当前位置:文档之家› 转炉干法除尘工艺

转炉干法除尘工艺

转炉干法除尘工艺
转炉干法除尘工艺

转炉干法除尘工艺说明

1.转炉干法除尘工艺流程

目前转炉炼钢厂配置3座300t顶底复吹转炉,整个吹炼过程枪位和加料采用模式自动控制,在吹炼耗氧量达80%时启动烟气分析的自动化炼钢,可由模型控制冶炼过程的自动拉碳提枪。但是模型的碳命中率为80%左右,而温度命中率不高。转炉出钢采用挡渣出钢。转炉装铁水基本不脱硫,采用定量装入制度,铁水加入量为200±5t,废钢加入料为30±5t。铁水成分为:C:3.9~4.2%、Si:0.4~0.8%、Mn:0.35~0.40%、P:0.08~0.10%、S:0.02~0.04%,铁水温度T:1300-1320℃。

转炉冶炼过程:一般先兑入铁水再加废钢,如遇阴雨天气先加废钢,加入后前后摇炉,后摇直。先降罩裙,后开吹,开吹时氧气流量设定为30000Nm3/h,经60s后升为正常氧气流量设定值为62000Nm3/h,随后吹炼过程氧气流量不变。下表为培训过程中记录的不同钢种的

转炉加料操作:在上炉溅渣完毕新炉次开始后,炉内加入0.8-1.0t改质剂(镁球),以保证冶炼前期MgO含量,减少炉衬侵蚀。氧枪降枪开氧点火后,手动加入铁皮和生白云石,在吹炼至氧步5%(开吹1’40”左右)时按照模型计算自动加入白灰和轻烧白云石(白灰约4t,轻烧约2t),在吹炼至氧步40%时自动加入第二批料(为白灰和轻烧白云石),在以后会自动多批次少量加入白灰或轻烧白云石(每次加入约500kg),一般达10批次之多。在吹炼过程可根据造渣情况手动加入铁皮或生白云石。在接近吹炼终点时抬罩裙,拉碳提枪后进行手动测温、取样、测氧。然后根据碳和温度的命中情况以及其他元素含量确定是否进行后吹。如果钢水合格后进行出钢操作。出钢完毕,加入生白云石或(和)镁球进行溅渣操作,加料后前后摇炉确认无大火后进行降枪溅渣。溅渣完毕倒渣准备下一炉次冶炼。

2.工艺流程图

图1:工艺流程图

图2:工艺流程图

由此可见,转炉干法除尘系统包括的设备主要有:蒸发冷却器(EC系统)、烟气管道、静电除尘器(EP系统)、ID风机、切换站(SOS)、煤气冷却器(GC)和放散烟囱等组成。

3.转炉干法除尘主要设备描述

3.1蒸发冷却器系统

3.1.1设备组成和功能

EC系统主要包括水冷烟道,织物补偿器、蒸发冷却器本体,EC水泵站,粗输灰系统。EC本体包括筒体直段和筒体锥形段。粗输灰系统主要包括刮板机、气动插板阀、紧急插板阀和灰仓。

EC系统使用的24杆双流喷枪安装在水冷烟道上。织物补偿器处于水冷烟道及EC本体中间,起到补偿EC本体轴向的热涨冷缩的作用,补偿量为轴向-80mm~+10mm;径向为-30mm~+5mm,直径∮4000mm,高度400mm。

转炉冶炼时,含有大量CO的高温烟气经过汽化冷却系统后才能满足干法除尘系统的运行条件。蒸发冷却器入口的烟气温度约为800~1000℃,出口温度的控制应根据静电除尘器的入口温度而定,静电除尘器的入口温度约为150-180℃,因此根据蒸发冷却器至静电除尘器间烟道对烟气的冷却情况,一般EC的出口温度控制在150~1800℃,才能达到静电除尘器除尘的要求。为此,EC系统通过采用24杆喷枪进行转炉烟气的冷却,喷枪通过双流喷嘴对蒸汽和冷却水进行混合,达到冷却水的雾化效果,提高冷却水与气流的接触面积,使得转炉烟气得到良好、均匀的冷却。喷射水与转炉烟气在运行的过程中,雾化水滴受烟气加热被蒸发,在汽化过程中吸收烟气的热量,从而降低烟气温度。

蒸发冷却器除了冷却烟气外,还可依靠EC入口处直筒体直径的扩张,造成气流的减速以及进口处水滴对烟尘的润湿将粗颗粒的烟尘分离出去,达到粗除尘的目的。约25%-35%粗灰尘聚积在蒸发冷却器底部由链式输灰机排出。

蒸发冷却器还有对烟气进行调节改善的功能,即在降低气体温度的同时提高其露点,改变粉尘比电阻,有利于在静电除尘器中将粉尘分离出来。

粗输灰系统主要是靠粗输灰机头带动双排板式输灰链条将由EC系统产生的粉尘输送到储灰罐中,从而达到粉尘的排放功能。

3.1.2主要的工艺参数

(1)EC系统:

导流环材质1Gr25N20

喷枪双旋流喷枪24杆(进口)

蒸汽的压力:1.0~1.3Mpa

蒸汽的流量:7~10t

喷射水的压力:0.6Mpa

最大喷水量:55m3/h

喷枪的数目:24

EC的入口温度:800℃~1000℃

(2)粗输灰系统:

粗灰的主要成分:FeO、Fe2O3、灰尘等

重量:1500~2600kg/m3

温度:Max=250℃

粒度:0.1~3mm

含水量:3~5%

3.2静电除尘器

3.2.1设备组成和功能

静电除尘器主要包括阳极板、阴极框架和阴极线、出入口分布板、刮灰机、阳极振打、阴极振打、分布板振打、除尘器壳体。

静电除尘器主要通过对阴极线施加高压电,阴极框架和阳极板之间形成闭合的电场,形成电流,对通过电场气流中的颗粒进行击打,使其中的灰尘分别带有正电荷和负电荷,分别吸附在阴极线和阳极板上,达到除尘的效果。吸附在阴极线和阳极板的灰尘通过阴、阳极振打,落在除尘器内,并通过A、B刮灰机将灰尘排到输灰系统中。

EP出入口分布板的作用:从管道中过来的气流能够均匀的通过除尘器,防止除尘器内出现局部灰尘过大的现象,并通过分布板振打装置将黏附在分布板上的灰尘振落。

静电除尘器为圆筒形静电除尘器,它是转炉烟气干法除尘系统中的关键除尘设备,其主要特点为:

①优异的极配形式。由于转炉煤气的含尘量较高,在进入电除尘器时,一般为80~150 mg/Nm3,而除尘器出口的排放浓度要求小于15mg/Nm3。这就要求电除尘器具有非常高的除尘效率,而除尘效率高低的主要因素就取决于其极配设计的合理性。该除尘器分为4个独立的电场。每个电场均采用了C型阳极板,由于烟气具有较高的腐蚀性,所以A、B电场的阳极板采用了不锈钢材料。为了防止阴极线的断裂,阴极采用锯齿形的整体设计。通过对投入运行设备的检测,证明了该极配形式能够保证除尘效率。

②良好的安全防爆性能。由于转炉煤气属于易燃易爆介质,对设备的强度、密封性及安全泄爆性提出了很高的要求。该除尘设备采用了抗压的圆筒外形,并且在制作时采用锅炉设备的焊接要求,另外在锥形进出口各装有4套泄爆装置,从而保证了除尘器长期运行的安全可靠性。

③除尘器内部的扇形刮灰装置。电除尘器内部刮灰装置是电除尘器中非常重要的一部分,电除尘器排灰是否顺利,会影响到整个系统的正常运转。该除尘器的刮灰装置采用齿轮带动弧形销齿传动,并采用甘油集中润滑,保证了刮灰装置的顺利运行。

④耐高温的双排链式输送机。由于该除尘设备除尘效率高,所以有大量的灰需要即时输送出去。设备采用了可靠的耐高温的双排链式输送机进行输灰,确保输灰顺畅。

3.2.2主要设备参数

阳极板:27块/电场

阴极框架:26块/电场

同极距:350mm

异极距:150mm

阳极振打驱动装置:7套,A、B、C电场为双侧振打,D电场为单侧振打

阳极振打锤:27件/电场

阴极振打驱动装置:6套,A、B电场为双侧振打,C 、D电场为单侧振打

阴极振打锤:26件/电场

入口分布板振打驱动装置:3套

振打锤的数目:3/5/7

出口分布板振打驱动装置:1套

振打锤数目:7件

刮灰机的驱动装置:2套,其中A、B电场为1套,其中C、D电场为1套

刮灰机的数目:4套,每个电场为1套。

A、B电场的电压为50KV以上,电流1800mA以上。

C、D电场的电压为50KV以上,电流2500mA以上。

绝缘子的氮气流量:300m3/h

绝缘子的温度:50-60℃

绝缘子的氮气压力:4~7Kpa

在吹炼的过程中,除尘器的工作压力:<0

除尘器的入口温度,出口温度:150-180℃

3.3细输灰系统

细输灰系统主要包括1#输灰机、1台紧急插板阀、1台双层翻板阀、2#输灰机、斗提机、螺旋输灰机、储灰仓(两台除尘器共用)。

作用是由电场除尘产生的灰尘通过细输灰系统运送到储灰仓内,进行临时的储存,然后运走。

细灰的参数:

主要成分FeO、Fe2O3、灰尘等

重量:1000~1300kg/m3

温度:Max=300℃

粒度:0.01~1mm

含水量: 1.5%

3.4 ID风机

3.4.1设备组成和功能

ID风机包括风机本体和冷却风机组成。

风机主要为干法除尘系统提供动力,将转炉在生产过程中产生的烟气和烟尘吸到除尘器内,通过除尘器对转炉烟气进行净化,净化后的转炉烟气分别送往煤气柜或者送往放散烟囱燃烧后排放到大气内。

3.4.2主要的工艺参数

风机的转速:(最大)1750rpm

电机的功率:1150KW

风机流量:101.1m3/s

气流密度:0.72kg/m3

风机全压:8120pa

3.4切换站和放散烟囱

3.4.1设备组成和功能

切换站主要由回收杯阀、放散杯阀、液压站和煤气冷却器入口眼镜阀组成。放散烟囱主要由点火装置和放散烟囱组成。

切换站的功能通过对烟气成分的化验和分析,进行煤气的回收或放散,由两套杯阀进行煤气的回收或者放散。在转炉处于吹炼阶段时,当煤气条件符合回收条件时,回收阀打开放散杯阀关闭,进行煤气回收;其它情况时,回收阀关闭放散杯阀打开。

3.4.2主要设备参数

放散杯阀DN2000

回收杯阀DN1600

循环泵数量1台

加热器启油温≤20℃

加热器停油温≥40℃

冷却水切断阀开油温>40℃后延时5分钟

油温报警温度≥55℃

眼镜阀泵1台

焦炉煤气的压力3~5kpa

吹扫氮气的压力3~5bar

紧急氮气的压力15~20bar

3.5煤气冷却器和GC泵站

对于达到回收条件的煤气,由于温度比较高,为了对煤气进行降温,在高温煤气进入煤气冷却器之后,通过两层喷嘴对高温煤气进行冷却,达到回收所需要的温度(<71℃)。GC 泵站为煤气冷却器提供冷却水。

4.静电除尘器卸爆控制分析

4.1EP发生卸爆的危害

与转炉湿法除尘相比,虽然干法除尘工艺在除尘效率、能耗和二次污染有着许多无可比拟的优势,但是干法除尘系统技术要求高、操作难度大、危险程度高,对转炉工艺产生烟气的时间、成分都有严格的要求,即在系统运行过程中严格遵循四项控制原则:控制烟气、监测、温度和湿度。在国内外投产转炉干法除尘系统的诸多钢厂中,投产初期都因设备、工艺、操作等原因造成静电除尘器的卸爆,对EP设备、生产造成损失。因此干法除尘工艺的关键控制点为防止静电除尘器的卸爆,如果发生卸爆将造成设备损坏、降低除尘效率,严重者直接将设备损毁,无法进行转炉冶炼操作造成停产。从包钢发生卸爆造成的危害归纳如下:(1)造成阳极板变形、错位、阳极板筋板的变形、两块阳极板之间限位杆的变形,造成极距的变化,导致电场电压的稳定性降低,电场电压无法升高,影响除尘器的效果。

(2)造成阳极框架变形、阴极线的松弛、断裂,造成极距的变化,导致电场电压稳定性降低,电场电压无法升高,影响除尘器的效果。

(3)造成阴极吊挂的变形,造成高压电直接接地或者与除尘器的距离过小造成电场电压无法升高,影响除尘效果。

(4)导致阴阳极振打传动轴的变形,振打系统无法正常工作。

(5)导致刮灰机的吊挂变形,刮灰机无法工作,失去刮灰效果。

4.2EP卸爆原理控制分析

采用转炉干法除尘工艺的关键控制点为防止静电除尘器的卸爆。但是EP卸爆的控制是电气、设备和工艺操作共同努力的结果,只有在干法系统各种PID控制、设备完好的情况下,才能从工艺操作上控制烟气的产生时间和成分,从而避免卸爆的发生。从目前包钢卸爆发生阶段来看主要有:兑铁和加废钢阶段、开吹阶段、吹炼中期抬枪二次下枪时刻、加料期间、溅渣期间。较为严重的为吹炼中期发生卸爆。所谓的卸爆主要是由于烟气中的CO和O2、H2和O2达到特定含量范围内,在静电除尘器内由于阴极丝和阳极板间产生放电造成内部CO和O2、H2和O2的瞬时爆燃,EP内部压力产生瞬时正压,当达到EP卸爆阀开启压力时,卸爆阀打开进行EP的泄压,避免对EP内部设备的损坏。

转炉烟气中的可燃气体成分主要为CO和H2,这两种气体在EP内发生爆燃的条件有三:

(1)可燃性气体与氧气混合浓度达到爆炸极限;CO>9%,O2>6% ;H2>3%,O2>2% ;

(2)混合气体的温度在着火点以下,CO:610℃;H2:375℃。

(3)存在火种。

烟气中CO和H2引起卸爆发生的阶段分为:

(1)CO:主要在开吹、吹炼中期抬枪二次下枪、终点拉碳、溅渣阶段。

(2)H2:主要是溜槽漏水或加入料潮湿造成加料或烟气中O2含量较高时产生卸爆。

目前对EP卸爆控制H2引起的卸爆很少发生,主要是由于几乎没有发生过因H2而产生的卸爆,因此即使烟气中H2和O2含量达到卸爆范围也不会影响转炉冶炼操作。因此在实际转炉冶炼中主要通过控制烟气中CO和O2含量对卸爆进行控制,详细分析如下:在常规转炉吹炼过程中,铁水含碳量在4.0-4.5%,吹炼过程脱碳速度满足以下如图所示

的三个阶段:

图5. 脱碳速度曲线

从图中可以看出,铁水在整个吹炼过程中脱碳速度一般分为三个阶段:

在第Ⅰ阶段:由于Si 、Mn 氧化优先于C 氧化,并且开吹初期铁水温度较低,因此铁水脱碳速度会随着Si 、Mn 氧化以及温度的升高逐渐增加。此时烟道内仍为空气,如果开吹阶段采用较大供氧流量引起熔池强烈的脱碳反应生成大量的CO ,因此容易达到CO>9%,O 2>6%的卸爆临界点。在实际控制过程中,烟气中的O 2含量降低速度很难控制,只能通过降低CO 的生成速度来降低烟气中CO 和O 2含量的交点,从而降低EP 卸爆的可能性,如图6所示。而降低CO 生成速度主要通过采用高枪位、低供氧流量使得氧气主要在促进化渣而减少进入熔池内的氧。

图6 冶炼过程卸爆控制点

时间

时间 脱碳速度

在第Ⅱ阶段,脱碳速度基本为定值,此时生成大量的CO气体,炉口吸入的空气也会与炉气中CO完全燃烧,烟气中氧气含量非常低。因此在冶炼过程一般不会发生卸爆。此时如果发生事故提枪,当再下枪时易发生卸爆。主要原因是由于再下枪时,钢液内Si、Mn等元素已氧化完,吹入氧量立即与钢中碳发生反应,由于脱碳速度快,烟气中会瞬时产生大量的CO,而此时烟道内存有大量的空气,当两者在静电除尘器内接触时极易发生卸爆。因此此时控制卸爆的终点仍然在炉内CO生成速度上,通过控制枪位、氧流量和渣中氧含量,使初始生成CO能全部转化为CO2,当生成大量CO时烟气中O2含量已降到较低水平。

在第Ⅲ阶段,脱碳速度随着钢中碳含量的降低而逐渐降低,此时如无吹炼中断则不会发生卸爆问题,因为此时钢中的O2含量非常低。但是在进行高拉碳操作时容易发生卸爆,此时卸爆原因类似于吹炼中期抬枪后再下枪时产生的卸爆。包钢实际操作经验也证明在高拉碳[C]≥0.15%时容易发生卸爆,因此包钢规定在实际拉碳操作中[C]必须小于0.15%。

通过以上分析可知:易于发生卸爆的位置主要在开吹、吹炼中期事故抬枪后再下枪以及高拉碳时后吹操作,控制的主要原则是控制开吹氧气流量和枪位,尽量减少开吹时向熔池内供氧,从而减少初始CO的生成速率,避免烟气中CO和O2浓度达到卸爆范围。

4.2卸爆产生原因

(1)转炉兑铁加废钢、添加料引起的卸爆,主要集中在转炉装料阶段、吹炼的初期阶段和转炉溅渣阶段。

在转炉装料阶段主要是由于废钢中有时含有各种油脂、细小粉尘造成兑铁过程生成大量烟尘,如果风机转速较小造成烟道内压力增加或大量细小粉尘进入EP本体,在EP阴极丝和阳极板发生放电的情况下容易造成粉尘爆燃。

在转炉溅渣阶段下枪前一般加入镁球和生白云石,如果瞬时加入大量镁球(含有少量碳),碳与渣中FeO反应产生加入大量CO易于造成卸爆。在溅渣时在加料后通过前后摇炉确认炉内无大火后再下枪溅渣,或者通过多批次少量加入。

因此在实际转炉冶炼中应严格控制潮湿、含碳量高、易燃物料的添加重量和添加的工艺时间。(2)如果设备状况不佳,也会引起卸爆。如EP电场内异极距为150mm,同极距为350mm,如果阴极丝和阳极板振打周期设置不合适造成积灰过多或阴极丝、阳极板变形都会造成异极距的变化,从而导致电场放电次数的增多,不仅影响静电除尘器的除尘效率(电压升不上去),也会造成卸爆几率的增加。

(3)烟道漏水。吹炼过程烟道漏水造成烟气中H2含量增加,会增加静电除尘器的卸爆几率。因此在实际维检时应及时检查设备的漏水状况。

(4)烟气的温度。烟气在EP内的温度对静电除尘器的除尘效果有重要影响。如果EC喷水量过大造成烟气温度过低或烟气含水量过高,不仅造成烟气粉尘不易荷电且含水量增加会增加EP电场的放电次数,严重影响EP除尘效果。因此应严格控制烟气在EC出口的温度。(5)转炉停吹测温后加料降温。

转炉吹炼停止后,进行测温,如果温度偏高需要加入生白云石或铁皮球进行降温操作。如果一次性加入量过大,生白云石瞬时分解产生大量CO2气体,造成管道内压力为瞬时增高而风机转速仍为转炉停吹时的低转速,造成烟道内大量烟气无法排出,EP压力瞬时升高达到一定程度EP卸爆阀打开进行泄压。或铁皮球与熔池内剩余碳反应生成大量CO,而此时烟道内充满空气,大量CO与O2混合,如果CO没有完全燃烧完毕,则在EP内就会发生卸爆的可能。因此在转炉终点拉碳出钢时,一是尽量避免终点温度过高,而是加料时多批次、少量。

4.3防止卸爆采取的措施

经过专家两年多经验得出预防干法除尘系统静电除尘器卸爆的原则为:

(1)严格控制入炉原材料。凡一切携带水、铁尘、铁珠、碳颗粒的原材料都应严格控制。

(2)稳定冶炼工艺操作。通过培训、学习的手段不断提高操作工素质,稳定操作。

(3)设备的稳定运行。

针对转炉冶炼过程各阶段可能发生的卸爆成因制定以下事故预案:

(一)下枪开氧后,铁水未打着火或炉内大翻

1、事故原因

(1)由于炉内剩渣过多。

(2)先兑铁水,后加废钢,造成大量废钢漂浮在铁水表面。

(3)废钢质量较差,有大量轻型废钢或渣钢较多。

(4)铁水带渣量较大。

(5)翻料后,耐火材料未烧结好,兑铁时脱落。

2、处理方法

(1)马上抬枪停吹,避免因打火时间过长,使烟气中O2含量过高,渣中FeO激增,C---O 反应突然爆发造成大喷。

(2)当炉内冒大火但干法系统未发生泄瀑时,要及时吊枪,防止瞬时产生大量的CO 气体,造成泄瀑。

(3)在火未打着前,严禁加料,当使用自动炼钢系统时,要马上选为手动模式避免未打着火时有大批料加入炉内。

(4)提枪后来回摇炉,利用底吹的搅拌,使覆盖物熔化或部分熔化,并消耗一定的FeO,避免下枪后发生大喷。

(5)如铁水带渣量较大,要进行倒渣,开新炉第一炉铁水必须进行扒渣。

(6)当由于上述原因造成干法除尘系统发生泄瀑时,要马上抬枪。待系统恢复正常后,先将低氧压时间修改为90秒,可直接下枪吹炼,无须对钢水进行脱氧处理。

3、避免措施

(1)炉内不留渣或少留渣。

(2)先加废钢再兑铁水。

(3)避免废钢中含有大量的轻型废钢或渣钢。

(4)铁水带渣量大时,要进行脱硫扒渣,将铁渣尽量扒净。

(5)在补炉料完全烧结好后再进行冶炼。

(二)吹炼过程中喷溅

1、事故原因

(1)氧枪枪位控制不当。

(2)熔池温度控制不当。

(3)铁水含渣量过大或炉内剩渣过多。

2、处理方法

(1)尽量利用枪位与渣料控制炉渣,杜绝爆发大型喷溅,小喷溅不能抬枪。

(2)当喷溅情况极为严重时,抬枪后必须倒渣,并进行脱氧处理。具体方法为:向炉内加入Al锭或AL-Mn-Ti合金,合金加入后反复摇炉,保证脱氧剂与熔池中的氧充分反应。反复摇炉后,干法主控人员要确认操作画面中的干法吹炼阶段码是否显示为“吹炼结束”状

态,如果显示其它状态,要在转炉氧枪主画面中选择正确的状态码。

(3)再次下枪前要进行测温,确认炉温低于1500℃时,方可再次下枪吹炼,并在下枪前将低氧压时间修改为90秒。(当抬枪前的吹炼时间大于14分钟时,必须先点击氧枪画面的“选择点吹吹氧”按钮,再修改低氧压吹炼时间为90秒,并在吹氧结束后将“选择点吹吹氧”按钮复位。)

3、避免措施

(1)枪位控制合理,避免渣中FeO大量聚集。

(2)炉温控制适当,避免突然剧烈冷却熔池。

(3)不留渣或少留渣。

(4)铁水带渣量大时要过脱硫扒渣进行处理。

(三)吹炼过程中事故抬枪

1、事故原因

(1)各种A类连锁报警。

(2)喷溅等不正常状态。

(3)干法除尘报警或显示“急停”信号。

2、处理方法

(1)报警时马上通知干法主控,并与相关部门联系,确认报警原因。

(2)发生钢丝绳松弛报警导致氧枪无法下降时,必须抬枪停吹,由设备人员确认报警原因,并处理。

(3)干法除尘“急停”信号报警抬枪后,必须检查氧枪喷孔是否堵塞,如发生氧枪堵塞或烧枪事故,马上旋枪。

(4)抬枪后必须倒渣,并进行脱氧处理。具体方法为:向炉内加入C-Si 和Al锭或AL-Mn-Ti合金,合金加入后反复摇炉,保证脱氧剂与熔池中的氧充分反应。反复摇炉后,干法主控人员要确认操作画面中的干法吹炼阶段码是否显示为“吹炼结束”状态,如果显示其它状态,要在转炉氧枪主画面中选择正确的状态码。

(4)故障处理完毕,再次下枪前要进行测温,确认炉温低于1500℃时,方可再次下枪吹炼,并在下枪前将低氧压时间修改为90秒。(当抬枪前的吹炼时间大于14分钟时,必须先点击氧枪画面的“选择点吹吹氧”按钮,再修改低氧压吹炼时间为90秒,并在吹氧结束后将“选择点吹吹氧”按钮复位。)

(5)下枪前要与干法主控联系,再次确认是否具备下枪条件。

(6)底吹流量改为手动模式,并调整为最大值。

(7)下枪后合理调整枪位,使用压渣料避免发生喷溅。

(8)正常出钢后,恢复系统正常,并与除尘人员再次联系能否开始下一炉次生产。

3、避免措施

(1)接班后检查各个连锁点是否正常,如发现问题及时处理。

(2)与除尘人员及时联系,认真执行联系确认制度。

(3)合理控制枪位及熔池温度。

(四)氧枪提升装置突然掉电,氧枪无法抬起,氧气快切阀无法关闭

1、事故原因

(1)外网掉电。

(2)电气系统故障。

2、处理方法

(1)使用氧枪事故提升装置将氧枪提出转炉,并同时使用事故关氧钥匙关闭氧气。

(2)通知干法除尘人员。

(3)如果事故提升装置失灵,直接利用关氧钥匙关闭氧气。

(4)如果无法利用关氧钥匙关闭氧气时,严禁将氧枪提起,要由设备人员手动关闭氧气截止阀和手动截门,然后进行处理。

3、避免措施

(1)每天生产前必须检查事故提升及关氧装置,保证设备运转正常。

(五)溅渣泄瀑

1、事故原因

(1)溅渣过程中加入大量的含碳溅渣料,导致干法除尘系统泄瀑。

(2)溅渣时渣料的加入时间不正确,导致系统泄瀑。

2、处理方法

(1)马上抬枪,通知设备人员处理泄瀑,恢复干法系统。

(2)停止溅渣,将炉内剩渣倒掉,并避免炉口向上。

3、避免措施

(1)使用正确的溅渣操作。

正确的操作顺序为: a.首先加入白云石

b.加改性剂

c.反复摇炉至炉内无大火冒出

d.下枪溅渣

转炉干法除尘

干法除尘的工艺流程及工作原理 干法除尘的工艺流程及工作原理 一、干法除尘的工艺流程: Ⅰ高温、未净化的转炉烟 Ⅲ高温未净化的转炉烟 粗灰 Ⅴ冷却后、粗净化的转炉烟 细灰 Ⅶ冷却后、净化的转炉烟气Ⅷ合格 Ⅸ冷却后,合格的转炉煤

二、干法除尘设备工作原理: 1、干法除尘的设备组成: 通过对干法除尘设备的功能来看,干法除尘的设备主要分成五大块,分别为转炉烟气的冷却设备(即EC系统)、转炉烟气的净化设备(即EP系统)、转炉烟气的动力设备(即ID风机)、转炉煤气的回收和排放设备(切换站和煤气冷却器)、粉尘排放设备(即EC粗输灰系统和EP细输灰系统)。 2、转炉烟气冷却设备(EC系统) 转炉冶炼时,含有大量CO的高温烟气冷却后才能满足干法除尘系统的运行条件。蒸发冷却器入口的烟气温度为800~12000C,出口温度的控制应根据静电式除尘器的入口温度而定,一般EC的出口温度控制在200~3000C,才能达到静电除尘器的要求。为此,EC系统采用14杆喷枪进行转炉烟气的冷却,喷枪通过双流喷嘴对蒸汽和冷却水进行混合,达到冷却水的雾化效果,提高冷却水与气流的接触面积,使得转炉烟气得到良好、均匀的冷却。喷射水与转炉烟气在运行的过程中,水滴受烟气加热被蒸发,在汽化过程中吸收烟气的热量,从而降低烟气温度。 蒸发冷却器除了冷却烟气外,还可依靠气流的减速以及进口处水滴对烟尘的润湿将粗颗粒的烟尘分离出去,达到一次除尘的目的。灰尘聚积在蒸发冷却器底部由链式输送机排出。 蒸发冷却器还有对烟气进行调节改善的功能,即在降低气体温度的同时提高其露点,改变粉尘比电阻,有利于在静电除尘器中将粉尘分离出来。除了烟气冷却和调节以外,占烟气中灰尘总含量约15%的粗灰也在蒸发冷却器中进行收集、排放。 另外,通过对喷射水流量的控制(水调节阀),可控制EC的出口温度,使之达到静电式除尘器所需要的温度。 3、转炉烟气净化设备(EP系统) 静电除尘器为圆筒形静电除尘器,它是转炉烟气干法除尘系统中的关键除尘设备,其主要技术特点为:①优异的极配形式。由于转炉煤气的含尘量较高,在进入电除尘器时,一般为80~150g/Nm3,而除尘器出口的排放浓度要求小于15mg/Nm3。这就要求电除尘器具有非常高的除尘效率,而除尘效率高低的主要因素就取决于其极配设计的合理性。该除尘器分为4个独立的电场。每个电场均采用了C型阳极板,由于烟气具有较高的腐蚀性,所以A、B电场的阳极板采用了不锈钢材料。为了防止阴极线的断裂,阴极采用锯齿形的整体设计。通过对投入运行设备的检测,证明了该极配形式能够保证除尘效率。②良好的安全防爆性能。由于转炉煤气属于易燃易爆介质,对设备的强度、密封性及安全泄爆性提出了很高的要求。该除尘设备采用了抗压的圆筒外形,并且在制作时采用锅炉设备的焊接要求,另外

裕华120吨转炉干法除尘技术要求内容

裕华120吨转炉干法除尘 技 术 要 求 武安市裕华钢铁 2014年 1 月

1转炉一次烟气净化系统工艺流程 点燃放散 ↑ [转炉→汽化冷却烟道]→蒸发冷却器→干式电除尘器→除尘风机→切换站→ ↓↓↓ 粗灰输送机细灰输送机变频电机 ↓↓ 外运←储灰仓(车间)储灰仓(车间外)→外运 煤气冷却器→[煤气柜] 2 设计原则 1)蒸发冷却器喷雾系统可根据烟气参数进行精确的自动调节控制; 2)除尘器具有优异的极配形式,良好的安全防爆性能和可靠的输灰系统; 3)回收与放散有效、快捷、安全的切换; 4)回收煤气含尘浓度≤10mg/Nm3, 放散气体含尘浓度≤15mg/Nm3(双联操作≤20mg/Nm3); 5) 节能措施:ID风机配有变频调速装置,风机的运行与氧枪的升降连锁,氧枪下降时, 风机高速运转;氧枪提升时,风机低速运转。 6)噪音控制:在ID风机后设计消音器,消除风机运行时产生的机械与动力噪音。 3 干法除尘工艺参数及系统组成 3.1转炉炼钢基本条件 转炉座数: 1座 转炉公称容量: 120t 转炉平均产钢水量: 108t 转炉最大炉产钢水量: 110t 转炉最大铁水装入量: 120t 冶炼周期: 28~35min,其中吹氧13min 脱碳速度: 最大0.5%/min 平均0.3%/min 最大炉气量: 70000Nm3/h 最大烟气量: 92000Nm3/h 炉气温度: 1450~1600 ℃. 烟气含尘浓度:80~150g/m3 3. 2与烟气净化相关的技术参数

1)转炉烟尘成分见表2-1 2)炉气温度和成分见表2-2。 转炉炉气采用未燃法处理,煤气回收。 活动烟罩行程500mm,以炉口为基准,上升最大行程500mm。 3)烟气净化系统参数 最大烟气量(α=0.2时):92000Nm3/h 3.3煤气柜设计压力 煤气柜设计压力3.8kPa 3.4干法除尘系统技术要求 3.4.1 烟气冷却系统 3.4.1.1汽化冷却烟道 干法除尘厂家提出对汽化冷却烟道尾段设计的技术要求,使冷却烟道出口烟气温度控制在设计围(~900℃);包括以下几方面容: 1)合理设计尾部烟道结构形式,有利于烟气进入蒸发冷却器后,流体场分布均匀,提高蒸发冷却器容积利用率,保证蒸发冷却器的运行效果。 2)炉口微差压形式及接口。 3)尾部烟道测压、测温位置及接口。 4)喷枪在烟道上的位置及接口。 3.4. 2蒸发冷却器 汽化冷却烟道出口烟气温度直接影响系统设备选型和系统运行安全,设计时应考虑到工况的波动以及烟道使用后期性能下降等因素,干法除尘系统按照冷却烟道出口烟气温度900℃进行方案设计,使系统设备选型在该条件能够满足工艺要求。

转炉煤气干法除尘技术

转炉煤气干法除尘技术 0引言 转炉煤气的除尘技术可以分成干法和湿法两种,其中,干法除尘技术具有降低新水消耗、提高能源回收率,提高能源利用率的作用。所以,在转炉煤气除尘过程中应用越来越广泛。在实际应用过程中,由于干法除尘系统设备的技术要求高,过程控制比较复杂,因而会出现一系列的问题。后来通过对系统的改进,降低了除尘过程中故障的发生,也为系统的改进积累了丰富的经验。转炉煤气干法除尘技术的顺利应用,对降低能源消耗,提高煤气回收率具有重要意义。 1转炉煤气干法除尘技术概述 转炉煤气干法除尘技术中,应用最广泛的是两种方法,分别是鲁齐的LT法和奥钢联的DDS 法。其中,LT法是由德国的鲁齐和蒂森于20世纪60年代末联合开发的转炉煤气干湿除尘方法。后来,西门子—奥钢联公司在这个基础上开发了DDS法。目前,我国国内的公司也开发出了国产干法除尘系统。转炉煤气干法除尘系统主要包含了煤气冷却系统、除尘系统和回收系统。在这个过程中,1400T~1600丈的转炉煤气经过活动烟罩、气化冷却烟道回收蒸汽之后,温度降为1000T左右。然后进人蒸发冷却器进行冷却、粗除尘、增湿调质,最后温度将为150丈~500丈,粉尘浓度由80~150g/m2减小到40~55g/m2。煤气经过静电除尘器之后,粉尘浓度进一步为10mg/m2。对于整个系统而言,影响除尘效果的主要有两个器件,分别是蒸发冷却器和静电除尘器。 1.1蒸发冷却器 蒸发冷却器顾名思义是利用水蒸气的蒸发冷却原理来工作的。和湿法除尘技术相比,这种冷却方式极大地降低了冷却所需要的水量,达到节约水的目的。目前,应用最为广泛的是双流体外混式喷枪,冷却水从喷嘴中心孔喷出,被加热的蒸汽从中心孔的环形间隙喷出,而且在喷嘴口处形成雾化水。其喷水量是由计算机根据蒸发冷却器的进出口温度流量来控制的,同时,蒸汽可以用氮气来代替,从而达到节水的目的。 1.2静电除尘器 静电除尘器是转炉煤气干法除尘系统的核心,它是防止爆炸和控制出口烟气浓度的关键设施。转炉煤气中常常含有70%的一氧化碳气体,这是一种可燃性气体,一旦遇到空气很容易发生爆炸。所以,将静电除尘器设计成为圆筒型,同时在进气口和出气口处安装有自动开启和关闭的防爆阀,一方面可以使不同成分的气体被分开,另一方面在发生爆炸时,能够进卸压,保障设备安全。静电除尘器的电极材料和极配形式对于除尘效果来说非常重要,采用合理的极配形式以及质量合格的电极材料,才能更好的达到除尘效果。 2转炉煤气干法除尘技术应用现状 2.1技术应用效果 通过实践表明,利用干法除尘技术进行转炉煤气的除尘处理之后,烟气中的粉尘浓度可以控制在30mg/m3之下。而回收煤气的粉尘浓度可以稳定的控制在10mg/m3以下。其除尘效果要远远好于湿法除尘技术。但是目前,我国有90%的转炉任然在使用湿法除尘,干法除尘虽然有所应用和推广,但依旧远远没有达到节能减排的目的。 2.2能耗状况 除尘系统的能耗主要包含水耗和电耗两个方面。经过实践研究表明,干法除尘技术能够明显降低除尘系统的能耗水平。干法除尘系统中,采用蒸汽冷却装置对转炉煤气进行冷却,大大降低了冷却水的消耗量,而且提高了冷却效率,研究发现,干法水循环的用水量是湿法的1/4,而耗水量是湿法的1/5。由于干法除尘系统的阻力相对较小,只为湿法的1/3,所以干法除尘所要求的风机功率也相对较小,消耗的电功率也就要小一些。

转炉干法除尘

1.1、转炉除尘概述 1.2、转炉干法除尘技术的发展 1.3、干法除尘的优点 1.4、干法除尘的特点 一、转炉干法除尘概述 1.1转炉除尘概述 目前,转炉烟气净化回收系统主要有“湿法”和“干法”两种。 前者以日本的OG法为代表,采用双级文丘里湿法来捕集转炉 烟气中的粉尘。后者以德国的LT法为代表,采用干式电除尘 器捕集转炉烟气中的粉尘。 我国现有的转炉煤气净化与回收系统,大多采用传统的湿法除尘技术(OG法)。 一、转炉干法除尘概述 1.2转炉干法除尘技术的发展 LT法是由德国鲁奇(Lurgi)、蒂森(Thyssen)二家公司在上一世纪60年代末联合开发的一项技术。LT是Lurgi和Thyssen的 缩写。1980年最先成功的在Thyssen的400t转炉投入使用。 自此,LT法经历了30多年的发展,技术上日趋成熟,目前世界上有几十套LT系统在投入使用。 1994年,我国宝钢二炼钢最先引进LT法回收技术。此后,山东莱芜钢铁公司、包钢二炼钢等转炉先后也采用了该技术。

1.3干法除尘的优点 转炉干法除尘技术在国际上已被认定为今后发展方向,它可以部分或完全补偿转炉炼钢过程的全部能耗,可实现转炉无能耗 炼钢的目标。 除尘效率高。经LT除尘器净化后,煤气残尘含量(标态)最低为10mg/m3,比OG系统的100 mg/m3低。 转炉干法除尘技术既满足冶金工业可持续发展的要求,也符合国家产业和环保政策。 一、转炉干法除尘概述 1.3干法除尘的优点 ?无污水、污泥。从冷却器和LT系统排出的都是干尘,混合后压块,可返回转炉使用。 ?电能消耗量低。从综合电耗来看,LT系统的电耗量要远低于OG系统电耗量。 ?投资费用高,但回收期短。若改造老厂设备,投资费用还可降低许多。 ?采用ID风机,结构紧凑,占地面积小,投资费用可降低许多。 一、转炉干法除尘概述 1.4干法除尘的特点 ?技术要求较高,回收煤气在进入电除尘器之前,必须具有可靠的、精确的温度和湿度控制,同时要求在实际操作中要严格安

120t转炉一次烟气干法除尘系统的技术总负责解析

嘉晨集团营口天盛重工装备有限公司 120t转炉一次烟气干法除尘系统的技术总负责 技术协议 2011年5月14日

甲方:营口天盛重工装备有限公司 乙方:中冶华天工程技术有限公司 甲乙双方于2011年5月13日就嘉晨集团营口天盛重工装备有限公司120t转炉一次烟气干法除尘系统的技术总负责达成如下技术协议。 1. 项目名称及内容 1.1 项目名称 项目名称为嘉晨集团营口天盛重工装备有限公司120t转炉一次烟气干法除尘系统的技术总负责。 1.2 该项目的具体内容 该项目的具体内容 (1)工厂设计; (2)软件编程; (3)调试; (4)蒸发冷却器、喷淋冷却器、烟囱的非标设计; (5)参与分项设备招议标工作,提供招标文件; (6)参加技术谈判,确认技术协议。 2.转炉一次烟气干法除尘系统 2.1 转炉炼钢工艺及烟气主要参数 转炉炼钢工艺及烟气主要参数如下表1~表5: 表1 转炉冶炼主要技术经济指标

表2 出炉口烟气成分 表3 回收期烟尘粒度 表4 燃烧期烟尘粒度 表5 烟尘成分重量比(参考值) 2.2 转炉一次烟气干法除尘系统组成

转炉一次烟气干法除尘系统主要设备包括:蒸发冷却器、静电除尘器、煤气风机、消声器、煤气切换站、煤气冷却器、放散烟囱、输灰系统及煤气管道。 2.2.1 蒸发冷却器 主要技术参数: ●蒸发冷却器数量 2 台 ●直径 4.7 m ●圆筒高度18 m ●材质 15CrMo/20G ●入口处烟气温度800~1000℃ ●出口处烟气温度200~300 ℃(可调) ●喷枪数量12套/台 2.2.2 静电除尘器 静电除尘器主要由壳体、阳极系统、阴极系统、阳极振打系统、阴极振打系统、分布板、分布板振打系统、刮灰机构、钢支撑结构、楼梯、平台、绝缘子室(顶部保温箱)、外部保温层、干油润滑系统、氮气吹扫及密封系统、安全卸压阀、高压供电系统等组成。 静电除尘器的极线和极板材质选用如下: 电场1区和2区的极线:B8形式,08Al,厚度6mm。 电场3区和4区的极线:V15形式,Q235/SPCC,厚度2mm。 电场1区和2区极板:ZT24形式,0Cr13,厚度2mm。 电场3区和4区的极板:ZT24形式,SPCC,厚度2mm。 静电除尘器数量:2台 每台静电除尘器技术参数: ●直径9000 mm ●圆筒段长度27130 mm ●材质20 G ●电场数量4个 ●通道数量20个 ●同极距400 mm

干法除尘工艺流程及功能介绍

干法除尘工艺流程及功能原理 一、干法除尘简介 随着氧气转炉炼钢生产的发展及炼钢工艺的日趋完善,相应的除尘技术也在不断地发展完善。目前,氧气转炉炼钢的净化回收主要有两种方法,一种是煤气湿法(OG法)净化回收系统,一种是煤气干法(LT法)净化回收系统。日本新日铁和川崎公司于60年代联合开发研制成功OG法转炉煤气净化回收技术。OG法系统主要由烟气冷却、净化、煤气回收和污水处理等部分组成,烟气经冷却烟道后进入烟气净化系统。烟气净化系统包括两级文氏管、脱水器和水雾分离器,烟气经喷水处理后,除去烟气中的烟尘,带烟尘的污水经分离、浓缩、脱水等处理,污泥送烧结厂作为转炉和烧结原料,净化后的煤气被回收利用。系统全过程采用湿法处理,该技术的缺点:一是处理后的煤气含尘量较高,达100mg/Nm3以上,要利用此煤气,需在后部设置湿法电除尘器进行精除尘,将其含尘浓度降至10mg/Nm3以下;二是系统存在二次污染,其污水需进行处理;三是系统阻损大,能耗大,占地面积大,环保治理及管理难度较大。 鉴于以上情况,德国鲁奇公司和蒂森钢厂在60年代末联合开发了转炉煤气干法(LT法)除尘技术。干法(LT法)除尘系统主要由蒸发冷却器、静电除尘器、风机和煤气回收系统组成。与OG法相比,LT法的主要优点是:除尘净化效率高,通过电除尘器可直接将粉尘浓度降至10mg/Nm3以下;该系统全部采用干法处理,不存在二次污染和污水处理;系统阻损小,煤气热值高,回收粉尘可直接利用,节约了能源。因此,干法除尘技术比湿法除尘技术有更高的经济效益和环境效益。 转炉干法除尘技术在国际上已被认定为今后的发展方向,它可以部分或完全补偿转炉炼钢过程的全部能耗,有望实现转炉无能耗炼钢的目标。另外,从更加严格的环保和节能要求看,由于湿法净化回收系统存在着能耗高、二次污染的缺点,它将随着时代的发展而逐渐被转炉干法除尘系统取代,这是冶金工业可持续发展的要求。该技术已获得世界各国的普遍重视和采用,到目前为止,转炉干法除尘技术在德国、奥地利、韩国、澳大利亚、法国、卢森堡等国得到了广泛应用。干法除尘系统简称LT系统,我厂称为DDS系统。LT除尘系统属于烟气的干式净化方式,自1981年开始将LT除尘方式应用于氧气顶吹转炉的烟气净化、回收系统。 与OG系统相比,LT系统有如下特点:

转炉干法一次除尘净化回收系统

转炉干法一次除尘净化回收系统的技术优势 一系统工艺流程介绍 氧气转炉炼钢工艺产生的高温烟气(1400~1600℃)经汽化冷却烟道冷却后,温度降为800 ~1000 ℃。烟气再经过蒸发冷却器冷却,温度降为180 ~200 ℃,降温的同时对烟气进行调制处理,另外烟气经过蒸发冷却器大约有40~50 % 的粗灰尘沉降到底部。由链式输送机送至贮灰仓回收再利用。 冷却和调质后的烟气进入电除尘器净化,烟气经电除尘净化以后含尘量降至15mg/Nm3以下,捕集的粉尘经过扇形刮灰机构刮入下部排灰装置,再送至贮灰仓回收利用。当净化后的烟气符合回收条件时,烟气由切换阀门切换至煤气冷却器(GC),经煤气冷却器再次降温,温度降至70℃以下后送入煤气柜储存。经加压混合后送往各用户。当净化后的烟气不符合回收条件时,烟气由切换阀门切换至放散烟

囱,点火放散。 二系统技术优势 (1)系统净化后的出口烟气粉尘浓度可达15mg/Nm3,远远低于国家规定的排放标准(100mg/Nm3)。 (2)系统由于自动化控制程度高,煤气回收时切换速度快,其煤气回收量高,每吨钢回收煤气90~120 m3,每吨钢产生的蒸汽量50~70kg 。 (3)因系统净化后粉尘含量低,系统运行阻力低(约7500Pa),故风机的使用寿命长,维护工作量小。 (4)系统设置节电模式,每吨钢耗电约3.2kWh,每吨钢耗新水约0.05 m3。 (5)系统无污水排放,不会造成二次污染。系统收集粉尘为干态,可回收重新利用。 (6)系统简单,占地面积小,便于维护和管理。

电除尘器的技术优势 一电除尘器的应用范围 (1)水泥行业电除尘器:窑尾电除尘器、窑头电除尘器、煤磨电除尘器。 (2)电力行业电除尘器:电站锅炉电除尘器、烟气脱硫电除尘器。 (3)冶金行业电除尘器:烧结机头电除尘器、烧结机尾电除尘器、转炉干法煤气电除尘器、湿式电除尘器、石灰窑烟气 电除尘器。 二电除尘器的技术优势 (1)电除尘器净化后的出口烟气粉尘浓度可达50mg/Nm3以下,低于国家规定的排放标准(100mg/Nm3)。 (2)电除尘器处理烟气量范围广:20000~2300000m3/h (3)电除尘允许烟气温度温度范围大:70~400℃。 (4)电除尘器允许入口含尘浓度高:10~1300g/Nm3 (5)电除尘器壳体承压高:2000~25000Pa (6)运行阻力小:200~3500Pa (7)收尘极板采用ZT24极板,放电性能良好、板电流密度均匀、同等空间尺寸下有效收尘面积可提高10%。

转炉干法除尘工艺

转炉干法除尘工艺说明 1.转炉干法除尘工艺流程 目前转炉炼钢厂配置3座300t顶底复吹转炉,整个吹炼过程枪位和加料采用模式自动控制,在吹炼耗氧量达80%时启动烟气分析的自动化炼钢,可由模型控制冶炼过程的自动拉碳提枪。但是模型的碳命中率为80%左右,而温度命中率不高。转炉出钢采用挡渣出钢。转炉装铁水基本不脱硫,采用定量装入制度,铁水加入量为200±5t,废钢加入料为30±5t。铁水成分为:C:3.9~4.2%、Si:0.4~0.8%、Mn:0.35~0.40%、P:0.08~0.10%、S:0.02~0.04%,铁水温度T:1300-1320℃。 转炉冶炼过程:一般先兑入铁水再加废钢,如遇阴雨天气先加废钢,加入后前后摇炉,后摇直。先降罩裙,后开吹,开吹时氧气流量设定为30000Nm3/h,经60s后升为正常氧气流量设定值为62000Nm3/h,随后吹炼过程氧气流量不变。下表为培训过程中记录的不同钢种的 转炉加料操作:在上炉溅渣完毕新炉次开始后,炉内加入0.8-1.0t改质剂(镁球),以保证冶炼前期MgO含量,减少炉衬侵蚀。氧枪降枪开氧点火后,手动加入铁皮和生白云石,在吹炼至氧步5%(开吹1’40”左右)时按照模型计算自动加入白灰和轻烧白云石(白灰约4t,轻烧约2t),在吹炼至氧步40%时自动加入第二批料(为白灰和轻烧白云石),在以后会自动多批次少量加入白灰或轻烧白云石(每次加入约500kg),一般达10批次之多。在吹炼过程可根据造渣情况手动加入铁皮或生白云石。在接近吹炼终点时抬罩裙,拉碳提枪后进行手动测温、取样、测氧。然后根据碳和温度的命中情况以及其他元素含量确定是否进行后吹。如果钢水合格后进行出钢操作。出钢完毕,加入生白云石或(和)镁球进行溅渣操作,加料后前后摇炉确认无大火后进行降枪溅渣。溅渣完毕倒渣准备下一炉次冶炼。

120t转炉一次烟气干法除尘系统的技术总负责

120t转炉一次烟气干法除尘系统的技术总负责 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

嘉晨集团营口天盛重工装备有限公司 120t转炉一次烟气干法除尘系统的技术总负责 技术协议

2011年5月14日 甲方:营口天盛重工装备有限公司 乙方:中冶华天工程技术有限公司 甲乙双方于2011年5月13日就嘉晨集团营口天盛重工装备有限公司120t转炉一次烟气干法除尘系统的技术总负责达成如下技术协议。 1. 项目名称及内容 1.1 项目名称 项目名称为嘉晨集团营口天盛重工装备有限公司120t转炉一次烟气干法除尘系统的技术总负责。 1.2 该项目的具体内容 该项目的具体内容 (1)工厂设计; (2)软件编程; (3)调试; (4)蒸发冷却器、喷淋冷却器、烟囱的非标设计; (5)参与分项设备招议标工作,提供招标文件; (6)参加技术谈判,确认技术协议。 2.转炉一次烟气干法除尘系统 2.1 转炉炼钢工艺及烟气主要参数 转炉炼钢工艺及烟气主要参数如下表1~表5: 表1 转炉冶炼主要技术经济指标

m3/min t钢 水 m3/min t钢 水 C C 表2 出炉口烟气成分 表3 回收期烟尘粒度 粒度 ()4010102表4 燃烧期烟尘粒度 粒度()10551

表5 烟尘成分重量比(参考值) 成分FeO Fe2O3TFe MFe CaO SiO2MgO MnO P2O5C %67.1616.263.40.589.04 3.640.390.740.57 1.6 2.2 转炉一次烟气干法除尘系统组成 转炉一次烟气干法除尘系统主要设备包括:蒸发冷却器、静电除尘器、煤气风机、消声器、煤气切换站、煤气冷却器、放散烟囱、输灰系统及煤气管道。 2.2.1 蒸发冷却器 主要技术参数: 蒸发冷却器数量 2 台 直径 4.7 m 圆筒高度18 m 材质15CrMo/20G 入口处烟气温度 800~1000℃ 出口处烟气温度 200~300 ℃(可调) 喷枪数量12套/台 2.2.2 静电除尘器 静电除尘器主要由壳体、阳极系统、阴极系统、阳极振打系统、阴极振打系统、分布板、分布板振打系统、刮灰机构、钢支撑结构、楼梯、平台、绝缘子室(顶部保温箱)、外部保温层、干油润滑系统、氮气吹扫及密封系统、安全卸压阀、高压供电系统等组成。 静电除尘器的极线和极板材质选用如下: 电场1区和2区的极线:B8形式,08Al,厚度6mm。 电场3区和4区的极线:V15形式,Q235/SPCC,厚度2mm。 电场1区和2区极板: ZT24形式,0Cr13,厚度2mm。 电场3区和4区的极板: ZT24形式,SPCC,厚度2mm。 静电除尘器数量:2台 每台静电除尘器技术参数: 直径9000 mm

转炉除尘原理

转炉一次除尘设备: 转炉一次除尘系统采用两文一塔式的湿法除尘或采用塔文加二文式的半干法除尘,除尘设备投入成本低,运行稳定,除尘效果好,完全满足国家有关标准,除尘系列产品适用转炉容量由20至210吨。 湿法除尘设备主要包括:一文定径(可调径)溢流文氏管、重力脱水器、R-D 阀可调二文喉口、90°弯头脱水器、旋风丝网脱水器(旋风复挡脱水器)、溢流水封箱等设备。

另外,根据用户要求又开发了半干法除尘,主要包括:冷却蒸发塔、环缝式二文喉口、90°弯头脱水器、旋风丝网脱水器(旋风复挡脱水器)、溢流水封箱等设备。 我公司开发的转炉除尘设备有多项专有技术,包括二文喉口供水方式设计、RD阀专用喷嘴、带破渣捅针的炉口微差压取样控制装置、微差压全自动闭环自动控制、PLC内置调节系统等。另外,二文喉口液压伺服系统输出扭矩大,反应速度快,可以在微差压闭环工作状态下,炉口压差控制在±10Pa之内,在需要煤气回收的工作场合有较大的技术优势。 由于采用了多项专有技术,除尘设备在控制精度、除尘效果、系统工作稳定性等方面有极大的技术优势,可以长期稳定运行在全自动微差压闭环状态下,除尘效果完全达到国家相关标准,除尘设备在韶钢、武钢、新余、安阳钢铁公司等转炉上使用,效果十分理想,其主要特点有: RD阀二文喉口用水量、水嘴、水箱供水等经过专门设计,水箱压力均衡,可以在阀体内建立完整的水封面,用水量小,在同样除尘、冷却效果下用水量最小,其除尘效果及尾气排放标准优于国家标准。 微差压取压检测部分采用专有的取压环管、破渣捅针控制及氮气反吹扫装置,保证取压系统工作稳定可靠,这套系统运行后可以在炼完每一炉钢后自动投入工作,完成破渣及吹扫过程,保证微差压系统工作稳定,不会出现堵塞现象。 液压驱动机构输出转矩大,正常工作输出扭矩可以达到20000NM以上,伺服阀采用美国MOOG公司进口伺服阀,反应速度快,运行稳定,故障率低。因此可以保证可调喉口的动态反应性能及减小炉口压差波动范围。 可调文氏管喉口控制系统可以方便的完成微差压闭环自动运行,自动运行时系统工作稳定,炉口压差波动范围可以控制在±10Pa范围内,煤气回收效果好,系统自动运行稳定,操作简便,现已经在国内很多厂家运行,使用情况良好。 R-D喉口控制系统采用SIEMENS公司S7系列PLC,并采用PLC内部PID运算,辅助以多项压力趋势、压力范围计算,使PID调节性能大大优于普通PID调节器,而且PLC内部PID调节器无论从反应速度,故障率等方面都有很大优势。 控制系统配置工业以太网接口,可以与转炉上位机或转炉PLC系统通讯,完成信号传送,减少点对点传送可能产生的信号故障及模拟量信号传送损失,操作人员可以很方便的在现场、炉前控制室或风机房完成监控和操作。 另外,在产品制造过程中,为保证产品加工质量,所有原材料进厂时都需要进行质量检验,保证原材料合格率,在设备制造加工过程中完全按照国家标准,同时厂内有完善的质量检验设备,完全可以保证出厂设备的质量。 转炉一次除尘工艺对比分析 我国2008年重点企业转炉平均冶炼能耗是5.74 kg/t钢,而国外和国内先进转炉都实现了负能炼钢。主要原因是我国转炉总体容量小、装备控制水平低、一次除尘和煤气回收利用工艺落后,导致部分转炉不回收或回收水平低。因而,转炉成为我国钢铁工业节能减排的薄弱环节。 目前,应用的转炉一次除尘法有很多,但共有的特点是都采用两级文氏管。目前有10多座转炉采用新一代OG 湿法、有20多座大中型转炉采用干法、50多座转炉采用半干塔文法,超过60%的转炉仍在使用传统OG湿法。 转炉一次除尘现有工艺及特点 尽快淘汰传统OG湿法已成为共识,但该采用哪种工艺还有不同观点。不同企业有不同要求,现在企业采用的一次除尘工艺及其特点如下: 1.干法 干法主要有引进的LT法、DDS法,也有国产系统。其优点:一是回收煤气粉尘浓度低,可达10mg/Nm3;二是吨钢节电3~4 kWh/t钢;三不需要庞大的循环水处理系统。主要问题是对转炉的装备、操作要求高,自动控制连锁多,中小转炉由于装备低不敢采用,还有干法排放不稳定、存在爆炸隐患、设备维修费用高。 干法从工业应用到现在几十年,全球转炉采用总共不到100座,大部分在中国并且存在不同程度的问题。除了操作维护原因外,工艺本身还有改进之处。 2.新一代OG湿法 新一代OG湿法有引进的系统,也有全国产的。它采用一座空心饱和洗涤塔替代传统的一级文氏管,系统阻力

转炉一次干法除尘控制系统的改进

第29卷第1期2013年1月 甘肃科技 Gansu Science and Technology Vol.29No.1 Jan.2013转炉一次干法除尘控制系统的改进 刘晓景 (甘肃钢铁职业技术学院,甘肃嘉峪关735100) 摘要:转炉一次干法除尘,根据工艺和安装设备的特点,控制系统做了如下方面的改进:由集中控制采用ET200s分布式IO控制;传动的PLC带中间继电器驱动电机,改为直接采用ET200Pro电机驱动器直接驱动;顺序功能直接由GRAPH直接实现;蒸发冷却器温度控制采用趋势控制法。 关键词:ET200s;分布式;ET200Pro;GRAPH;蒸发冷却器;温度控制 中图分类号:TP302.1 北京国华新兴节能环保科技有限公司结合自家系统工艺、设备方面的特点,并利用在控制系统方面的优势,对整个控制系统进行了多方面的改进创新,在榆钢2012年投产的二炼钢3#、4#转炉工程中投入实践,降低了电气系统的施工和维护成本,对系统的运行起到了很好的促进作用。 1概述 转炉一次干法除尘控制系统总体由两部分组成,一是转炉车间内的蒸发冷却器和粗输灰系统,简称转炉区;另外是包括静电除尘器、风机、切换站、放散烟囱在内的车间外部分,简称现场区,两个区域分别设置一套西门子S7400PLC系统,之间采用光纤以太网通讯。 系统按照功能分为7个功能区:蒸发冷却器区、粗输灰功能区、静电除尘器区、风机区、切换站区、放散区、细输灰区,各个功能区紧密结合组成大的系统,同时由自成相对独立的系统。 为了施工和日后的维护方便并且更好地提高系统的可靠性,控制系统做出了如下几个方面的改进。 2由集中控制改为分布式控制 1)转炉一次干法除尘通常控制方式为集中式控制,转炉区PLC控制柜和电机控制柜分开,并放置转炉电气控制室。现场区PLC控制柜和电机控制柜分开,并放置现场区电气室。由于供配电柜和控制柜统一放置,电气施工过程中,大量的电缆堆一起敷设,为现场的施工和日后的检修增加了难度。 在榆钢3#、4#转炉施工项目中,电气系统放弃集中控制方式,改为分布式控制,并且PLC柜和MCC 柜整合为一,增加了系统的灵活度,并降低了电气施工和检修的难度。 转炉区,S7400PLC控制柜放置于转炉电气室,蒸发冷平台和粗灰仓平台分别设置ET200s远程站操作箱,内置电机驱动电气设备,如图1所示。 图1蒸发冷却器区网络配置 2)现场区,供配电柜和S7400PLC控制柜及风机变频柜放置现场区电气室,干油站、除尘器二层平台、除尘器三层平台设置ET200Pro远程控制柜,液压站一层、液压站二层分别设置ET200s远程控制柜,柜内放置电气驱动电气设备,如图2所示。 图2现场区网络配置 3使用ET200Pro驱动电机 1)ET200Pro系列是西门子推出的具有IP65防

最新干法干法除尘-除尘手法-是相对于湿法除尘而言-转炉一次除尘系统一

最新干法干法除尘-除尘手法-是相对于湿法除尘而言-转炉一次除尘系统一 干法除尘。干法除尘。除尘手法。是相对于湿法除尘而言。 转炉一次除尘系统一直以来以OG 法为主。OG法即湿法除尘。该方法存在的最大缺点是能耗高。耗水量大。污水处理复杂。运行成本高。而干法除尘方法最大的优点是能耗低。耗水量小。环保效果明显。但是该方法一次投资大。结构复杂。耗材多;并且设备机构比较复杂。技术难度大。 中文名,干法除尘。作用,除尘。 概述。干法除尘的核心是温度的控制。包括EC出入口的温度。 EP出入口的温度。如何保证上述温度的控制是保证干法除尘系统正常运行的前提。温度控制的基础就是保证在EP的电场内不出现气流冷凝的现象。既在电场不会出现潮湿现象。吸附的灰尘是干燥的。不潮湿。如果气流温度过低。

所产生的灰尘将出现板结现象。造成EC 粗输灰系统及EP细输灰系统的堵塞。并且潮湿的灰尘容易挂在阴极线和阳极板上。不容易下落。造成阴极线的肥大。 减小了极距。导致电场的放电频率增加。容易引起卸爆。并且影响除尘器的除尘效率。更严重的是加剧电场内设备的腐蚀。降低设备的使用寿命;另外气流温度过低。将造成风机内出现积水现象。增大风机叶轮的腐蚀速度;但是气流的温度过高将造成设备的额外烧损。降低电场的除尘效果。因此。对于干法除尘而言。气流温度的控制非常重要的。通过干法除尘系统的运行。对于除尘器的入口温度应控制在120~1400C 为最佳。此时能够保证气流含有一定的水汽。 并且保证气流在除尘器内不会产生冷凝。不会造成电场内的放电次数的加剧。也不会造成灰尘的潮湿。又能保证电场内的设备不会遭到破坏。干法除尘由以下主要设备组成:蒸发冷却器;

转炉干法一次除尘风机控制对系统稳定性的影响

转炉干法一次除尘风机控制对系统稳定性的影响 转炉干法(LT)一次除尘因其能耗低、除尘效果好、煤气回收率高的诸多特点已普遍替代传统OG法成为市场主流。风机作为干法除尘的核心设备之一,是连接除尘器与后续切换回收系统的关键节点,其控制的合理性和运行的穩定性对整个系统至关重要。 标签:转炉干法一次除尘;风机控制;系统稳定 引言 安全和稳定是企业连续生产的前提,干法除尘作为转炉炼钢的烟气处理核心部分,直接关系到炼钢以及后续工序的正常运行。 1 干法除尘系统稳定性控制要点 (1)控制好各关键点避免除尘与转炉连锁导致转炉频繁提枪,炼钢中断;(2)控制泄爆次数,降低泄爆能量,减小对设备造成的损伤;(3)合理控制煤气回收和放散过程,避免频繁紧急切换。 2 避免风机原因提枪 风机轴承温度、电机轴承温度、电机绕组温度、风机震动、风机失速、风机速度过低都会导致转炉紧急提枪。控制风机的加速时机,加速斜率,转炉不同阶段的运行速度,通过变频器设置避开风机共振频率,保证设备安全。 3 控制泄爆频率 干法煤气除尘泄爆的直接原因是内部气体达到了爆炸极限混合比CO>9%且O2>6%,同时电场内部发生闪络电火花,点燃CO迅速燃烧膨胀,导致泄爆发生。由于高压电场内部闪络放电无法避免,因此控制吹炼阶段烟气中氧含量就显得尤为重要,行业内主要采取两种措施: (1)降低开吹时氧枪吹氧压力和流量,减小初期CO生成量使其在炉口完全燃烧生产CO2,也减少未参与燃烧反应的O2进入烟道。同时生成的非爆炸性气体CO2呈烟气柱充满烟道并带动非吹炼阶段烟道中的空气至放散烟囱。 (2)在蒸发冷却器出口加装氮气吹扫装置,当吹炼三脱铁水,或者进行补吹时,提前开启氮气阀向烟道中吹入氮气进行稀释,降低含氧量。 在此我们亦可以在转炉开吹阶段降低吹氧量,同时合理的降低风机转速来使裙罩口的CO完全燃烧,避免其过多的进入除尘器电场。

转炉干法除尘泄爆原因及预防措施

转炉干法除尘泄爆原因及预防措施 【摘要】干法除尘泄爆问题一直是影响转炉稳顺冶炼和制约干法除尘推广的重要阻碍,如何减少或避免泄爆的发生一直是转炉冶炼和干法除尘维护的重中之重。本文从泄爆的类型和成因分析入手,对不同成因的泄爆采取相应的预防或抑制措施并加以实践,有效降低了泄爆的发生率。 【关键词】干法除尘;泄爆;成因;预防 前言 干法除尘主要负责转炉冶炼过程中产生烟气的收集、净化和回收,与湿法除尘相比有着明显的节水、节电、维护量低、外排粉尘含量低的优势,但由于采用了相对“敏感”的静电除尘器,稍有不慎就会出现泄爆而中断生产,成为制约干法除尘推广的重要阻碍。泄爆本身是一种保护电除尘器的安全措施,防止泄爆决不能从盲目放宽提枪联锁条件或者改变泄爆阀动作压力入手,但频发的泄爆严重威胁转炉的稳顺生产,因此如何避免泄爆的发生成为转炉冶炼和干法除尘稳定运行的重要工作。 1 泄爆机理以及类型 所谓泄爆即由于电除尘器内部压力短时间急剧变化达到泄爆阀起跳压力,从而导致泄爆阀起跳的事件。 通常情况下,电除尘器出口压力为-0.5KPa~-0.9KPa之间,具体与风机转速以及煤气回收放散状态有关。当内部压力出现急剧变化,由负压变为正压且达到泄爆阀起跳压力时就会发生泄爆。内部压力出现急剧变化的原因是由于CO与O2或者H2与O2的混合气体在除尘器内发生爆炸所致。根据爆炸“三要素”可知避免CO与O2或者H2与O2混合浓度在电除尘器达到爆炸极限是消除泄爆的根本方法。 研究泄爆现象比较有针对性的分类方法是按发生泄爆时转炉状态来划分,这种分类方法能够更有针对性的对泄爆采取避免措施。大致可以分为:开吹泄爆、吹炼过程泄爆、非吹炼期泄爆。每种泄爆发生的机理相同,但导致的原因和预防的措施不尽相同。下面将详细介绍针对这几种泄爆做的规范和优化。 2 泄爆原因及其预防措施 2.1 开吹泄爆 开吹泄爆的诱因在于当吹炼初期产生了一定的CO气体,但此时残留在管道中的O2仍然存在,进而达到泄爆条件发生泄爆。此类泄爆出现次数在生产中是最多的,预防的重点就在于如何在铁水中碳氧迅速反应之前排除氧气,通过摸索

转炉一次除尘设备简介

转炉一次除尘设备简介 转炉一次除尘设备是转炉炼钢不可缺少的工艺除尘环节,目前国内转炉一次除尘设备分为以下几种: 一、两文三脱式 两文三脱式分为两种型式: A 一级溢流文氏管+重力脱水器+二级R-D阀可调文氏管 +90°弯头脱水器+丝网脱水器 B一级溢流文氏管+重力脱水器+二级环缝(重砣)可调文氏管 +90°弯头脱水器+丝网脱水器 据以往工程经验来看,上述B型式较优于A型,A型除尘效 果能达排放70mg/Nm3,目前已经逐步淘汰;B型除尘效果能 达到排放50 mg/Nm3,能确保排放达标。 这两种型式的除尘系统其电耗和水耗相当。 排放标准参见《炼钢工业大气污染物排放标准》 GB28664-2012。 二、塔文式 塔文式系统是由高效洗涤塔+重力脱水器+环缝文氏管+90° 弯头脱水器+丝网脱水器组成,是目前较为常用的除尘方式, 其优点主要在于电耗较低(与两文三脱式对比)。 高效洗涤塔较一级溢流文氏管除尘效果略差,但其阻损可低 至500Pa(一级溢流文氏管设计阻损3000-5000Pa),能很大 的缓解除尘风机的负荷,降低电耗。

对于系统的节水问题,严格来说,塔文式较两文三脱式节水并不明显,一些设计单位所述说的节水,仅是为了推广塔文除尘系统进行的误导而已。究其原因在于两文三脱除尘系统在设计之初倡导的是用水多除尘效果更好,但实际上用水量可以降低。另外,从热传递角度来看,定量的高温烟气降温至同样的温度,两种型式的除尘系统理论用水量是一样的。 塔文式除尘效果能达到排放50 mg/Nm3,能确保排放达标。 排放标准参见《炼钢工业大气污染物排放标准》GB28664-2012。 三、干法除尘式 转炉煤气干法除尘是较为新型的除尘结构,其工艺流程为:转炉高温烟气在风机作用下经汽化冷却烟道冷却后的干烟气进入蒸发冷却器,由其对烟气进行灭火、降温、粗除尘,约计250度的烟气而后进入地面的静电除尘器进行精除尘,再经高温风机后进入煤气切换站:当不满足煤气回收条件时打到放散侧进行煤气放散点火;当满足煤气回收条件时打到回收侧,烟气经再一步降温后进入煤气柜区进行回收。 干法除尘式除尘效果能达到排放30 mg/Nm3,是除尘效果最好的除尘方式。 干法除尘较两文三脱式、塔文式除尘具有省水省电的特点,大大降低了其运行成本,进而降低了炼钢成本,但由于其一次投资较高,目前国内建设转炉干法除尘的单位较少。

转炉烟气含水量对干法除尘效率的影响

转炉烟气含水量对干法除尘效率的影响

————————————————————————————————作者:————————————————————————————————日期:

转炉烟气含水量对干法除尘效率的影响-企业管理论文 转炉烟气含水量对干法除尘效率的影响 龚小勇 重庆钢铁股份有限公司一炼钢厂重庆长寿401258 摘要人们在总结转炉干法除尘效率的影响因素时,常将重点放在静电除尘器本体的机械、电气设备上,而忽略了烟气成分的变化与除尘效率的内在关系。本文以重钢一炼钢厂转炉干法除尘系统在生产过程中遇到的实际问题以及相应的技术参数为基础,重点分析了烟气含水量对除尘效率的影响,并结合实际给出一些改进建议。 关键词干法除尘;含水量;除尘效率 1 概述 转炉干法除尘系统主要由蒸发冷却器、静电除尘器、煤气风机、煤气切换阀站以及煤气冷却塔组成(如图1)。与传统的湿法除尘(OG 法)相比具有:淤除尘效率高,通过蒸发冷却器粗除尘以及静电除尘器精除尘可直接将粉尘降至25mg/m3 以下;于在水、电消耗上较低;盂煤气回收量大,降低了钢铁企业运行成本等优势,是一种目前广泛应用的除尘方式。重钢一炼钢厂于2009 年先后完成了3 座210t 转炉干法除尘的建设工作,投产运行5 年来很好的保证了干法除尘系统的稳定运行。但2015 年以来常出现煤气放散塔“冒黑烟”以及煤气柜加压机积灰等情况发生,因此从烟气含水量对除尘效率的影响作了系统分析,并采取措施加以控制。

2 烟气含水量对除尘的影响 烟气含水量对除尘效率的影响主要通过改变烟气中粉尘比电阻来实现。 2.1 静电除尘器内部结构及工作原理 静电除尘器是整个干法除尘系统的核心设备,其主要由内部机械结构件,例如阳极板、阴极线、分流板以及振打系统和外部高压直流供电装置,例如升压变压器、阴极振打瓷瓶等。当含粉尘烟气通过静电除尘器内4 个电场时,在高压电场作用下经过: (1)高压电场将气体进行电离; (2)烟气中的粉尘进行荷电; (3)带有正负电荷粉尘分别向阳极板、阴极线移动;榆通过阴阳两极以及振打系统将烟气粉尘捕集;上述4 个过程后回收利用。内部结构如图2 所示。

转炉一次除尘和粉尘回收利用技术

转炉一次除尘和粉尘回收利用技术 刘晨 1粉尘的来源和特点 转炉一次除尘粉尘主要源自吹炼过程中熔池蒸发的氧化物,兑铁、添加废钢和造渣料时被抽出来的细颗粒物。粉尘量为钢水量的1%—2%或平均15kg/t(在10—20kg/t之间波动),烟气中的粉尘浓度平均100g/Nm3(在70—200g/Nm3范围内波动)。 粉尘(源)的特点和难点: ◆烟气烟尘捕集难。要把高温含尘烟气尽量抽净,同时又不希望吸入过多的空气,以提高转炉煤气的回收量和热值、控制除尘系统煤气流量。 ◆烟气烟尘的间隙}生。烟气量、烟气温度和粉尘浓度都呈快速、宽幅、频繁周期性波动,在很大程度上限制和影响后步冷却除尘设备的选型和运行效果。 ◆粉尘具有黏性。根源是粉尘中含有生石灰和白云石粉。转炉一次除尘过程即使完全不直接喷水,也难防止粉尘粘接,因为生石灰在常温下与空气中的水分就会发生活化反应,熟石灰再与煤气中的CO2反应必然会生成石灰石。这有助于理解为什么现在干法系统容易积灰。 此外,对于转炉一次除尘粉尘,最重要的特点是在烟气燃烧和未燃时,颗粒度分布和成分的显著不同:未燃粉尘主要为大于10μm粗颗粒粉尘,主要成分为氧化亚铁(FeO);而燃烧后则绝大部分为小于1μm的亚微米烟尘,主要成分是四氧化三铁(Fe3O4)。烟气燃烧还直接影响进入除尘系统的原始烟气量和烟气温度。 2除尘的目标 转炉一次除尘首要必须保证符合环保要求,其次由于涉及到转炉煤气的回

收利用,最好能同时达到煤气回收、利用的要求: ◆环保排放标准:按照我国目前的大气质量控制标准,烟囱排放烟气粉尘浓度必须小于等于80mg/Nm3,有的地方内控标准为小于等于50mg/Nm3,也有企业采用更严格的内控标准小于等于20mg/Nm3。 ◆回收、利用转炉煤气要求:煤气回收都必须经过进一步净化,首先就是精除尘,其粉尘浓度要求小于等于10mg/Nm3;煤气进入燃气轮机发电则要求小于等于2mg/Nm3,并且对所含最大粉尘颗粒直径也有一定要求。 无论是环保排放还是回收利用煤气,都是在不过多增加运行成本的前提下,使粉尘浓度越低越好。转炉一次除尘后的粉尘浓度相关标准参考表1。 3技术应用状况 据统计,2011年我国重点钢铁企业转炉总座数为616座,其中200—300t 转炉有32座,100—200t转炉有115座,100t以下的转炉有469座(其中30t及以下超过300多座),再加上难以准确统计的民营企业转炉数量,估计全国转炉总座数超过800座。相应的转炉一次除尘技术的应用状况:干法67座、半干法72座、新OG法50座,超过611座转炉沿用老OG湿法。 4除尘方法 转炉一次除尘有湿法、干法和半干法三类基本方法,都是由粗除尘和精除尘两步组成,几种常用除尘方法的粗除尘、精除尘的工艺设备和最终可达到的

相关主题
文本预览
相关文档 最新文档