当前位置:文档之家› 准谐振变换器的变结构控制

准谐振变换器的变结构控制

准谐振变换器的变结构控制
准谐振变换器的变结构控制

确定准谐振反激式变换器主要设计参数的实用方法

确定准谐振反激式变换器主要设计参数的实用方法 准谐振反激式变换器(Flyback Converter)由于能够实现零电压开通,减少了开关损耗,降低了EMI噪声,因此越来越受到电源设计者的关注。但是由于它是工作在变频模式,因此导致诸多设计参数的不确定性。如何确定它的工作参数,成为设计这种变换器的关键,本文给出了一种较为实用的确定方法。 近年来,一些著名的国际芯片供应商陆续推出了准谐振反激式变换器的控制IC,例如安森美的NCP1207、IR公司的IRIS40XX系列、飞利浦的TEA162X系列以及意法半导体的L6565等。正如这些公司宣传的那样,在传统的反激式变换器当中加入准谐振技术,既可以实现开关管的零电压开通,从而提高了效率、减少了EMI噪声,同时又保留了反激式变换器所固有的成本低廉、结构简单、易于实现多路输出等优点。因此,准谐振反激式变换器在低功率场合具有广阔的应用前景。但是,由于这种变换器的工作频率会随着输入电压及负载的变化而变化,这就给设计工作(特别是变压器的设计)造成一些困难。本文将从工作频率入手,详细阐述如何确定准谐振反激式变换器的几个主要设计参数:最低工作频率、变压器初级电感量、折射电压、初级绕组的峰值电流等。 图1是准谐振反激式变换器的原理图。其中: L P为初级绕组电感量,L LEAK为初级绕组漏感量, R P是初级绕组的电阻,C P是谐振电容。 由图1可见,准谐振反激式变换器与传统的反激 式变换器的原理图基本一样,区别在于开关管的 导通时刻不一样。图2是工作在断续模式的传统 反激式变换器的开关管漏源极间电压V DS的波 形图。这里V IN是输入电压,V OR为次级到初级 图1:准谐振反激式变换器原理图。 的折射电压。 由图2可见,当副边绕组中的能量释放完毕之后(即变压器磁通完全复位),在开关管的漏极出现正弦波振荡电压,振荡频率由L P、C P决定,衰减因子由R P决定。对于传统的反激式变换器,其工作频率是固定的,因此开关管再次导通有可能出现在振荡电压的任何位置(包括峰顶和谷底)。可以设想,如果控制开关管每次都是在振荡电压的谷底导通,如图3所示,那么就可以实现零电压导通(或是低电压导通),这必将减少开关损耗,降低EMI噪声。实现这一点并不困难,只要增加磁通复位检测功能(通常是辅助绕组来实现),以便在检测到振荡电压达到最低点时打开开关管,就能达到目的。这实质上就是准谐振反激式变换器的工作原理,前文提到的几种IC均能实现这个功能。由此带来的问题是其工作频率是变化的,从而影响了其它设计参数的确定。 设计参数的确定 设计反激式变换器,通常需要确定以下参数: f S:变换器的工作频率; I PMAX:初级绕组的最大峰值电流;

半桥LLC谐振变换器介绍

半桥LLC 谐振变换器

目录 概述 硬开关与软开关分析对比LLC 工作原理 工作模态分析 效率分析计算 设计总结

概述 全球对降低能耗的需求正在促进节能技术的推广。在70W-600W 交流输入电源中,目前可能会做到更好功率,当然前提交流输入电源中目前可能会做到更好功率当然前提是很好的解决输出电压纹波噪声的基础上,由于LLC 谐振转换器(效率通常在90%以上)的效率高于标准电源拓扑,所以其运用越来越广泛。本这为了设计出更高效率电源的目的,我们在以下报告内容探讨LLC谐振转换器相比硬开关转换器的功能优势,开关工作原理,谐振工作模态,效率计算分析等,做一个简要的介绍。

硬开关与软开关分析对比 ?Hard switch Higher switching losses limit switching frequency. ?Low power density -?Lower efficiency ?-Higher flux density level of transformer, bigger core size. ?Poor EMI ( high dv/dt and di/dt ) ?Poor cross regulation ?Higher output ripple noise Hi h h l i i ?Higher thermal agitation ? Higher voltage stress on MOSFET and rectifier diode

硬开关与软开关分析对比 Soft switch (LLC converter) 9High efficiency 9Primary MOS Zero-Voltage Switching 9Secondary Rectifier Diode Zero -Current Switching & low Vf. 9High power density 9Lower flux density level of transformer, smaller core size. 9Good EMI ( low dv/dt and di/dt) G d EMI(l d/dt d di/dt 9Better cross regulation 9Lower output ripple noise 9Low thermal agitation 9Cost effective 9Low voltage stress on MOSFET and rectifier diode Simple Topology 9

准谐振和谐振转换两种提高电源效率的技术

准谐振和谐振转换-两种提高电源效率的技术 准谐振和谐振转换-两种提高电源效率的技术 全球对能源成本上涨、环保和能源可持续性的关注正在推动欧盟、美国加州等地的相关机构相继推出降低电子设备能耗的规范。交流输入电源,不论是独立式的还是集成在电子设备中的,都会造成一定的能源浪费。首先,电源的效率不可能是100%的,部分能量在电源大负载工作时被浪费掉。其次,当负载未被使用时,连接交流线的电源会以待机功耗的形式消耗能量。 近年来,对电源效率等级的要求日趋严格。最近,80%以上的效率已成为了基本标准。新倡议的能效标准更是要求效率达到87%及以上。此外,只在满负载下测量效率的老办法已被淘汰。目前的新标准涉及了额定负载的25%、50%、75%和100%这四个点的四点平均水平。同样地,最大允许待机功耗也越来越受到限制,欧盟提议所有设备的待机功耗均应低于500mW,对于我们将讨论的电视机,则小于200mW。 除专家级的高效率电源设计领域之外,电子设备中所用的功率范围从1W 到500W的交流输入电源,一直以来主要采用两种拓扑:标准(或硬开关)反激式(flyback)拓扑,和双开关正激拓扑。这两种拓扑都很易于理解,而它们存在的问题,以及如何予以避免,业界都已有充分的认识。 不过,随着对效率的要求不断提高,这两种拓扑将逐渐为三种新的拓扑所取代:准谐振反激式拓扑、LLC谐振转换器拓扑和不对称半桥拓扑。准谐振反激式拓扑已被成功用于最低功率级到200W以上的范围。在70W-100W范围,LLC谐振转换器比准谐振反激式拓扑更有效。而在这

两个功率级之上,不对称半桥转换器也很有效。 工作原理 准谐振和谐振拓扑都能够降低电路中的导通开关损耗。图1对比了连续传导模式(CCM)反激式、准谐振反激式和LLC谐振转换器的导通开关波形。 所有情况下的开关损耗都由下式表示: 这里,PTurnOnLoss为开关损耗;ID为漏极电流;VDS是开关上的电压;COSSeff是等效输出电容值(包括杂散电容效应);tON是导通时间,而fSW是开关频率。 a)CCM反激式转换器b)准谐振反激式转换器c)LLC谐振转换器 图1CCM反激式、准谐振反激式和LLC谐振转换器的开关波形比较CCM反激式转换器的开关损耗最高。对于输入电压范围很宽的设计,VDS 在500V–600V左右,是输入电压VDC与反射输出电压VRO 之和。进入不连续传导模式(DCM)时,漏电流降为零,开关损耗的第一项也随之降为零。在准谐振转换器中,若在电压波形的第一个(或后一个)波谷时导通,可进一步降低损耗。图中虚线所示为准谐振转换器在第一个谷底导通时的漏极波形。 如果准谐振反激式转换器的匝数比为20,输出电压为5V,则VRO等于100V,因此对于375V的总线电压,开关将在275V时导通。若有效

lc串联谐振变换器

https://www.doczj.com/doc/e412235683.html, lc串联谐振变换器 谐振变换器是依靠改变开关网络的工作频率实现对输出量的控制的,因此它是一种变 频控制的开关调节系统。谐振变换器的开关动作被设定在零电流或零电压时刻发生,大大 减小了开关损耗;正弦谐振波还能降低高频谐波噪声;由于电路是利用LC谐振,电路中 的寄生电感和电容能够得到应用。基于这些优点,谐振变换器得到了广泛的应用。小信号 建模是分析和控制变换器的有力工具。 谐振变换器建模方法有扩展描述函数法、DQ等效法、注入?吸收电流法等。扩展描述函数法也是一种适用于谐振类变换器建模方法,根据描述函数理论非线性环节的稳态输出 可看成一个与输入信号同频的正弦函数,只是幅值与相位不同。把输出信号和输入信号的 复数比定义为非线性环节的描述函数,但是其前提是将输入端开关动作等效成一个统一的 函数。DQ等效法将电路中的矢量,从静止的直角坐标系变换到与电路中矢量相同角速度 旋转的DQ坐标系中。扩展描述函数法和DQ等效法都是以基波等效法为基础所建的模型,适用于电流连续模式,并不适用于电流不连续模式。注入?吸收电流法是一种电流连续模式和电流不连续模式下都可用的建模方法。本文采用注入?吸收电流法对工作于电流断续模式下的串联谐振变换器的建模展开研究,并在此基础上设计了满足要求的补偿器。 传递函数推导 根据电感电流的连续与否,变换器工作模式分为两种:连续导电模式(CCM)和不连续导电模式(DCM)。当开关频率大于 1 2 的谐振频率时,串联谐振变换器是工作在电流连续模式下的;当开关频率小于1 2 的谐振频率时,串联谐振变换器是工作在电 流断续模式下的,这样开关工作在零电流(ZCS)条件下,可以降低开关损耗,提高电源 的效率。断续工作模式的半个开关周期包含a,b,c三种工作状态。假设负载电容值远远大于谐振电容的电容,因此在一个谐振周期内,负载电容的电压上升非常小,在分析过程 中将其看成一个恒压源。根据以上分析;a,b工作模式的等效电路如图2所示。c表示谐振电流为零时的工作模式(其状态电路图省去)。 仿真实验结果

谐振转换器工作原理

4.主开关电源电路 (1)LLC谐振转换器工作原理 随着开关电源的发展,软开关技术得到了广泛的发展和应用,已推出了不少高效率的电路,尤其是谐振型的软开关电源和PWM型的软开关电源。近几年来,随着半导体器件制造技术的发展,开关管的导通电阻、寄生电容和反向恢复时间越来越小,这为谐振变换器的发展提供了又一次机遇。 对于谐振变换器来说,如果设计得当,能实现软开关变换,从而使得开关电源具有较高的效率。LLC谐振变换器实际上来源于不对称半桥电路,后者用调宽型(PWM)控制,而LLC谐振是调频型(PFM)。 LLC谐振电路简图如图10所示,工作波形图如图11所示。电路中有两只功率MOs管(S1和S2),其工作的占空比均为0.5。谐振电容为Cs。Tr为匝数相等的中心抽头变压器,其漏感为Ls,激磁电感为Lm(Lm在某个时间段也是一个谐振电感)。从图11中不难看出,在LLC谐振变换器中,谐振元件主要由谐振电容Cs、电感Ls和激磁电感Lm组成,LLC变换器的稳态工作原理如下: 当t=t1时,S2关断,谐振电流给S1的寄生电容放电,一直到S1上的电压为零,然后S1的体内二极管导通。此阶段D1导通,Lm上的电压被输出电压钳位,因此只有Ls和Cs参与谐振。 当t=t2时,S1在零电压的条件下导通,变压器原边承受正向电压;D1继续导通,S2及D2截止。此时Cs和Ls参与谐振,而Lm不参与谐振。 当t =t3时,S1仍然导通,而D1与D2处于关断状态,T:副边与电路脱开,此时Lm,Ls和Cs一起参与谐振。由于实际电路中Lm>>Ls,因此在这个阶段中,可以认为激磁电流和谐振电流都保持不变。 当t=t4时,S1关断,谐振电流给S2的寄生电容放电,一直到S2上的电压为零,然后S2的体内二极管导通。此阶段D2导通,Lm上的电压被输出电压钳位,因此只有Ls和Cs参与谐振。 当t=t5时,S2在零电压的条件下导通,Tr原边承受反向电压;D2继续导通,而S1和D1截止。此时仅Cs和Ls参与谐振,Lm上的电压被输出电压钳位,而不参与谐振。 当t =t6时,S2仍然导通,而D1和D2处于关断状态,Tr副边与电路脱开,此时Lm、Ls和Cs 一起参与谐振。实际电路中Lm> >Ls ,因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。 (2)主开关电源电路分析 该电源板主开关电源电路主芯片L6599DIC2)的引脚功能与实测电压见表3所示。 1)启动控制 IC2的供电电路如图12所示,T2B绕组的感应电压经D10整流,Q5、Z3稳压后输出Vcc2 (14V 左右),供给PFC芯片,并通过Q9、Z4稳压后输出Vcc3 (12V左右)供给L6599D12脚。过流、过压、ON/OFF信号通过光耦IC4控制Q5的导通状态,进而控制PFC、LLC电路是否工作,以实现过压、过流保护与开/关机功能。 当IC2的12脚加上电压后,通过IC的内部电路给①脚(CSS)外接电容C27充电,如图13所示。此时C26可视为短路,R57与R61并联(阻值较小),L6599D的振荡频率升高,电源功率下降。当C27充满电时,C27可视为开路,振荡频率由R57决定,振荡频率降低,电源输出正常,由此实现变频软启动功能。 同时,VDC1电压经电阻R7-R9及R45分压后加到IC2的⑦脚。R45上并联的电容C17用来旁路噪声干扰。当⑦脚(Line)电压低于1.25V时,关闭IC;当高于1.25V但低于6V时,IC正常工作,通过对VDC的电压检测,实现欠压保护功能。 IC完成软启动后,内部振荡器开始振荡,从15脚(HVG)与11脚(LVG)输出占空比接近50%

准谐振SMPS控制器L6565功能原理及应用

准谐振SMPS控制器L6565功能原理及应用 准谐振SMPS控制器L6565功能原理及应用 1概述 ST公司在近期推出的L6565单片IC,是适用于准谐振(QR)零电压开关(ZVS)回扫变换器电流型初级控制器。QR操作依靠变压器退磁感测输入获得,变换器功率容量随主线电压变化通过线路前馈电压前馈补偿。在轻载时,L6565自动降低工作频率,但仍然尽可能保持接近ZVS 运行。 L6565的主要特点如下: QRZVS回扫拓扑电流型初级控制; 线路电压前馈控制保证交付恒定功率; 频率折弯(foldback)功能可获得最佳待机频率; 逐周脉冲与打嗝(hiccup)模式过电流保护(OCP); 超低起动电流(<70μA)和静态电流(<3.5mA); 堵塞功能(开/关控制); 25V±1%的内部基准电压; ±400mA的图腾驱动器,在欠电压闭锁(UVLO) 情况下,保持输出低电平。 L6565的主要应用包括TV/监视器开关型电源(SMPS)、AC/DC适配器/充电器、数字消费类产品、打印机、传真机和扫描设备等。 2功能与工作原理 21封装及引脚功能 L6565采用8脚DIP(L6565N)和8脚SO(L6565D)封装,引脚排列。 L6565的引脚功能分别为: 脚1(INV)误差放大器反相输入; 脚2(COMP)误差放大器输出; 脚3(VFF)线路电压前馈; 脚4(CS)电流感测输入; 脚5(ZCD)变压器退磁零电流检测输入; 脚6(GND)地; 脚7(GD)栅极驱动器输出; 脚8(VCC)电源电压。 22工作原理 图1L6565引脚排列 图2L6565电源电路 图3ZCD及相关电路 (1)电源 L6565的电源电路。IC脚VCC的导通门限电压典型值是135V,关闭门限电压典型值是9 5V。一旦VCC脚导通,IC内部栅极驱动器电压直接由VCC提供,其它内部所有电路的工作电压均由线性调节器产生的7V电压供给。一个内部25V±1%的精密电压,供给初级

《现代控制理论基础》考试题B卷及答案

一.(本题满分10分) 请写出如图所示电路当开关闭合后系统的状态方程和输出方程。其中状态变量的设置如图所示,系统的输出变量为流经电感2L 的电流强度。 【解答】根据基尔霍夫定律得: 1113222332 1L x Rx x u L x Rx x Cx x x ++=?? +=??+=? 改写为1 13111 22 322 312 11111R x x x u L L L R x x x L L x x x C C ? =--+?? ?=-+???=-?? ,输出方程为2y x = 写成矩阵形式为

[]11 111222 2 331231011000110010R L L x x L R x x u L L x x C C x y x x ??? --???????????????? ???????=-+???? ??????? ??????????????? ? ???-?????? ? ? ??? ?? ?=??? ?????? 二.(本题满分10分) 单输入单输出离散时间系统的差分方程为 (2)5(1)3()(1)2()y k y k y k r k r k ++++=++ 回答下列问题: (1)求系统的脉冲传递函数; (2)分析系统的稳定性; (3)取状态变量为1()()x k y k =,21()(1)()x k x k r k =+-,求系统的状态空间表达式; (4)分析系统的状态能观性。 【解答】 (1)在零初始条件下进行z 变换有: ()()253()2()z z Y z z R z ++=+ 系统的脉冲传递函数: 2()2 ()53 Y z z R z z z +=++ (2)系统的特征方程为 2()530D z z z =++= 特征根为1 4.3z =-,20.7z =-,11z >,所以离散系统不稳定。 (3)由1()()x k y k =,21()(1)()x k x k r k =+-,可以得到 21(1)(2)(1)(2)(1)x k x k r k y k r k +=+-+=+-+ 由已知得 (2)(1)2()5(1)3()y k r k r k y k y k +-+=-+-112()5(1)3()r k x k x k =-+- []212()5()()3()r k x k r k x k =-+-123()5()3()x k x k r k =--- 于是有: 212(1)3()5()3()x k x k x k r k +=--- 又因为 12(1)()()x k x k r k +=+ 所以状态空间表达式为

反激式变换器设计的文献综

反激式变换器设计的文献综述 摘要:随着社会的不断发展人们对变开关电源的要求越来越高,市场的竞争也越来越激烈。其中反激式变换器因为有效的提高了开关电源的效率,元器件相对较少,成本较低,结构简单应用范围广等特点越来越受到人们的青睐。本文主要通过对反激式变换器原理的研究,以及结合SABER软件进行反真,设计出一个符合要求的反激式变换器。 关键词:反激式变换器,电流连续工作模式,电流断续工作模式,伏秒平衡 研究背景及目的:随着社会的进步和经济的不断的发展,科学技术的不断进步,特别是在20世纪60年代电力电子学的出现,更完善了电气工程的完整性。各种电力电子装置广泛的应用于高压电流输电,静止无功补偿,电力机车牵引,交直流电力传动,电解,励磁,电加热,高性能交直流电源中。因此,世界各国,都无不看中电力电子学对电气工程的作用。在我国电气工程作为一个一级学科,它包含了两个五个二级学科,即电力系统及其自动化,电机与电器,高电压与绝缘技术,电力电子与电力传动,电工理论与新技术。在这五个学科电力电子学都处于十分特殊的地位。 反激式变换器因为是开关电源的重要组成部分,开关电源的效率直接影响各电器的工作,是衡量电器好坏的重要指标。开关电源的设计若不达标,将会浪费大量的资源,因此设计一个效率高的开关电源尤其重要。反激式转换器又称单端反激式或:‘Buck-Boost’转换器,因其输出端在原边绕组关断时获得能量故而得名。在反激变换器拓扑中,开关管导通时,变压器储存能量,负载电流由输出滤波电容提供;开关管关断时,变压器将储存的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量,其因电路简单,转换效率高损失小,变压器匝数比值小等优点【1】,极大的提高了开关电源的效率,所以反激式变换器日益成为国内外开关电源研究的热点。

变结构控制理论中抖振问题的研究_阎俏

变结构控制理论中抖振问题的研究 阎俏,孙莹,李可军 (山东工业大学电力学院,山东济南250061) 摘要:介绍了变结构控制的基本原理,分析了变结构控制系统可能引起抖振的原因,并在此基础上讨论了目前几种具有代表性的削弱抖振的途径。最后,提出了一种新型的基于模糊控制的减抖方法。 关键词:变结构控制;抖振;模糊控制 中图分类号:TM711文献标识码:A文章编号:1003-4897(2001)05-0017-03 电力系统是一个非常复杂的强非线性系统,其运行方式、网络结构及参数具有多变性。因而,应用现代控制理论解决电力系统的问题效果并不理想,而变结构控制理论(Variable Structure C ontrol简称VSC)作为一种控制系统的综合方法,无论是对于线性系统还是对于非线性系统均有普遍的适用性,它具有对所控对象模型精度要求较低、进入滑动模态后对系统参数摄动及外界干扰有较强鲁棒性以及控制计算量小、实时性强和快速响应等优点,这已为电力系统研究者所关注。 近年来,VSC理论在电力系统负荷频率控制、励磁控制、暂稳控制等方面取得了一系列的研究成果,但这些常规的VSC控制器往往会出现抖振问题。抖振的存在对于电力系统是有害的,它将使系统最终出现稳态误差,增加系统能量消耗,还可能激发系统未建模部分的强烈振动,不能满足工程要求,这成为影响它应用的主要问题。因此,近期学术界对VSC理论的研究已经转移到如何削弱并防止抖振发生的研究上来。模糊控制理论属于智能控制论的范畴,它能够充分利用语言信息、鲁棒性强、易于微机实现,也是近年来人们研究的热点。针对传统减抖措施(文献[1,4])的局限性及模糊控制处理不确定问题的优势,本文提出一种新型的基于模糊控制的削弱抖振的方法。在这方面深入研究,对VSC走向实用有极其重要的现实意义。 1变结构控制的基本原理 VSC系统与常规控制系统的不同之处在于系统的/结构0可以在瞬变过程中,根据系统当时的状态(偏差及其各阶导数等),以跃变方式,有目的地变化,迫使系统沿预定的/滑动模态0 例如,有一单输入线性系统 ¤X=AX+B u X I R n,u I R(1)控制系统的设计也可分为两个独立过程进行,一是根据所要求的系统性能指标设计切换函数 s=C T X=0C=[c1,c2,,,c n](2)最终归结为求C阵;二是在不同条件下满足滑动模态的存在条件和达到条件,用多种方式综合出VSC 的控制律 u(X)= u+(X)s>0 u-(X)s<0 (3) 使得切换面是滑动模态区,滑动模态具有完全抗外干扰和抗摄动的特性,并使系统状态进入并且保持在滑动模态上,从而保证整个系统的大范围渐进稳定性。 2抖振产生的机理 2.1惯性引起滞后产生抖振 VSC系统中执行机构的物理过程是从切换函数s(X)到产生控制力(力矩),这个力(力矩)加在对象上使它产生运动的变化。由于任何的物理现实系统的能量不可能无限大,从而使系统的控制力不能无限大,这就必然使系统的加速度有限,另外,系统惯性总是存在,于是控制的切换必然伴有滞后。滞后模型可分为两种: (1)空间滞后 典型的开关模型中 sign(s)= -1当s<0 +1当s>0 (4)理想情况下是在s=0处完成切换,实际上无论何种方式获取s均有误差(如传感器的死区、运算的舍入误差等),实现Sign(s)均有滞环,所以实际情况是s 在空间上滞后$才切换,典型的开关模型就表示为 <-$或|s|<$,¤s>$ >+$或|s|<$,¤s<$ (5) 17 2001年5月继电器 R ELAY 第29卷第5期

LLC谐振变换器的原理说明

LLC谐振变换器 要提高主变换器能效,可以采用以下四种方式: 一是降低导通损耗或者是减小初级峰值电流和均方根电流来降低一次导通损耗; 二是采用软开关技术降低开关损耗; 三是减小整流器的压降,例如采用低的正向压降二极管或者FET整流器,来降低二次损耗; 四是采用更好的磁芯材料来降低磁芯损耗. 杨恒.LED照明驱动器设计步骤详解[M].北京:中国电力出版社.2010 1软开关技术的提出(电力电子技术-西安交通大学王兆安黄俊第四版) 还是从小型化、轻量化的发展趋势看,装置的效率以及电磁兼容的要求变得更高。当提高开关频率,开关损耗增加,电路的效率下降,电磁干扰也增大,这里提出了软开关技术,它是利用谐振的辅助换流手段,从而解决电路的开关损耗和开关噪声的问题。 硬开关:开关过程中,电压电流均不为零,出现重叠,因此导致开关损耗(电路效率的降低、阻碍开关频率的提高)。并且,电流电压变化很快,波形有明显的过冲,导致了开关噪声(电磁干扰EMI)。如图5-1所示: 图5-1 硬开关电路波形 软开关:通过增加电感、电流等谐振元件,构成辅助换流网络,在开关过程的前后引入谐振过程。开关开通前电压降为零,或者关断之前电流降为零,消除电压电流之间的重叠,降低电压电流的变化率,减小开关损耗和开关噪声。如图5-2所示: 图5-2 软开关电路波形 主要的软开关拓扑结构有:

结合本文设计要求,将采用双电感加单电容的谐振变换器。 2谐振变换器的发展 为了降低开关损耗和开关噪声,并且容许高频运行,谐振开关技术得到了发展。在各类的谐振变换器中,LC串联谐振变换器是最简单也是最普遍的。 1)LC串联谐振变换器 电路中电感与电容串联,形成一个串联谐振腔。这个谐振腔的阻抗与负载串联,则由于其串联分压作用,增益总是小于1。谐振腔的阻抗与频率有关,在其谐振频率fr下阻抗最小,此时的增益也最大。根据电路的直流特性可知: ① fs>fr时,开关管 Q-->ZVS; ②轻载时,fs要变化很大才能保证输出电压不变; ③ Vin增大时,fs增大使输出电压保持不变。 此时谐振腔的阻抗也增大,则谐振腔内有很高的能量在循环,而并没有把这些能量供给负载,并且使半导体器件的应力增大。 因此,串联谐振变换器存在一些不利因素:轻载调整率高、高的谐振能量、高输入电压时较大的关断电流等。 2)LC并联谐振变换器 根据其直流特性可知: ① fs>fr时,实现软开关; ②轻载时,fs并不要变化很大来维持输出电压不变; ③ Vin增大时,fs增大来维持输出电压不变。 此时谐振腔内循环的能量依然很大,即使是在轻载的条件下,由于负载与电容并联,仍然有一个比较小的串联阻抗。与SRC相比,PRC优点:在轻载时,频率变化不大即可保证输出电压不变。其缺点是:高的谐振能量、高输入电压时关断电流较大会引起较大的关断损耗。3)LCC谐振电路: 对于LCC电路,存在两个谐振频率: f r= 1 2πL r C r f p= 2π√L r(C r//C m) 显然,fr2

滑模变结构控制理论及其算法研究与进展_刘金琨

第24卷第3期2007年6月 控制理论与应用 Control Theory&Applications V ol.24No.3 Jun.2007滑模变结构控制理论及其算法研究与进展 刘金琨1,孙富春2 (1.北京航空航天大学自动化与电气工程学院,北京100083;2.清华大学智能技术与系统国家重点实验室,北京100084) 摘要:针对近年来滑模变结构控制的发展状况,将滑模变结构控制分为18个研究方向,即滑模控制的消除抖振问题、准滑动模态控制、基于趋近律的滑模控制、离散系统滑模控制、自适应滑模控制、非匹配不确定性系统滑模控制、时滞系统滑模控制、非线性系统滑模控制、Terminal滑模控制、全鲁棒滑模控制、滑模观测器、神经网络滑模控制、模糊滑模控制、动态滑模控制、积分滑模控制和随机系统的滑模控制等.对每个方向的研究状况进行了分析和说明.最后对滑模控制的未来发展作了几点展望. 关键词:滑模控制;鲁棒控制;抖振 中图分类号:TP273文献标识码:A Research and development on theory and algorithms of sliding mode control LIU Jin-kun1,SUN Fu-chun2 (1.School of Automation Science&Electrical Engineering,Beijing University of Aeronautics and Astronautics,Beijing100083,China; 2.State Key Laboratory of Intelligent Technology and Systems,Tsinghua University,Beijing100084,China) Abstract:According to the development of sliding mode control(SMC)in recent years,the SMC domain is character-ized by eighteen directions.These directions are chattering free of SMC,quasi SMC,trending law SMC,discrete SMC, adaptive SMC,SMC for mismatched uncertain systems,SMC for nonlinear systems,time-delay SMC,terminal SMC, global robust SMC,sliding mode observer,neural SMC,fuzzy SMC,dynamic SMC,integral SMC and SMC for stochastic systems,etc.The evolution of each direction is introduced and analyzed.Finally,further research directions are discussed in detail. Key words:sliding mode control;robust control;chattering 文章编号:1000?8152(2007)03?0407?12 1引言(Introduction) 滑模变结构控制本质上是一类特殊的非线性控制,其非线性表现为控制的不连续性,这种控制策略与其它控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动.由于滑动模态可以进行设计且与对象参数及扰动无关,这就使得变结构控制具有快速响应、对参数变化及扰动不灵敏、无需系统在线辩识,物理实现简单等优点.该方法的缺点在于当状态轨迹到达滑模面后,难于严格地沿着滑模面向着平衡点滑动,而是在滑模面两侧来回穿越,从而产生颤动. 滑模变结构控制出现于20世纪50年代,经历了50余年的发展,已形成了一个相对独立的研究分支,成为自动控制系统的一种一般的设计方法.以滑模为基础的变结构控制系统理论经历了3个发展阶段.第1阶段为以误差及其导数为状态变量研究单输入单输出线性对象的变结构控制;20世纪60年代末开始了变结构控制理论研究的第2阶段,研究的对象扩大到多输入多输出系统和非线性系统;进入80年代以来,随着计算机、大功率电子切换器件、机器人及电机等技术的迅速发展,变结构控制的理论和应用研究开始进入了一个新的阶段,所研究的对象已涉及到离散系统、分布参数系统、滞后系统、非线性大系统及非完整力学系统等众多复杂系统,同时,自适应控制、神经网络、模糊控制及遗传算法等先进方法也被应用于滑模变结构控制系统的设计中. 2滑模变结构控制理论研究进展(Develop-ment for SMC) 2.1消除滑模变结构控制抖振的方法研 究(Research on chattering elimination of SMC) 2.1.1滑模变结构控制的抖振问题(Problems of SMC chattering) 从理论角度,在一定意义上,由于滑动模态可以 收稿日期:2005?10?19;收修改稿日期:2006?02?23. 基金项目:国家自然科学基金资助项目(60474025,90405017).

基于TEA1751的反激式准谐振开关电源的设计

基于TEA1751的反激式准谐振开关电源的设计 摘要:准谐振是一种能够实现零电压开通,减少开关损耗,降低EMI噪声的变换方式。该文介绍了准谐振变换的工作原理,设计并实现了一种采用芯片TEA1751为控制电路的准谐振反激式开关电源。与传统的反激式硬开关变换器相比,减少了开关管的开关损耗,提高了开关电源的效率。 关键词:开关电源;准谐振变换;零电压开关中图分类号:文献标识码:文章编号: 0 引言 随着电力电子技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,目前,开关电源以小型、轻量和高效率的特点被广泛应用于电子设备,是当今电子信息产业不可缺少的一种电源方式[1]。 由于开关电源频率的提高,开关电源苦工作在硬开关状态,开关管开通时,开关管的电流上升和电压下降同时进行。关断时,电压上升和电流下降也同时进行。电压、电流波形的交叠产生了开关损耗,该损耗随开关频率的提高而急剧增加。为了提高电源的效率,就必须减少开关管的开关损耗。也就是要求开关电源工作在软开关状态。 软开关技术实际上就是利用电容与电感的谐振,以使开关管上的电压或通过开关管的电流按正弦或者准正弦规律变化,在减少开关损耗的同时也可控制浪涌的发生。在软开关技术中,有全谐振、准谐振、多谐振等变换方式[3]。本文引入准谐振变换方式来提高开关电源的效率。 1 反激式准谐振变换基本工作原理 图1反激式准谐振开关电源的原理图 图1所示为反激式准谐振开关电源的原理图,其中:RP 包括变压器初级绕组的电阻以及线路电阻,T为开关变压器,Lm 为初级励磁电感量,Llk为初级绕组漏感量,VT为MOS开关管,VD为整流二极管,Co为滤波电容,电容Cr 为缓冲电容,也是谐振电容,包括开关管VT 的输出电容COSS ,变压器的层间电容以及电路中的其他一些杂散电容。 图2反激式准谐振开关电源的工作波形 准谐振变换的工作波形如图 2 所示,在准谐振变换中,每个周期可分为4个不同的时间段,各时间段分析如下: (1)t0~t1 时段 开关管导通,输入电压全部加到初级电感(包括励磁电感Lm和漏感Llk)上,电感电流以斜率线性增大。此时能量被存储在初级电感中(称磁化),开关管的漏源极电压= 0,整流二极管VD 截止。电流达到后开关管被关断。 开关管开通时间为: (1) (2)t1 ~t2 时段 t1 时,MOS开关管被关断。先是Lm与Llk串联对充电,由于两端电压不能突变,开关管的漏源极电压以斜率为 上升。随着的充电,当两端电压为时( 为整流二极管VD的正向导通电压,N为变压器T的初次级匝数比),VD

LLC谐振变换器及L6599原理

目录 引言 一、LLC谐振变换器原理 (2) 二、LLC谐振腔之元件设计 (3) 三、L6598\L6599芯片资料 ...................................................................... 错误!未定义书签。 1、L6599 芯片介绍............................................................................................... 错误!未定义书签。 2、芯片与典型方框图 (5) 3、PIN脚功能 (5) 4、典型电源系统图 (6) 5、振荡器 (7) 6、工作在轻载或无载时 (8) 四、 L6599的工作流程 1、L6599供电回路 (8) 2、L6599的启动 (9) 3、L6599稳压原理 (10) 4、L6599的SCP保护及次级OCP保护 (11) 附:过流延时保护电路 (12)

引言 随着开关电源的发展,软开关技术得到了广泛的发展和应用,已研究出了不少高效率的电路拓扑,主要为谐振型的软开关拓扑和PWM型的软开关拓扑。近几年来,随着半导体器件制造技术的发展,开关管的导通电阻,寄生电容和反向恢复时间越来越小了,这为谐振变换器的发展提供了又一次机遇。对于谐振变换器来说,如果设计得当,能实现软开关变换,从而使得开关电源具有较高的效率。LLC谐振变换器实际上来源于不对称半桥电路,后者用调宽型(PWM)控制,而LLC谐振是调频型(PFM)。 一、LLC谐振变换器原理 图一、LLC谐振原理图 图二、LLC谐振波形图

变结构

变结构控制 第一部分:变结构控制的基本理论 (2) 一、基本理论 (2) 二、变结构控制系统的品质 (3) 三、变结构控制的不变性 (4) 第二部分变结构控制在实际中的应用 (6) 一、变结构控制在导弹制导中的应用 (6) 二、变结构控制在飞行器自动驾驶仪中的应用 (8) 三、基于变结构控制的导弹平滑导引律 (9) 四、变结构控制在导弹总线网络控制中的应用 (9) 五、自适应滑模控制在车辆防抱死制动系统的应用 (11) 六、新型变结构控制律在导弹姿态控制系统中的应用 (13) 1、n阶系统变结构控制律的设计 (13) 2、变结构控制理论在导弹姿态控制系统中的应用 (16) 七、数字式导弹姿态控制系统的变结构控制 (16) 1、离散变结构控制 (16) 2、在导弹姿态控制系统中的应用 (18) 第三部分参考文献 (19)

第一部分:变结构控制的基本理论 一、基本理论 首先,我们需要给出变结构的系统的定义:如果存在一个(或几个)切换函数,当系统的状态到达切换函数值时,系统从一个结构自动转换成另一个确定的结构,那么这种系统称之为变结构系统。 下面就变结构控制的具体问题加以讨论。考虑一个非线性控制系统 (l)满足存在条件:切换面以外的相轨线将于有限时间内到达切换面: (2)切换面是滑动模态区,且滑动运动渐进稳定,动态品质良好。 这样设计出来的变结构控制使得闭环系统全局渐进稳定,而且动态品质良好。下面我们将作进一步的分析: 1、存在条件 系统方程 的解趋近于S(X)=O表示的切换面,而且于有限时间内到达切换而的条件为 2、滑动模态微分方程及等效控制 为了确定滑动模态的稳定性并研究其动态品质,就需要建立起运动方程,对 于非线性系统

滑模变结构控制

滑模变结构控制作为一种特殊的鲁棒控制方法【原理,优点,意义,步骤,特点】 变结构控制系统的特征是具有一套反馈控制律和一个决策规则,该决策规则就是所谓的切换函数,将其作为输入来衡量当前系统的运动状态,并决定在该瞬间系统所应采取的反馈控制律,结果形成了变结构控制系统。该变结构系统由若干个子系统连接而成,每个子系统有其固定的控制结构且仅在特定的区域内起作用。引进这种变结构特性的优势之一是系统具有每一个结构有用的特性,并可进一步使系统具有单独每个结构都没有的新的特性,这种新的特性即是变结构系统的滑动模态。滑动模态的存在,使得系统在滑动模态下不仅保持对系统结构不确定性、参数不确定性以及外界干扰等不确定性因素的鲁棒性,而且可以获得较为满意的动态性能。迄今为止,变结构控制理论已经历了50年的发展历程,形成了自己的体系,成为自动控制系统中一种一般的设计方法。它适用的控制任务有镇定与运动跟踪等。 滑模控制(sliding mode control, SMC)也叫变结构控制,本质上是一类特殊的非线性控制,且非线性表现为控制的不连续性。这种控制策略与其他控制的不同之处在于系统的“结构”并不固定,而是可以在动态过程中,根据系统当前的状态(如偏差及其各阶导数等)有目的地不断变化,迫使系统按照预定“滑动模态”的状态轨迹运动。由于滑动模态可以进行设计且与对象参数及扰动无关,这就使得滑模控制具有快速响应、对应参数变化及扰动不灵敏、无需系统在线辨识、物理实现简单等优点。 原理: 滑模变结构控制的原理,是根据系统所期望的动态特性来设计系统的切换超平面,通过滑动模态控制器使系统状态从超平面之外向切换超平面收束。系统一旦到达切换超平面,控制作用将保证系统沿切换超平面到达系统原点,这一沿切换超平面向原点滑动的过程称为滑模控制。由于系统的特性和参数只取决于设计的切换超平面而与外界干扰没有关系,所以滑模变结构控制具有很强的鲁棒性。所设计的切换超平面需满足达到条件,即系统在滑模平面后将保持在该平面的条件。现在以N维状态空间模型为例,采用极点配置方法得到M(N

准谐振反激式开关电源设计

龙源期刊网 https://www.doczj.com/doc/e412235683.html, 准谐振反激式开关电源设计 作者:李惺靳丽钱跃国李向锋 来源:《现代电子技术》2013年第21期 摘要:设计了一种基于UCC28600控制器的准谐振反激式开关电源电路,分析了准谐振反激式开关电源的工作原理及实现方式,给出了电路及参数设计和选择过程,以及实际工作开关波形。实验证明,准谐振反激式开关电源具有输入电压范围宽、转换效率高、低EMI、工作稳定可靠的特点。准谐振技术降低了MOSFET的开关损耗,提高产品可靠性。此外,更软的开关改善了电源的EMI特性,允许设计人员减少滤波器的数目,降低了产品成本。 关键词:准谐振;反激; CRM; DCM; FFM; UCC28600 中图分类号: TN710?34 文献标识码: A 文章编号: 1004?373X(2013)21?0148?04 准谐振转换是十分成熟的技术,广泛用于消费产品的电源设计中。新型的绿色电源系列控制器实现低至150 mW的典型超低待机功耗。本文将阐述准谐振反激式转换器是如何提高电源效率以及如何用UCC28600设计准谐振电源。 1 常规的硬开关反激电路 图1所示为常规的硬开关反激式转换器电路。这种不连续模式反激式转换器(DCM)一个工作周期分为三个工作区间:([t0~][t1])为变压器向负载提供能量阶段,此时输出二极管导通,变压器初级的电流通过Np:Ns的耦合流向输出负载,逐渐减小;MOSFET电压由三部分叠加而成:输入直流电压[VDC、]输出反射电压[VFB、]漏感电压[VLK。]到[t1]时刻,输出二极管电流减小到0,此时变压器的初级电感和和寄生电容构成一个弱阻尼的谐振电路,周期为2π[LC]。在停滞区间([t1~][t2]),寄生电容上的电压会随振荡而变化,但始终具有相当大的数值。当下一个周期[t2]节点,MOSFET 导通时间开始时,寄生电容([COSS]和[CW])上电荷会通过MOSFET放电,产生很大的电流尖峰。由于这个电流出现时MOSFET存在一个很大的电压,该电流尖峰因此会做成开关损耗。此外,电流尖峰含有大量的谐波含量,从而产生EMI。 2 准谐振反激式设计的实现 利用检测电路来有效地“感测”MOSFET漏源电压([VDS])的第一个最小值或谷值,并仅在这时启动MOSFET导通时间,由于寄生电容被充电到最低电压,导通的电流尖峰将会最小化。这情况常被称为谷值开关(Valley Switching)或准谐振开关。这种电源是由输入电压/负载条件决定的可变频率系统。换言之,调节是通过改变电源的工作频率来进行,不管当时负载或输入电压是多少,MOSFET始终保持在谷底的时候导通。这类型的工作介于连续(CCM)

相关主题
文本预览
相关文档 最新文档