当前位置:文档之家› 准谐振L6565

准谐振L6565

准谐振L6565
准谐振L6565

准谐振SMPS控制器L6565功能原理及应用

山东省临沂市电子工业公司毛兴武(临沂276004)

北京智千里科贸有限公司祝大卫(北京100013)

1概述

ST公司在近期推出的L6565单片IC,是适用于准谐振(QR)零电压开关(ZVS)回扫变换器电流型初级控制器。QR操作依靠变压器退磁感测输入获得,变换器功率容量随主线电压变化通过线路电压前馈补偿。在轻载时,L6565自动降低工作频率,但仍然尽可能保持接近ZVS运行。

L6565的主要特点如下:

QRZVS回扫拓扑电流型初级控制;

线路电压前馈控制保证交付恒定功率;

频率折弯(foldback)功能可获得最佳待机频率;

逐周脉冲与打嗝(hiccup)模式过电流保护(OCP);

超低起动电流(<70μA)和静态电流(<3.5mA);

堵塞功能(开/关控制);

2 5V±1%的内部基准电压;

±400mA的图腾驱动器,在欠电压闭锁(UVLO)

情况下,保持输出低电平。

L6565的主要应用包括TV/监视器开关型电源(SMPS)、AC/DC适配器/充电器、数字消费类产品、打印机、传真机和扫描设备等。

2功能与工作原理

2 1封装及引脚功能

L6565采用8脚DIP(L6565N)和8脚SO(L6565D)封装,引脚排列如图1所示。

L6565的引脚功能分别为:

脚1(INV)误差放大器反相输入;

脚2(COMP)误差放大器输出;

脚3(VFF)线路电压前馈;

脚4(CS)电流感测输入;

脚5(ZCD)变压器退磁零电流检测输入;脚6(GND)地;

脚7(GD)栅极驱动器输出;

脚8(VCC)电源电压。

2 2工作原理

图1L6565引脚排列

图2L6565电源电路

图3ZCD及相关电路

(1)电源

L6565的电源电路如图2所示。IC脚VCC的导通门限电压典型值是13 5V,关闭门限电压典型值是9 5V。一旦VCC脚导通,IC内部栅极驱动器电压直接由VCC提供,其它内部所有电路的工作电压均由线性调节器产生的7V电压供给。一个内部2 5V±1%的精密电压,供给初级反馈控制环路使用。一旦VCC降至UVLO 门限电压以下,IC输出则被关断。IC脚VCC外部连接电阻R和电容C组成的起动电路及变压器辅助绕组和整流二极管等组成的辅助电源电路。

(2)零电流检测(ZCD)

L6565的零电流检测(ZCD)及相关电路如图3所示。为在QR下运行,IC需要检测变压器退磁信号。IC脚ZCD上的输入信号,可以从施加于VCC的变压器辅助绕组获得。如果施加到ZCD脚上的负向脉冲沿降至1 6V 以下,ZCD电路将接通外部MOSFET。为保证高抗噪扰度,触发电路在负向脉冲沿降至1 6V之前则被起动。脚5上的正向脉冲沿历经2 1V,并直达5 2V。在外部MOSFET已被关断之后,触发电路将消隐一定时间(≥3.5μs),以阻止任何负向脉冲沿跟随漏感退磁,并实现频率折弯功能。

L6565内置起动电路,在IC起动期间迫使驱动器给出一个脉冲施加到MOSFET的栅极,驱动MOSFET导通,以在IC脚ZCD上产生一个输入信号。IC脚ZCD上的电压受到双钳位限制,上面的钳位电压是5 2V,底部的钳位电压为VBE(0 65V)。

L6565的ZCD脚还用作触发禁止电路。如果该脚上的电压降低到200mV的门限,器件将被关闭。为使器件重新运行,则ZCD脚上的电位下拉必须予以解除。

(3)频率折弯

为防止QR回扫变换器的开关频率过高,L6565对开关的最小关断时间给予限制。事实上,ZCD消隐时间间隔(最小值是3 5μs)是误差放大器输出VCOMP的函数,负载愈低,VCOMP愈小,而消隐时间(TBLANK)也就愈长。一旦负载电流和输入电压使开关截止时间降低到3 5μs的最小消隐时间以下,系统将进入频率折弯模式。在该模式中,在一些线路/负载条件下,能观察到不规则的开关周期。当负载足够小时,因消隐时间的增加,许多振铃周期被越过,并且其幅值变得非常小,不能再触发ZCD电路,从而产生突发模式运行,外部MOSFET处于关断状态。图4定性描述了L6565的频率折弯特性。

(4)电压前馈

采用电流型控制方案时,系统能交付到输入的最大功率(PinLim),称作功率容量。功率容量可以依靠逐周脉冲电流限制进行控制,并且通常利用可编程峰值初级电流(IPKP)钳位控制电压(VCSX)来限制最大峰值初级电流(IPKPmax)。在固定频率断续传导模式(DCM)回扫变换器中,能够提供独立于输入电压(Vin)的理想功率容量。但对于QRZVS回扫变换器,功率容量强烈依赖于输入电压。在最大输入电压是最小输入电压两倍以上的宽范围主线电压应用中,必须阻止功率容量随输入电压而急剧变化。L6565有一个线路前馈功能,可以解决这个问题。

L6565的线路电压前馈及其相关电路如图5所示。ZVSQR回扫变压器的线路电压经R1和R2组成的电阻分压器取样馈送到IC脚VFF。前馈电压影响

图4L6565的频率折弯特性

图5L6565的线路电压前馈及相关电路

图6过电流调整点控制电压VCSX与前馈电压VFF之间关系

图7功率容量与输入电压之间关系曲线

图8初级反馈电路

图9次级反馈环路组成方式

(a)COMP与INV之间连接RC(b)INV接地、COMP由光耦驱动(c)INV接地、COMP没有使用

过电流调整点(setpoint)上的控制电压(VCSX)钳位电平。前馈电压(VFF)越高,调整点控制电压(VCSX)则越低。图6示出了VCSX与VFF之间的关系曲线。

在前馈电压VFF与误差放大器(E/A)输出VCOMP相结合,为PWM比较器确定内部参考电压:VCS=0.14·(VCOMP -2.5)·(3-VFF)。误差放大器的钳位输出电平是5 6V,于是,过电流调整点控制电压VCSX为:

VCSX=0.44·(3-VFF)=0.44·(3-KVin)

式中K=R2/(R1+R2)。只要选择适当的分压比,就可获得较理想的校正,使线路前馈递交恒定功率,如图7中下面的曲线所示。

(5)误差放大器

误差放大器在IC脚1上的反相输入电压信号,在初级反馈方案中,来自辅助绕组产生的电压,并通过电阻分压器取样提供,如图8所示。IC脚1上的电压与内部2 5V的参考电压比较,以履行对变换器输出电压的调节。

在次级反馈方案中,一般是利用TL431和光耦器组成从次级到初级侧的反馈环路,将输出电压波动信号取样并馈送到变换器初级侧,如图9所示。在图9(a)中,误差放大器输出(COMP)与反相输入(INV)之间连接的RC网络,用作控制环路补偿。在图9(b)中,IC的INV脚接地,COMP脚直接由发射极接地的光耦晶体管驱动,误差放大器作为电流源使用。在图9(c)中,IC脚INV接地,误差放大器没有使用。这种反馈方式在器件要求工作于同步模式并不作为QR控制器情况下,才被采用。

(6)电流比较器、PWM闭锁与打嗝模式OCP

初级瞬时电感电流在MOSFET源极传感电阻RS

图10带UVLO拉低的栅极驱动器

图11用L6565作控制器的40W喷墨打印机SMPS电路

上转换为与初级电流成正比的电压,通过L6565脚CS输入到PWM比较器同相输入端(见图5)。L6565脚CS上电流感测输入与线路电压前馈电路的输出进行比较,决定外部MOSFET关断时的精确时间。PWM闭锁能避免MOSFET因噪声引起的虚假开关。如果IC脚CS上的电压超过2V的门限,打嗝比较器则被起动,栅极驱动器截止。该条件的发生通常是由次级整流器或次级绕组短路引起,因此打嗝模式起过电流保护(OCP)作用。在打嗝模式下,将出现低频间歇运行。

(7)栅极驱动器

L6565带UVLO拉低的栅极驱动器电路如图10所示。由高端NPN复合晶体管和低端MOSFET组成的图腾(推拉)缓冲器,带400mA的源电流或吸收(sink)电流,驱动外部功率MOSFET。外部功率MOSFET栅 源极之间,无需连接钳位二极管。

在UVLO条件下,内部下拉电路保持驱动器输出低电平,保证外部MOSFET不能导通。

3典型应用

用L6565作控制器的40W喷墨打印机SMPS电路如图11所示。该SMPS的AC输入电压范围从88V到264V,三路输出分别为28V/0.7A、12V/1.5A和5V/0.5A。这种SMPS采用QRZVS回扫变换器拓扑和次级反馈方案。L6565的脚1(INV)接地,利用脚2(COMP)上的反馈信号直接调制占空因数。

变压器采用ETD29×16×10磁芯(3C85材料),初级电感为700μH,气隙长度约为1mm。N1=75T(线径: 0.51mm),N2=8T(线径: 0.51mm),N3=7T(线径: 0.89mm),N4=3T(线径: 0.89mm),N5=7T (线径: 0.24mm)。

确定准谐振反激式变换器主要设计参数的实用方法

确定准谐振反激式变换器主要设计参数的实用方法 准谐振反激式变换器(Flyback Converter)由于能够实现零电压开通,减少了开关损耗,降低了EMI噪声,因此越来越受到电源设计者的关注。但是由于它是工作在变频模式,因此导致诸多设计参数的不确定性。如何确定它的工作参数,成为设计这种变换器的关键,本文给出了一种较为实用的确定方法。 近年来,一些著名的国际芯片供应商陆续推出了准谐振反激式变换器的控制IC,例如安森美的NCP1207、IR公司的IRIS40XX系列、飞利浦的TEA162X系列以及意法半导体的L6565等。正如这些公司宣传的那样,在传统的反激式变换器当中加入准谐振技术,既可以实现开关管的零电压开通,从而提高了效率、减少了EMI噪声,同时又保留了反激式变换器所固有的成本低廉、结构简单、易于实现多路输出等优点。因此,准谐振反激式变换器在低功率场合具有广阔的应用前景。但是,由于这种变换器的工作频率会随着输入电压及负载的变化而变化,这就给设计工作(特别是变压器的设计)造成一些困难。本文将从工作频率入手,详细阐述如何确定准谐振反激式变换器的几个主要设计参数:最低工作频率、变压器初级电感量、折射电压、初级绕组的峰值电流等。 图1是准谐振反激式变换器的原理图。其中: L P为初级绕组电感量,L LEAK为初级绕组漏感量, R P是初级绕组的电阻,C P是谐振电容。 由图1可见,准谐振反激式变换器与传统的反激 式变换器的原理图基本一样,区别在于开关管的 导通时刻不一样。图2是工作在断续模式的传统 反激式变换器的开关管漏源极间电压V DS的波 形图。这里V IN是输入电压,V OR为次级到初级 图1:准谐振反激式变换器原理图。 的折射电压。 由图2可见,当副边绕组中的能量释放完毕之后(即变压器磁通完全复位),在开关管的漏极出现正弦波振荡电压,振荡频率由L P、C P决定,衰减因子由R P决定。对于传统的反激式变换器,其工作频率是固定的,因此开关管再次导通有可能出现在振荡电压的任何位置(包括峰顶和谷底)。可以设想,如果控制开关管每次都是在振荡电压的谷底导通,如图3所示,那么就可以实现零电压导通(或是低电压导通),这必将减少开关损耗,降低EMI噪声。实现这一点并不困难,只要增加磁通复位检测功能(通常是辅助绕组来实现),以便在检测到振荡电压达到最低点时打开开关管,就能达到目的。这实质上就是准谐振反激式变换器的工作原理,前文提到的几种IC均能实现这个功能。由此带来的问题是其工作频率是变化的,从而影响了其它设计参数的确定。 设计参数的确定 设计反激式变换器,通常需要确定以下参数: f S:变换器的工作频率; I PMAX:初级绕组的最大峰值电流;

离散方式对比例谐振控制器PR的影响

Effects of Discretization Methods on the Performance of Resonant Controllers Alejandro G.Yepes,Student Member,IEEE,Francisco D.Freijedo,Member,IEEE, Jes′u s Doval-Gandoy,Member,IEEE,′Oscar L′o pez,Member,IEEE, Jano Malvar,Student Member,IEEE,and Pablo Fernandez-Comesa?n a,Student Member,IEEE Abstract—Resonant controllers have gained signi?cant impor-tance in recent years in multiple applications.Because of their high selectivity,their performance is very dependent on the ac-curacy of the resonant frequency.An exhaustive study about dif-ferent discrete-time implementations is contributed in this paper. Some methods,such as the popular ones based on two integrators, cause that the resonant peaks differ from expected.Such inac-curacies result in signi?cant loss of performance,especially for tracking high-frequency signals,since in?nite gain at the expected frequency is not achieved,and therefore,zero steady-state error is not assured.Other discretization techniques are demonstrated to be more reliable.The effect on zeros is also analyzed,establishing the in?uence of each method on the stability.Finally,the study is extended to the discretization of the schemes with delay compensa-tion,which is also proved to be of great importance in relation with their performance.A single-phase active power?lter laboratory prototype has been implemented and tested.Experimental results provide a real-time comparison among discretization strategies, which validate the theoretical analysis.The optimum discrete-time implementation alternatives are assessed and summarized. Index Terms—Current control,digital control,power condition-ing,pulsewidth-modulated power converters,Z transforms. N OMENCLATURE Variables C Capacitance. f Frequency in hertz. G(s)Model in the s domain. G(z)Model in the z domain. H(s)Resonant controller in the s domain. H(z)Resonant controller in the z domain. i Current. K Gain of resonant controller. L Inductance value. m Pulsewidth modulation(PWM)duty cycle. N Number of samples to compensate with com- putational delay compensation. n Highest harmonic to be compensated. Manuscript received September17,2009;revised December29,2009.Date of current version June18,2010.This work was supported by the Spanish Min-istry of Education and Science under Project DPI2009-07004.Recommended for publication by Associate Editor P.Mattavelli. The authors are with the Department of Electronic Technology,University of Vigo,Vigo36200,Spain(e-mail:agyepes@uvigo.es;fdfrei@uvigo.es;jdoval@ uvigo.es;olopez@uvigo.es;janomalvar@uvigo.es;pablofercom@uvigo.es). Color versions of one or more of the?gures in this paper are available online at https://www.doczj.com/doc/e217419691.html,. Digital Object Identi?er10.1109/TPEL.2010.2041256R Equivalent series resistance value. R(s)Resonant term in the s domain. R(z)Resonant term in the z domain. T Period. θPhase of grid voltage. V V oltage. ωAngular frequency in radians per second. u(s)Input value. y(s)Output value. Subscripts 1Fundamental component. a Actual value(f). c Generic current controller(G). d Degre e o f freedom in the zero-pole matching discretization method(K). dc Relative to the dc link(V). f Relative to the passive inductive?lter(V,i, L,R,and G). I Equivalent to the double of the integral gain of a proportional+integral(PI)controller in dq frame(K). k Relative to the k th harmonic(H,R,K P,and K I). L Relative to the load(i). Lh Relative to the harmonics of the load(i). o Resonant frequency of a continuous resonant term or resonant controller(f andω). P Equivalent to the double of the proportional gain of a PI controller in dq frame(K). PCC Relative to the point of common coupling (V). PL Relative to the plant(G). rms Root mean square. s Relative to sampling(f and T). src Relative to the voltage source(V,i,and L). sw Relative to switching(f). T Sum of the gains for every value of harmonic order k(K P). X Resonant term R or resonant controller H discretized with method X,where X∈ {zoh,foh,f,b,t,tp,zpm,imp}. X&Y Resonant term R or resonant controller H implemented with two discrete integrators, with the direct one discretized with method X and the feedback one with method Y,where X,Y∈{zoh,foh,f,b,t,tp,zpm,imp}. 0885-8993/$26.00?2010IEEE

移相谐振全桥软开关控制器UC3875引脚及功能介绍(特制材料)

UC3875引脚及功能介绍 UC3875是Unitrode公司生产的移相谐振全桥软开关控制器,它有4个独立的输出驱动端可以直接驱动四只功率MOSFET管,见图1,其中OUTA和OUTB相位相反,OUTC和OUTD相位相反,而OUTC和OUTD相对于OUTA和OUTB的相位θ是可调的,也正是通过调节θ的大小来进行PWM控制的。 图1管脚示意图

UC3875的管脚功能 UC3875有20脚和28脚两种,这里仅介绍20脚的UC3875的管脚功能,表1为管脚功能简要说明。 表1 PIN 功能 1 VREF 基准电压 2 E/AOUT 误差放大器输出 3 E/A-误差放大器反相输入 4 E/A+误差放大器同相输入 5 C/S+电流检测 6 SOFT-START 软起动 7,15 DELAYSETA/B,C/D 输出延迟控制8,9,13,14 OUTA~OUTD 输出A~D 10 VC(对应PWRGND)驱动输出电源 11 VIN(对应GND)芯片供电电源 12 PWRGND 电源地 16 FREQSET 频率设置端 17 CLOCK/SYNC 时钟/同步 18 SLOPE 陡度 19 RAMP 斜波 20 GND 信号地

UC3875各个管脚的使用说明 管脚1可输出精确的5V基准电压,其电流可以达到60mA。当VIN比较低时,芯片进入欠压锁定状态VREF消失。直到VREF达到4.75V以上时才脱离欠压锁定状态。最好的办法是接一个0.1μF旁路电容到信号地。 管脚2为电压反馈增益控制端,当误差放大器的输出电压低于1V时实现0°相移。 管脚3为误差放大器的反相输入端,该脚通常利用分压电阻检测输出电源电压。 管脚4为误差放大器的同相输入端,该脚与基准电压相连,以检测E/A(-)端的输出电源电压。 管脚5为电流检测端,该脚为电流故障比较器的同相输入端,其基准设置为内部固定2.5V(由VREF分压)。当该脚的电压超过2.5V时电流故障动作,输出被关断,软起动复位,此脚可实现过流保护。 管脚6为软起动端,当输入电压(VIN)低于欠压锁定阈值(10.75V)时,该脚保持低电平,当VIN正常时该脚通过内部9μA电流源上升到4.8V,如果出现电流故障时该脚电压从4.8V下降到0V,此脚可实现过压保护。 管脚7、15为输出延迟控制端,通过设置该脚到地之间的电流来设置死区,加于同一桥臂两管驱动脉冲之间,以实现两管零电压开通时的瞬态时间,两个半桥死区可单独提供以满足不同的瞬态时间。 管脚8、9、13、14为输出OUTA~OUTD端,该脚为2A的图腾柱输出,可驱动MOSFET 和变压器。 管脚10为驱动输出电源电压端(对应管脚12 PWRGND),该脚提供输出级所需电源,Vc通常接3V以上电源,最佳为12V。此脚应接一旁路电容到管脚12 PWRGND。 管脚11为芯片供电电源端(对应管脚20 GND),该脚提供芯片内部数字、模拟电路部分的电源供应,接于电压为12V以上的稳压电源。为保证芯片正常工作,在该脚电压低于欠压锁定阈值(10.75V)时停止工作。此脚应接一旁路电容到信号地。 当电源电压超过欠压锁定阈值时,电源电流(IIN)从100μA猛增到20mA;如果供电电源性能不良,因负载迅速增加导致电压下降,UC3875将立即重新进入UVLO欠压锁定状态。如果接一旁路电容,它就很快脱离欠压锁定状态。 管脚12为驱动输出电源地端。其它相关的阻容网络与之并联,驱动输出电源地和信号地应一点接地以降低噪声和直流降落。

谐振电路工作原理

https://www.doczj.com/doc/e217419691.html, 谐振电路工作原理,华天电力是串联谐振装置的生产厂家,15年致立研发标准、稳定、安全的电力测试设备,专业电测,产品选型丰富,找串联谐振,就选华天电力。 谐振就是电路中既有感性原件又有容性原件,感性原件是通直流阻交流,容性原件是通交流阻直流,物理上用相位来描述,感性原件和容性原件的相位正好相反,而感性原件和容性原件在电路中呈现的阻性在某个频率下会相等,及大小相等,方向相反,这样的电路称为谐振电路,该频率称为谐振频率。 在RLC串联电路中,若接入一个输出电压幅值一定,输出频率f连续可调的正弦交流信号源,则电路中的许多参数将随着信号源的频率的变化而变化,即电路阻抗Z,回路电流I,电流与信号源电压之间的相位差φ分别为 Z=[R2+(ZL-ZC)2]1/2=[R2+(ωL-1/ωC)2]1/2 I=U/Z=U/[R2+(ωL-1/ωC)2]1/2 φ=arctan[(ωL-1/ωC)/r] 上述三个式子中,信号源角频率ω=2пf,容抗Zc=1/ωC,感抗ZL = ωL,各参数随ω的变化而变化。ω很小时,电路总阻抗Z=[R2+(1/ωC)2]1/2,φ→π/2电流的相位超前与信号源电压相位,整个电路呈容性;ω很大时,Z=[R2+(ωL)2]1/2,φ→-π/2,电流相位滞后与信号源电压相位,整个电路呈感性;当容抗等于感抗,相互抵消时,电路总阻抗Z=R,为最小值,此时回路电流为最大值Imax=U/R,相位差φ=0,整个电路呈阻性,这个现象即为谐振现象。发生谐振时的频率fo称为谐振频率,角频率ωo称为谐振角频率,它们之间的关系为 ω=ω0=(1/LC) 1/2 或fo=ω0/2π=1/[2π(LC) 1/2]

数字芯片的驱动能力详解

数字芯片的驱动能力详解 1.芯片驱动能力基本概念 芯片驱动能力,是指在额定电平下的最大输出电流;或者是在额定输出电流下的最大输出电压。具体解释如下。 当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。然而,逻辑门的低电平是有一定限制的,它有一个最大值UOLMAX。在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMAX ≤0.4。所以,灌电流有一个上限。 当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。拉电流越大,输出端的高电平就越低。这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。拉电流越大,输出端的高电平越低。然而,逻辑门的高电平是有一定限制的,它有一个最小值UOHMIN。在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOHMIN ≥2.4V。所以,拉电流也有一个上限。 可见,输出端的拉电流和灌电流都有一个上限,否则高电平输出时,拉电流会使输出电平低于UOHMIN;低电平输出时,灌电流会使输出电平高于UOLMAX。所以,拉电流与灌电流反映了输出驱动能力。(芯片的拉、灌电流参数值越大,意味着该芯片可以接更多的负载,因为,例如灌电流是负载给的,负载越多,被灌入的电流越大)。 2.怎么通过数字芯片的datasheet看其驱动能力 以时钟buffer FCT3807例,下图是从Pericom的FCT3807的datasheet截取的。 当其输出为高电平2.4V时,其输出电流为8mA,也就是拉电流为8mA。如果输出电流大于8mA,那么其输出电平就低于2.4V了,就不能称其输出高电平,所以可以说FCT3807输出高电平的驱动能力为8mA。 同样道理,FCT3807输出低电平的驱动能力为24mA。 3.怎么通过数字芯片的驱动能力来估算输出信号的过冲等指标 仍然以Pericom的FCT3807为例,其输出为高电平时的输出阻抗为: RH= (3.3V – 3V )/ 8mA = 37.5欧姆。 其输出为低电平时的输出阻抗为: RL= 0.3V / 24mA = 12.5欧姆。 从上面的计算可以看出,3807输出为高电平和输出为低电平时的驱动能力不一样,也就是输出阻抗不一样,所以用串联匹配的方法很难做到完全匹配,常常表现为overshoot-大

谐振电路在实际中的应用

谐振电路在实际中的应用 摘要:通过学习电路理论基础,我们知道根据电路基础原理,把合适的电感和电容串联或者并联在电路中就可以构成谐振电路。谐振电路使得直流电源发出的电流在谐振电路中按正弦规律变化。在谐振状态下,电路的总阻抗就达到了极值或近似达到极值。谐振现象在电学元器件中很普遍,应用十分广泛。特别是在科学技术迅猛发展的今天,谐振电路在实际中的将会有越来越重要的作用。 关键词:谐振电路实际应用正弦规律变化 Resonance circuit in real application Abstract: learning circuit theory foundation, we know the circuit fundamentals, inductance and capacitance in series or parallel circuit can constitute a resonant circuit. Resonant circuit current to the DC power to issue the sine rule change in the resonant circuit. In the resonant state, the total impedance of the circuit has reached the maximum or approximate to achieve maximum. Resonance phenomenon is very common in electrical components and a wide range of applications. Especially in the rapid development of science and technology today, the resonant circuit in practice will have an increasingly important role. Keywords: resonant circuit is the practical application of the sine rule change 谐振电路是指在含有电阻R、电感L和电容C元件的交流电路中,在一定条件下出现的电路两端电压与该电路中的电流相位相同,整个电路呈现纯电阻性质的一种特殊现象。一般情况下,电路两端的电压与其中的电流位相是不同的,但当调节电路元件(电感或者电容)的参数或电源频率,可以使它们位相相同,从而使得整个电路呈现为纯电阻性。在谐振状态下,电路的总阻抗达到极值或近似达到极值。按电路联接的不同,有串联谐振和并联谐振两种。在R-L-C串联电路中所发生的谐振,称为串联谐振。串联谐振发生的条件是感抗和容抗相等,电抗为零,其数学表达式的代数形式:Z=R+J[wL-1/(wC)] {其中wL-1/wC)=0}。当电阻R、电感L和电容C在并联电路中发生的谐振称为并联谐振。 串联谐振时,电感电容吸收等值异号的无功功率,使电路吸收的无功功率为0;电场能量和磁场能量都在不断变化,但此增彼减,互相补偿,这部分能量在电场和磁场之间振荡,全电路电磁场能量总和不变;激励供给电路的能量全转化为电阻发热。为了维持振荡,激励必须不断供给能量补偿电阻的发热消耗,与电路中总的电磁场能量相比每振荡一次电路消耗的能量越少,电路的品质越好。并联谐振时,电感电容吸收等值异号的无功功率,使电路吸收的无功功率为0;电场能量和磁场能量都在不断变化,但此增彼减,互相补偿,这部分能量在电场和磁场之间振荡,全电路电磁场能量总和不变;激励供给电路的能量全转化为电阻发热。

准谐振和谐振转换两种提高电源效率的技术

准谐振和谐振转换-两种提高电源效率的技术 准谐振和谐振转换-两种提高电源效率的技术 全球对能源成本上涨、环保和能源可持续性的关注正在推动欧盟、美国加州等地的相关机构相继推出降低电子设备能耗的规范。交流输入电源,不论是独立式的还是集成在电子设备中的,都会造成一定的能源浪费。首先,电源的效率不可能是100%的,部分能量在电源大负载工作时被浪费掉。其次,当负载未被使用时,连接交流线的电源会以待机功耗的形式消耗能量。 近年来,对电源效率等级的要求日趋严格。最近,80%以上的效率已成为了基本标准。新倡议的能效标准更是要求效率达到87%及以上。此外,只在满负载下测量效率的老办法已被淘汰。目前的新标准涉及了额定负载的25%、50%、75%和100%这四个点的四点平均水平。同样地,最大允许待机功耗也越来越受到限制,欧盟提议所有设备的待机功耗均应低于500mW,对于我们将讨论的电视机,则小于200mW。 除专家级的高效率电源设计领域之外,电子设备中所用的功率范围从1W 到500W的交流输入电源,一直以来主要采用两种拓扑:标准(或硬开关)反激式(flyback)拓扑,和双开关正激拓扑。这两种拓扑都很易于理解,而它们存在的问题,以及如何予以避免,业界都已有充分的认识。 不过,随着对效率的要求不断提高,这两种拓扑将逐渐为三种新的拓扑所取代:准谐振反激式拓扑、LLC谐振转换器拓扑和不对称半桥拓扑。准谐振反激式拓扑已被成功用于最低功率级到200W以上的范围。在70W-100W范围,LLC谐振转换器比准谐振反激式拓扑更有效。而在这

两个功率级之上,不对称半桥转换器也很有效。 工作原理 准谐振和谐振拓扑都能够降低电路中的导通开关损耗。图1对比了连续传导模式(CCM)反激式、准谐振反激式和LLC谐振转换器的导通开关波形。 所有情况下的开关损耗都由下式表示: 这里,PTurnOnLoss为开关损耗;ID为漏极电流;VDS是开关上的电压;COSSeff是等效输出电容值(包括杂散电容效应);tON是导通时间,而fSW是开关频率。 a)CCM反激式转换器b)准谐振反激式转换器c)LLC谐振转换器 图1CCM反激式、准谐振反激式和LLC谐振转换器的开关波形比较CCM反激式转换器的开关损耗最高。对于输入电压范围很宽的设计,VDS 在500V–600V左右,是输入电压VDC与反射输出电压VRO 之和。进入不连续传导模式(DCM)时,漏电流降为零,开关损耗的第一项也随之降为零。在准谐振转换器中,若在电压波形的第一个(或后一个)波谷时导通,可进一步降低损耗。图中虚线所示为准谐振转换器在第一个谷底导通时的漏极波形。 如果准谐振反激式转换器的匝数比为20,输出电压为5V,则VRO等于100V,因此对于375V的总线电压,开关将在275V时导通。若有效

使用74系列芯片IO扩展及总线驱动

使用74系列芯片作为I/O并行扩展的方法以及总线驱动芯片的使用 方法 使用74系列芯片作为I/O并行扩展的常见于过去单片机I/O口不够的情况,而且是需要大量的内存和程序存储器严重不足的情况下。 开关量输出的扩展经常使用的芯片是74LS273/74LS373/74LS573/74LS574等;这些芯片的共同特点是具有数据锁存的功能; 开关量输入的扩展经常使用的芯片是74LS244/74LS245/74LS240等;这些芯片的特点是三态门,可以把多个芯片的输出,并联在一起而不会互相影响; 通过138、139、153等译码选通芯片,把RD/WR/地址的高位信号(高3位或者高4位,看单片机系统中的芯片的数量)接到译码芯片,把译码芯片的输出接到锁存器的锁存输入,或者缓冲器的选通输入。下面以74LS138为例。 要特别注意到,对245、574、273等使用TTL芯片以RAM方式做I/O扩展的,跟8255、8155、8253、8251、62256等系列芯片不一样的地方,就是: 1)8255、8155、8253、8251、62256等芯片本身有wr、rd、ce等信号,所以138的地址译码输出,可以直接接到CE;但是,245、574、273等芯片,没有wr或者rd信号,因此,如果系统中有这样的芯片扩展,就需要把wr或者rd加入到138中; 2)对于245或者244,要把数据读到数据总线上,芯片的数据的使能端必须是WR和地址译码数据的混和; 3)对于要把数据总线上的数据,锁存到574或者273的数据输出端口上,必须锁存器的LE,是地址和wr的混和; 因此,138的接法是: 1、A15-》138的A2(3) 2、A14-》138的A1(2) 3、A13-》138的A0(1) 4、RD和WR接74LS00,00的输出接138的E3(6) 5、138的输出接245的E或者574的CLK; 这样,使用MOVX a,@dptr的时候,才能在245的E上出现带地址的RD信号; 使用MOVX@dptr,A的时候,才能在574的CLK上出现带地址的WR信号; 参见574的真值表,可见,E应该接低电平; 373、573与273、574有所区别:

串联谐振:如何谐振及其原理解析

串联谐振:如何谐振及其原理解析 谐振电路是在具有电阻R、电感L、电容C的交流电路中;一般电路的电压与电流电路中的相位是不同的。如果我们调整电路元件(L或C)或电源频率的参数,它们可以具有相同的相位,整个电路呈现纯电阻。当电路达到这种状态时,称为共振。研究共振现象的目的是了解这一客观现象,充分利用科学技术中共振的特点,同时预防产生的危害。根据电路连接的不同,可分为串联谐振和并联谐振。 在HTXZ串联谐振情况下,电感电压和电容电压是等价的,即电感电容吸收不同数目的等效无功率,使电路吸收的无功率为0;电场能量和磁场能量不断变化,但这部分能量在电场和磁场之间振荡,整个电路的电磁场能量之和保持不变;励磁电源电路的能量转化为电阻加热。为了维持振荡,励磁必须不断地提供能量来补偿电阻的热消耗。与电路中的电磁场总能量相比,每个振荡电路消耗的能量越少,电路的质量越好。 首先,谐振是在一定条件下由R、L和C元件组成的电路的特殊现象。首先,当C系列电路发生谐振时,首先要分析电路的特性,如图1、C系列电路的复阻抗如下:在正弦电压作用下:电路的复阻抗如下:

公式中,电抗x=x1 xc是角频率w的函数,x随w的变化如图2所示。当w从0变为如图2所示时,x从-变为+如W所示,当w 0,当x是电容性的,当w 0,当x是电感性的,当w=w0,当阻抗z(w0)=r是纯电阻、电压和无穷大时。电流同相,我们称之为此时电路谐振的工作状态。由于这种共振发生在RLC串联电路中,我们也可以称之为串联谐振、串联谐振电路等。式1是串联电路的谐振条件,从中可以得到谐振角频率w。如图:

谐振频率为 由此可见,串联电路的谐振频率是由其自身的参数L和C决定的,这与外界条件无关。当电源固定时,可以调节L和C,使电路的固有频率与电源频率产生共振。 4.变频串联谐振的计算方法 变频串联谐振主要是指所研究的串联电路的电压和电流达到同一相位,即电路中电感的电感电抗和电容电抗的值和时间相等,使所研究的电路呈现出纯的电阻特性。在给定的端电压下,所研究的电路中会出现最大电流。电路中消耗的是最大的有功功率。 变频串联谐振计算方法 z=r+jx,x=0,z=r,i=u/z=u/r。 (1)谐振定义:在电路中,当两个元件的能量由电路中的一个电抗模块释放,而另一个电抗模块必须吸收相同的能量时,两个元件的能量相等,即两个电抗元件之间会有能量脉动。 (2)为了产生共振,电路必须有电感L和电容C。 (3)相应的共振频率是以fr表示的共振频率或共振频率。 串联谐振电路之条件如下: 当q=qi2xl=i2xc或xl=xc时,得到了r-l-c串联电路的谐振条件。

带LC滤波的三相逆变器的比例谐振控制

第45卷第6期2011年6月 电力电子技术 PowerElectronics V01.45,No.6 June2011带LC滤波的三相逆变器的比例谐振控制 李永坚,黄绍平 (湖南工程学院,电气信息学院,湖南湘潭411104) 摘要:针对带LC输出滤波器的三相电压型逆变器,提出一种新的无电流传感器比例谐振(PR)控制策略,仅需检测输出滤波电容电压。无需检测其电流。相比于同步旋转坐标系的PR控制器,提出的PR控制器基于静止坐标系.无需进行复杂的坐标变换,减少了计算量,能对正序与负序电流进行统一调节。仿真和实验结果表明,该控制策略具有良好的动静态性能,可实现正弦交流指令的零稳态误差控制,利用其谐振控制器的特性对特定次谐波进行补偿.在逆变器带平衡负载和不平衡非线性负载时都能适用。 关键词:逆变器;比例谐振控制;滤波 中图分类号:TM464文献标识码:A文章编号:1000一lOOX(2011)06—0076—03 Proportinal.resonantControlforThree-phaseInverterwithLCFilters LIYong-jian,HUANGShao?ping (HunanInstituteofEngineering,Xiangtan411104,China) Abstract:Anovelcurrentsensor]essproportional?resonant(PR)controlschemeforthree?phaseinverterwithLCout—putfiltersispresented.Theproposedcontrolschemewithuseofcurrentsensorlessonlyrequiesvoltagemeasuredacrosscapacityinsteadofcurrentmeasured.ComparedwithPRcontrollerinsynchronousframe,theproposedPRcon—trollerisimplementedinstationaryframewithoutcomplexreferenceframetransforms,itisabletoadjustpositiveandnegativesequencecomponentsoftheoutputcurrentsimultaneously.Simulationandexperimentalresultsshowthatthecontrolschemehasgooddynamicandstaticperformances,theproposedschemecarlachievezerosteady—stateerrorfor sinusoidalreferencecommand,specificharmonicscanbe compensatedbyuseoftheresonantcharacteristicsofthe controller,thecontrolledinvertercanoperatewellinblanceloadsornonlinearunbalanceloads. Keywords:inverter;proportinal—resonantcontrol;tilting FoundationProject:SupportedbyScienceandTechnologyPlanningFundofHunanProvince(No.2010GK3100);CollegesandUniversitiesOpenInnovation PlatformFundofHunanProvince(No.2009K100) 1引言 逆变器按输出波形可分为正弦波逆变器与方波逆变器.前者在实际中应用较多。正弦波逆变器的主要控制目标是:追踪一纯正弦输出电压,即使在非线性或不平衡负载时。仍能提供不含谐波分量的正弦输出电压【11。 逆变器的传统控制方法主要有基于电网电压矢量定向的PI控制和滞环控制等【2。】。但都难以满足逆变器的稳态误差和输出谐波含量的要求。另外,为了减小整个装置的重量、大小、造价,增加控制带宽.往往在这类逆变装置中引入了LC或LCL输出滤波器,而输出滤波器存在谐振峰值,将 基金项目:湖南省2010年科技计划项目(2010GK3100);湖南省2009年高校创新平台开放基金项目(2009K100) 定稿日期:2011—04—18 作者简介:李永坚(1971一),男,湖南双峰人,硕士,副教授,研究方向为电力电子与电力传动、电力系统自动化。 76使系统不稳定。为了解决上述问题,在此针对带输出LC滤波器的电压型逆变器的控制,提出了一种新的无电流传感器PR控制策略。它能实现正弦交流指令的零稳态误差控制。并利用其谐振控制器对特定谐波进行补偿,对平衡负载与非平衡负载均具有很好的适应性。 2带LC滤波的三相逆变系统 图l示出带LC输出滤波的三相电压型逆变系统。为便于分析。假定三相输出电压不带中线,且逆变器开关频率远高于电网频率,这有利于将输出变量解耦为两个独立的控制变量。需要测量的信号仅有直流侧电压及2个输出相电压,因此无需电容电流传感器。 L.J咯邕当。ltI耋 呈f%。{ rl 图1带LC滤波的三相逆变系统

一种新颖的含有谐振控制器的CVCF逆变器多环反馈控制方法

第!"卷第!期!##$年"月电工电能新技术%&’()*+&,+*-)./.01.23/+*456*(/3)06)++56)0()&3)+501 7./8!",9.8! %:58!##$收稿日期:!##";#<;#= 基金项目:国家>=?“十五”科技攻关项目资助(高速磁悬浮交通技术专项)作者简介:黄 沁(@A<>;),男,江西籍,硕士,主要研究方向为电力电子变换器及其控制; 李耀华(@A==;),男,河南籍,研究员,博士,主攻电力电子与电气传动,电机控制及磁浮交通系统。 一种新颖的含有谐振控制器的!"!#逆变器多环反馈控制方法 黄 沁@,! ,李耀华@ (@B 中国科学院电工研究所,北京@###>#;!B 中国科学院研究生院,北京@###?A )摘要:多环反馈控制方法以其设计实现过程简单、优越的动态性能而受到特别的关注。它一般包括一个电压外环与一个电流内环,电流内环的给定由电压外环给出。传统多环反馈控制每一环路中使用的都是CDE 控制器,在稳态精度方面存在缺陷。本文将谐振控制器引入到这种逆变器的多环反馈控制方法中,在电压环控制器中加入了谐振控制器。与传统使用CDE 控制器的多环反馈控 制方法比较,含有谐振控制器的多环反馈控制能获得更高的稳态精度,并且它具有设计简单、易于实现的优点。将含有谐振控制器的多环反馈控制方法用于F7FG (恒压恒频)逆变器,实验结果证明了这种控制方法的有效性。 关键词:F7FG 逆变器;谐振控制器;多环反馈控制 中图分类号:,H"=" 文献标识码:% 文章编号:@##?;?#<=(!##$)#!;##?<;#" $引言 F7FG 逆变器是不间断电源、 中频电源、航空电源等许多设备的核心。在不同负载下保持恒定的输出电压是F7FG 逆变器控制技术的主要目标。 F7FG 逆变器的控制方法是当前电力电子领域的一个研究热点,目前已产生了多种控制方案。控制效果较好的主要是重复控制、无差拍控制、多环反 馈控制这三种方法。重复控制[@] 只需检测输出电压 一个变量,稳态精度高,但设计过程十分复杂,目前还没有一种通用的设计方法。另外,重复控制器的工程实现也较为复杂,并且对控制芯片的存储容量有较高要求。无差拍控制动态性能极佳,但其设计过程依赖于精确的逆变器参数,所以它对逆变器参数变化十分敏感,这往往导致控制效果恶化,严重时,系统将可能不稳定,为了弥补这个缺陷,往往需 要采用其他控制方法来进行补偿 [!] 。多环反馈控制方法[?] 动态性能优越,设计过程简单且易于实现,控 制器设计过程不依赖于精确的逆变器参数。传统多环反馈控制在环路中使用的是CDE 控制器,系统在稳态精度方面存在缺陷。本文提出了一种含有谐振控制器的多环反馈控制方法,它可以有效提高稳态 精度,与传统的多环反馈控制一样,易于设计和实现。 %!"!#逆变器和多环反馈控制 图@是F7FG 逆变器结构框图。I 桥逆变器的 输出经JF 滤波器滤波得到恒压恒频的输出电压提供给负载。为了保证在不同负载条件下得到恒定的输出,必须采取一定的闭环控制方法。 图@F7FG 逆变器结构框图 G608@ F7FG 6)’+54+5K45L*4L5+M/.*N &6(05(O 多环反馈控制一般包括一个电流内环和一个电压外环,电流内环的给定由电压外环决定。根据电流内环反馈量的不同可将多环反馈控制分为电感电流控制模式和电容电流控制模式。 图!和图?! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!分别是电感电流控制模式和电容电 万方数据

驱动芯片的选择

电机驱动有单极性和双极性两种。当只需要电机单方向驱动时,可采用单极性驱动,如下图(a)所示,此电路由于续流二极管工作时间较长,损耗大,所以改进后的半桥驱动如下图(b): Figure 1.Illustration of the half bridge. 当需要电机正反两个方向旋转时,采用双极性驱动方式,如下: Figure 2.Illustration of the H bridge. 功能逻辑如下:(1:合并,0:断开) S1 S2 S3 S4 电机动作 1 0 0 1 正传 0 1 1 0 反转 0 0 0 0 自由 0 1 0 1 刹车 1 0 1 0 刹车 这又称为全桥驱动,上图中开关使用大功率MOS管替代,可以使用分立元件,也可以使用集成电路。但是能用于PWM驱动的低电压大电流芯片产品并不多,在智能车比赛中使用最多的有:MC33886, VNH3SP30, BTS7960B, DT340I, IRF3205。 根据查阅的资料,使用单片MC33886时易发生发热、噪声等问题,对电源电压影响过大等问题,所以可以使用两片并联,如下所示:

该接法降低了MOS管的导通内阻,增大了驱动电流,可以起到增强驱动能力、减小芯片发热的作用,但是起始频率受限,电机噪声大且发热严重。 VNH3SP30是意法半导体公司生产的专用于电机驱动的大电流功率集成芯片。芯片核心是一个双单片上桥臂驱动器(HSD)和2个下桥臂开关,HSD开关的设计采用ST的ViPowe 技术,允许在一个芯片内集成一个功率场效应MOS管和智能信号/保护电路。下桥臂开关是采用ST专有的EHD(STripFET)工艺制造的纵向场效应MOS管。3个模块叠装在一个表面组装MultiPowerSO- 30引脚框架电绝缘封装内,具体性能指标如下: ①最大电流30 A、电源电压高达40 V; ②功率MOS管导通电阻0.034 Ω; ③5 V兼容的逻辑电平控制信号输入;④内含欠压、过压保护电路;⑤芯片过热报警输出和自动关断。与MC3886相比,它具有一个显著优点就是芯片不会发热,且保护功能强大,但是存在开关频率限10 kHz,电机噪声大且电机容易发热,但芯片较贵,很多场合性价比不高。 采用2个半桥智能功率驱动芯片BTS7960B组合成一个全桥驱动器,驱动直流电机转动。BTS7960B是应用于电机驱动的大电流半桥集成芯片,它带有一个P沟道的高边MOSFET、一个N沟道的低边MOSFET和一个驱动IC。P沟道高边开关省去了电荷泵的需求,因而减少了电磁干扰(EMI)。集成的驱动IC具有逻辑电平输入、电流诊断、斜率调节、死区时间产生和超温、过压、欠压、过流及短路保护功能。BTS7960B的通态电阻典型值为16 mΩ,驱动电流可达43 A,调节SR引脚外接电阻的大小可以调节MOS

相关主题
文本预览
相关文档 最新文档