领域的开创性工作获得2000年诺贝尔化学奖。西方发达国家纷纷制定了针对柔性电子的重大研究计划,如美国FDCASU计划、日本TRADIM计划、欧盟第七框架计划中PolyApply和SHIFT计划等,仅欧盟第七框架计划就投入数十亿欧元的研发经费,重点支持柔性显示器、聚合物电子的材料/设计/制造/可靠性、柔性电子器件批量化制造等方面基础研究。 在最近的10年间,康奈尔大学、普林斯顿大学、哈佛大学、西北大学、剑桥大学等国际著名大学都先后建立了柔性电子技术专门研究机构,对柔性电子的

可穿戴设备的传感器技术

基于传感器技术在可穿戴设备中的应用研究 (机械工程学院机械三班张志忠 89) 摘要:可穿戴设备是一种可以安装在人、动物和物品上,并能感知、传递和处理信息的计算设备,传感器是可穿戴设备的核心器件,可穿戴设备中的传感器是人类感官的延伸,增强了人类“第六感”功能。随着生物科技的发展,以及传感器小微型化与智能化方向的发展,可穿戴设备也许将会进化成植入人体的智能设备。 传感器简介 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。 传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。 可穿戴等智能终端设备应用 2013年是可穿戴设备元年,谷歌、三星、苹果、微软等科技界的佼佼者都有计划或已推出可穿戴设备。“互联网女皇”玛丽?米克尔也在《互联网报告2013版》中强调了可穿戴设备的增长潜力,认为这是下一个热门领域。目前上市的可穿戴设备五花八门,从智能眼镜到智能手表,从智能服装到智能鞋子,从高尔夫手套到拳击手套,但都和传感器技术有着千丝万缕的联系。回顾信息技术发展历程,人类经历了计算时代、通讯时代,当前正步入“感知时代”,以智能手机、可穿戴设备为代表的智能终端促使传感器需求呈现爆发式增长。 随着传感器集成性,功能性和智能化的提升,可穿戴设备已经不仅仅局限在人体的具体部位,而是在向全身布局,使其除了信息交互和通信,更具有了医疗意义,甚至具备了外部环境,建筑等数据的收集,监控和传输服务。 可穿戴设备的主要应用领域包括:以血糖、血压和心率监测为代表的医疗领域,以运动监测为代表的保健领域,以信息娱乐为代表的消费领域,以数据采集和显示为代表的工业和军事领域。IMS研究指出,保健和医疗领域的可穿戴设备占据今年60%市场份额,未来的份额可能会进一步提升。 可穿戴设备中的传感器分类 可穿戴设备中的传感器根据功能可以分为以下几类:

柔性阵列式压力传感器的发展现状简介

航天器环境工程第26卷增刊112 SPACECRAFT ENVIRONMENT ENGINEERING 2009年12月柔性阵列式压力传感器的发展现状简介 杨 敏,陈 洪,李明海 (中国工程物理研究院总体工程研究所,绵阳 621900) 摘要:文章在介绍柔性阵列式压力传感器工作原理的基础上,概述了其国内外发展现状。着重介绍了美国Tekscan公司开发的基于矩阵的传感器技术和应用实例,以及中科院合肥智能机械研究所有关柔性传感器的研究现状、产品的性能指标等。文章的工作旨在为层合结构预紧接触压力/间隙测量选择有效、可行的测量系统。 关键词:压力传感器;柔性阵列;接触压力测量 中图分类号:V416.2 文献标识码:A 1 引言 物体间接触应力的测量与分析在许多行业的研究和发展中起着极其重要的作用,接触应力的理论与试验研究也一直是工程和力学的热门课题[1]。由于接触应力的理论分析很难准确,定量地应用于实际问题也有难度, 因而研制设计一种能直接测定接触界面力学参数的装置,实时地测量2个物体在接触面上的压力和应力的分布信息具有重要的意义。 柔性阵列式压力传感器,可用于任意2个柔性或柔/刚接触面表面作用力的分布检测,一般为平面结构。它不仅具有普通阵列式传感器的优点,还具有良好的柔韧性,可以自由弯曲甚至折叠,能够方便地对复杂表面形状的零件进行检测,广泛应用于接触式测量、无损检测、机器人、生物力学等领域[2]。 2 柔性阵列式压力传感器工作原理 柔性阵列式压力传感器属于电阻式传感器,其工作原理与普通电阻式传感器基本相同。即接触力作用在力敏电阻元件上,力敏电阻元件将物理量转化为电阻变化,通过变换电路又转换为电压变化从而得到相关的力信息[3]。现以美国Tekscan公司所研制的柔性阵列式压力传感器为例,对其工作原理进行简单介绍。标准的Tekscan压力传感器由2片很薄的聚酯薄膜组成,一片薄膜的内表面铺设若干行的带状导体,另一片内表面铺设若干列的带状导体;导体本身的宽度以及行间距可以根据不同的测量需要而设计;导体外表有特殊的压敏半导体材料涂层。当2片薄膜合为一体时,大量的横向导体和纵向导体的交叉点就形成了压力感应点阵列。当外力作用到这些感应点上时,半导体的阻值会随外力的变化而成比例变化,由此来反映感应点的压力值。当压力为0时,阻值最大;压力越大,阻值越小,从而可以反映出两接触面间的压力分布情况。通过扫描和测量每一个施力单元的电阻变化,确定表面力的幅值和时间特征,使用Tekscan的配套分析软件,得到实时二维或三维图像。传感器结构见图1,测量电路见图2[4]。 图1 Tekscan传感器结构 图2 测量电路简图

柔性薄膜压力传感器规格书-DF9-16

苏州能斯达电子科技有限公司 柔性薄膜压力传感器DF9-16系列 超薄,厚度小于0.3mm 响应速度快 寿命长,通过100万次以上按压测试 检测电路简单,易于集成应用 可定制传感器外形 可定制传感器量程参数 DF9-16系列柔性薄膜压力传感器是苏州能斯达电子拥有自主知识产权的柔性压力传感技术在柔韧轻薄材料上印刷附着力强、耐弯折、灵敏度高的柔性纳米功能材料,使其实现对压力的高灵敏度检测。 薄膜压力传感器是一种电阻式传感器,输出电阻随着施加在传感器表面压力的增大而减小,通过特定的压力-电阻关系,可以测量出压力大小。适用于柔性面的压力测量场景,可广泛应用于智能家居、消费电子、汽车电子、医疗设备、工业控制、智能机器人等领域。 DF9-16系列目前有500g、2kg、5kg、10kg、20kg 等不同量程型号产品。 尺寸规格 标识尺寸(mm) 长度16.0敏感区外径10.0敏感区内径7.5 Pin 脚距离 2.54公差 0.2 ?已通过ROHS 认证 产品特点 产品描述 尺寸表 尺寸图

性能指标 型号DF9-16@500g DF9-16@2kg DF9-16@5kg DF9-16@10kg DF9-16@20kg 量程500g2kg5kg10kg20kg 厚度<0.3mm 外观尺寸见尺寸表 响应点20g20g150g150g200g 重复性<±9.7%(60%负载) 一致性±10%(同一型号批次) 迟滞+10%(RF+-RF-)/RF+ 耐久性>100万次 初始电阻>10MΩ(无负载) 响应时间<1ms 恢复时间<15ms 测试电压典型值DC3.3V 工作温度-20℃-60℃ 电磁干扰EMI不产生 静电释放ESD不敏感 力敏特性 以下为DF9-16系列各型号柔性薄膜压力传感器的压力-电阻值曲线图。左侧图表显示了全部电阻范围内的压力-电阻值关系;右侧图表为左侧图标的局部细节展示,显示了电阻值在30kΩ以下的压力-电阻关系。 注意: 图表中曲线是在特定条件下测得的数据绘制而成,曲线关系仅供参考,实际数据请根据具体应用情况安装后测试。 DF9-16@500g DF9-16@2kg

柔性材料与可穿戴电子传感器前景资料报告

柔性材料与可穿戴电子传感器前景资料报告 ——2016101018通信161班何昌帮通过这个学期的学习我对柔性材料和电子传感器有了一些了解。 一:柔性与柔性材料 1.1柔性材料的定义 柔性英文为Flexible,也可解释为挠性,是相对刚性而言的一种物体特性。挠性是指物体受力后变形,作用力失去之后物体自身不能恢复原来形状的一种物理性质。而刚性物体受力后,在宏观来看其形状可视为没有发生改变。弹性是指物体受力后变形,作用力失去之后物体自身能恢复原来形状的一种物理性质。其侧重物体的变形结果,而挠性侧重物体自身性质。因而柔性材料是指可伸缩,弯曲,扭转,变形而不失去性能的材料。通过这一性能我们可以得到许多延展性及曲度很高的电子材料。在查阅资料的过程中我还了解到了一种与本课题有关的但是处于初步阶段的电子技术——柔性电子技术。 1.2柔性材料的发展前景 柔性电子可概括为是将有机/无机材料电子器件制作在柔性/可延性塑料或薄金属基板上的新兴电子技术,以其独特的柔性/延展性以及高效、低成本制造工艺,在信息、能源、医疗、国防等领域具有广泛应用前景,如柔性电子显示器、有机发光二极管OLED、印刷RFID、薄膜太阳能电池板、电子用表面粘贴(Skin Patches)等。与传统IC技术一样,制造工艺和装备也是柔性电子技术发展的主要驱动力。柔性电子制造技术水平指标包括芯片特征尺寸和基板面积大小,其关键是如何在更大幅面的基板上以更低的成本制造出特征尺寸更小的柔性电子器件。柔性电子技术有可能带来一场电子技术革命,引起全世界的广泛关注并得到了迅速发展。美国《科学》杂志将有机电子技术进展列为2000年世界十大科技成果之一,与人类基因组草图、生物克隆技术等重大发现并列。美国科学家艾伦黑格、艾伦·马克迪尔米德和日本科学家白川英树由于他们在导电聚合物领域的开创性工作获得2000年诺贝尔化学奖。西方发达国家纷纷制定了针对柔性电子的重大研究计划,如美国FDCASU计划、日本TRADIM计划、欧盟第七框架计划中PolyApply和SHIFT计划等,仅欧盟第七框架计划就投入数十亿欧元的研发经费,重点支持柔性显示器、聚合物电子的材料/设计/制造/可靠性、柔性电子器件批量化制造等方面基础研究。 在最近的10年间,康奈尔大学、普林斯顿大学、哈佛大学、西北大学、剑

可穿戴式传感器

可穿戴式传感器:轻软胜于鸿毛 2013/08/06 【日经BP社报道】轻软胜于鸿毛,能贴在肌肤上的可穿戴式传感器,由东京大学工学系研究科教授染谷隆夫等人开发成功注1)。该传感器为薄膜状,单位面积的重量只有 3g/m2。据称,重量只有普通纸张的1/27左右。而且,厚度也只有2μm。染谷等人于10年前的2003年,开发出了可在机器人的人工皮肤上使用的薄型传感器薄膜,但其厚度为2mm。通过将厚度减至1/1000,传感器变得柔软可弯曲,还能贴在人体上使用。由于又轻又薄,可以减轻贴在皮肤上的不适感,因此染谷等人希望能将其用作可持续计测人体信息的医疗及健康用传感器(图1)。

图1 从机器人的人工皮肤到人类的医疗及健康用传感器,用途有望不断扩大 通过实现薄膜传感器的超轻化和超薄化,可以减轻贴在人体上所带来的不适感。由 此,用途有望扩大到医疗及健康用传感器领域。(照片来自于东京大学) 注1)此研究是染谷等人与奥地利林茨约翰·开普勒大学(Johannes Kepler University of Linz)的教授Siegfried Bauer的研究小组共同推进的。 在薄膜基板上集成有机TFT 医疗及健康用途的传感器及电子电路,迄今一直使用以硅(Si)为主的硬质电子材料制作。但对于直接接触人体肌肤的部分等,使用轻柔材料以消除装上异物感的部件备受期待。 于是,染谷等人确立了在厚度仅1.2μm的塑料薄膜基板上制作用来读取传感器信号的TFT 阵列的技术,开发出了与该TFT阵列和压力传感器元件相结合的薄膜压力传感器。为了在 耐热性较低的薄膜基板上直接形成TFT阵列,TFT采用了有机半导体,并将制造工艺温度 控制在了100℃以下。有机半导体层及电极层是采用基于蒸镀罩(Shadow Mask)的真空 蒸镀法形成的(图2)。

浅谈柔性可穿戴传感器

浅谈柔性可穿戴传感器 随着人们进一步深入信息时代,5G通讯、大数据、云计算、万物互联的物联网、工业4.0等许多高新技术、新概念纷纷被提出。随着信息时代的应用需求越来越高,随之而来的是对于各种信息的广泛需求,这就对被测量信息的围、精度和稳定情况等各性能参数的期望值和理想化要求逐步提高。针对特殊环境与特殊信号下气体、压力、湿度的测量需求,普通传感器已经远远不能满足需求。新材料、新工艺和开发新型传感器与其它学科的交叉整合的传感器层出不穷。随着柔性基质材料的发展,具有透明、柔韧、延展、可自由弯曲甚至折叠、便于携带、可穿戴等特点的柔性传感器由于在医疗保健、健身运动、安全生产等领域的巨大潜力受到越来越大的关注。 可穿戴技术的新领域近年来发展迅速,已成为消费电子市场的重要竞争者。目前,全球可穿戴市场价值约300亿美元,估计到2023年和2026年分别增长100亿美元和150亿美元。大多数可用的可穿戴产品采用智能手表如Apple Watch和健身带的形式。可以为消费者提供有关活动、身体动作和一些消费者使用生命体征的信息。尽管取得了这些成功,但可穿戴设备在实际临床应用中的使用受到限制,主要是由于它们的准确性,有效性和可靠性有限。此外,现有设备的体积刚性和不灵活性质限制了使用的舒适性和持续时间。此外,传感器和数据处理以及分析硬件的高功耗限制了长期可操作性,并迫使开发人员牺牲精度以延长电池寿命。其他重要的限制包括用于传感器放置的有限位置,运动伪像以及处理/解释大量生成的数据。 一、柔性可穿戴传感器的材料 传统的传感器多是在刚性不可弯曲的衬底上制成的,其中具有硅衬底的传感器是最常见的传感器。尽管这些传感器具有广泛的应用领域,但有一些难以避免缺点,如刚度、不敏感、不可弯折等。而柔性可穿戴传感器则需要采用一些可弯折的柔性材料,得益于新材料、新工艺的发展,诸如可弯折的石墨烯、导电纱线或纤维纺织、有机高分子聚合物被纷纷采用。 传感器的材料取决于传感器的应用,可用性,制造总成本等因素。有机电子材料是材料方面的一个主要部门,已经大量被用于制造柔性可穿戴设备设备。用于柔性可穿戴设备的有机器件具有灵活性、体积可变、良好的稳定性、生物适应性良好等优点。这些类型的传感器已用于制造薄膜晶体管,离子泵,聚合物电极等。有机和大面积电子设备(OLAE)是使用功能性油墨开发以薄层印刷的电子器件的方法。用于这些操作的基材是主要的PET和PEN,因为它们与其它有机聚合物相比具有透明性和较低的成本。OLAE流程目前用于开发可穿戴的健康和医疗设备。PDMS、PEN、PI,P(VDF-TrFE),Parylene和Polypyrrole 的使用已经普遍用于开发柔性传感器针对不同的应用。传感器的电极部分也采用新型的导电材料,如碳基纳米材料和金属纳米颗粒。碳基纳米材料包括石墨烯,碳纳米管(CNTs)碳纤维等。在金属纳米粒子中银、金和镍是柔性可穿戴传感器中最常用的一些金属纳米材料。聚二甲基硅氧烷(PDMS),聚对苯二甲酸乙二醇酯(PET),聚萘二甲酸乙二醇酯(PEN),聚酰亚胺(PI)是通常用于开发柔性传感器的一些绝缘基板。这些聚合物材料的差异在于它们的氏模量,折射率等。有一些导电聚合物如聚(3,4-亚乙二氧基噻吩)、聚苯乙烯磺酸盐(PEDOT:PSS)、聚乙炔、聚苯胺与绝缘聚合物相比,由于其较低的带隙而导电。这些聚合物主要用于开发太阳能电池、电池。在碳纳米管CNT中,使用单壁碳纳米管(SWCNT)和多壁碳纳米管(MWCNT)在不同的传感器件也得到部分应用。制造柔性传感器的工艺有很多,其中光刻,丝网印刷,喷墨印刷,激光切割是一些常见的方法。根据柔性传感器的的尺寸来确定制造传感器原型的工艺。 二、感测指标类型

可穿戴式汗液传感器

News &Highlights Wearable Elizabeth K.Senior Technology Writer sors could take the place of invasive blood draws.They might ana-lyze creatinine,to assess kidney function,or cortisol,to track the stress response.Wearable sweat sensing devices could potentially allow continuous biomonitoring,eliminating the need for bulky equipment,repeat visits to labs,or hospital stays. Recently,an international team led by John A.Rogers,the direc-tor of the Center for Bio-Integrated Electronics at Northwestern University,unveiled what may be the most sophisticated proto-type sweat sensor developed to date (Fig.1).The device not only monitors lactate,glucose,chloride,and pH,but also sweat rate and loss [1].The ability to measure these last two parameters is particularly novel,and crucial for understanding their effects on the composition of sweat samples. The Rogers group’s device features a ?exible elastomeric system of micro?uidic channels,valves,and chambers that are removable and can be swapped out for new ones,enabling reuse.The natural action of sweat glands pumps sweat through holes in the bottom of the device into the channels and analysis chambers,each contain-ing a sensor for a different substance.While enzymes in biofuel cell-based,electrochemical sensors catalyze reactions that increase with concentration to assess lactate and glucose levels,the device measures chloride and pH colorimetrically by comparison to color calibration markings.The device transmits and receives data to and from the same cell phone that powers it via near-?eld communica-tion (NFC)https://www.doczj.com/doc/c82957485.html,ing this external power source makes the patch up to 20times lighter and four times smaller than devices that rely on batteries. Other labs take different approaches.At the California Institute of Technology (Caltech),medical engineering assistant professor Wei Gao and his team believe sweat can be used for many compli-cated analyses involving substances such as heavy metals,drug molecules,and hormones and other proteins.Before moving to Cal-tech,Gao was a postdoctoral fellow in the laboratory of engineer-ing professor Ali Javey at University of California,Berkeley (UC Berkeley),where he helped develop a wearable sensor for caffeine as a model for detecting methylxanthine drugs [2].Unlike the devices powered via NFC,the Gao lab’s prototypes use tiny batter-ies.For some continuous monitoring applications,Gao said,staying close to a cell phone may not be practical. Yet another team,headed by Hong Liu at Southeast University in Nanjing,recently designed a wearable glucose sweat sensor that,unlike the Rogers’device,does not rely on enzymes [3].These biomolecular components present a number of issues for sensor development.For example,enzymes are sensitive to pH,tempera-ture,and ionic strength;they can degrade over time;and the 1.Developed by an international team of collaborators,this prototype,battery-sweat sensor can monitor lactate,glucose,chloride,pH,and sweat rate and loss.sensor wirelessly transmits and receives data to and from the same cell phone that powers it by via near-?eld communication (NFC)technology.Credit:John Rogers,Northwestern University.

相关主题
文本预览
相关文档 最新文档