当前位置:文档之家› 自适应信号处理的最佳步长算法

自适应信号处理的最佳步长算法

自适应信号处理的最佳步长算法
自适应信号处理的最佳步长算法

使用精确搜索算法确定步长的最速下降法

数学与计算科学学院 实验报告 实验项目名称使用精确搜索算法确定步长的最速下降法 所属课程名称最优化方法 实验类型算法编程 实验日期 201 班级 学号 姓名 成绩 一、实验概述: 【实验目的】

(1) 掌握精确搜索算法确定步长的最速下降法; (2) 使用计算机语言表达最优化方法。 【实验原理】 最速下降法又称为梯度法,是1847年由著名数学家Cauchy 给出的。他是解析法中最古老的一种,其他解析方法或是它的变形,或是受它的启发而得到的,因此它是最优化方法的基础。 设无约束问题中的目标函数 f : Rn R1一阶连续可微。 最速下降法的基本思想是:从当前点k x 出发,取函数 f (x)在点k x 处下降最快的方向作为我们的搜索方向k p .由 f (x)的 Taylor 展式知 ()()()() k k k k T k k f x f x tp t f x p o tp -+=-?+ 略去t 的高阶无穷小项不计,可见取()k k p f x =-?时,函数值下降得最多。于是,我们可以构造出最速下降法的迭代步骤。 解无约束问题的的最速下降法计算步骤 第 1 步 选取初始点(0)x ,给定终止误差ε ,令k:=0; 第 2 步 计算?f (k x ),,若‖?f (k x )‖≤ ε ,停止迭代.输出k x .否则 进行第三步 第 3 步 取()k k p f x =-?; 第 4 步进行一维搜索,求k t ,使得 1()(())min (()) k k k k k k f x f x t f x f x t f x +=-?=-? 令,k:=k+1,转第2 步。 由以上计算步骤可知,最速下降法迭代终止时,求得的是目标函数驻点的一个近似点。 【实验环境】 计算机 VC++

matlab在自适应信号处理方面的应用 - 副本

1波束宽度与波达方向及阵元数的关系 clc clear all close all ima=sqrt(-1); element_num1=16; %阵元数 element_num2=128; element_num3=1024; lamda=0.03; %波长为0.03米 d=1/2*lamda; %阵元间距与波长的关系 theta=0:0.5:90; for j=1:length(theta); fai(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num1*d)); psi(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num2*d)); beta(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num3*d)); end figure; plot(theta,fai,'r',theta,psi,'b',theta,beta,'g'),grid on xlabel('theta'); ylabel('Width in radians') title('波束宽度与波达方向及阵元数的关系') 仿真图如下:

3. 当阵元间距 时,会出现栅瓣,导致空间模糊。仿真图如下: 4. 类似于时域滤波,天线方向图是最优权的傅立叶变换 仿真程序和仿真图如下: clc clear all close all ima=sqrt(-1); element_num=32; %阵元数 source_num=1; %信源数 d_lamda=1/2; %阵元间距与波长的关系 theta=linspace(-pi/2,pi/2,200); theta0=0; %来波方向 w=exp(ima*2*pi*d_lamda*sin(theta0)*[0:element_num-1]'); for j=1:length(theta); a=exp(ima*2*pi*d_lamda*sin(theta(j))*[0:element_num-1]'); p(j)=w'*a; end figure; subplot(1,2,1) plot(theta,abs(p)),grid on xlabel('theta/radian') ylabel('amplitude') /2d λ >

自适应信号处理论文程序原版

利用LMS 算法的自适应系统仿真 摘 要: 一待辩识的IIR 系统,用一有限长度的FIR 滤波器来近似辩识系统,介绍了基于最小均方算法(LMS 算法)的自适应均衡器的原理和结构,采用LMS 算法得到N 阶FIR 滤波器来逼近原IIR 滤波器,并且分析了步长,滤波器系数,初始权值以及自适应过程中的噪声对系统辩识性能的影响。针对用硬件实现LMS 算法的自适应均衡器存在的诸多缺点,利用MATLAB 工具对各种结构形式的自适应均衡器在不同信道模型下的收敛速度和精度进行仿真,描述了用仿真试验得出LMS 自适应均衡滤波器的收敛性和跟踪性能与滤波器长度和选代算法跳步两个重要的参数之间的定量关系,为此构建了有实用价值的系列时延扩展的传输环境和可变多径传输信道,建立了系统仿真模型,做出了仿真试验结果并分析了仿真试验结果的意义。 关 键 词 LMS 算法; FIR 滤波器; 自适应滤波;IIR; MATLAB 仿真 关 键 词: LMS 算法 自适应均衡系统 仿真 移动通信 无线数据通信 0、 引言 待辨识系统是极点-零点(IIR )系统,要用一个有限长度的FIR 滤波器来近似辨识该系统如图1所示。已知待辨识系统的传输函数为: 23.01.111)(-+-=z z z H d (IIR ),求FIR 滤波器的系数。 图1 自适应系统辨识的原理图 1、系统设计要求 1)、待辨识系统为IIR 滤波器,利用自适应滤波的方法,采用LMS 算法得到N 阶FIR 滤波器来逼近原IIR 滤波器; 2)、输入信号)(n x 为高斯白噪声;

3)、考察步长delta 、阶数N 对自适应滤波器性能的影响。 2、系统设计原理 由于LMS 算法不需要离线方式的梯度估值或重复使用数据以及它的简单易行性而被广泛采用。只要自适应系统是线性组合器,且有输入数据向量)(n x 和期待响应)(n d 在每次迭代时可利用,对许多自适应处理的应用来说,LMS 算法是最好的选择。 我们采用LMS 算法自适应调整FIR 滤波器的系数,自适应滤波器的结构是具有可调系数)1(,),1(),0(-N h h h 的直接型FIR 滤波器。 输入信号)(n x 为功率为1,长度为1000点的高斯白噪声。)(n d 为期望响应,)(n y 为自适应FIR 滤波器的输出,误差信号)()()(n y n d n e -=。 对一个FIR 滤波器,其可调系数为10),(-≤≤N k k h ,N 为滤波器的阶数。则输出 M n k n x k h n y N k ,,0), ()()(10 =∑-=-= LMS 算法是由最速下降法导出的,求出使均方误差∑==M n n e 0 2)(ε达到最小值时相应的最佳滤 波器系数组。 从任意选择的一组)(k h 初始值开始,接着在每个新的输入采样值)(n x 进入自适应滤波器后,计算相应的输出)(n y ,再形成误差信号)()()(n y n d n e -=,并根据如下方程不断修正滤波器系数: ,1,0,10),()()()(1=-≤≤-???+=-n N k k n x n e k h k h n n 其中?为步长参数,)(k n x -为n 时刻输入信号在滤波器的第k 个抽头处的采样值,)()(k n x n e -?是滤波器第k 个系数的负梯度的近似值。这就是自适应地调整滤波器系数以便使平方误差ε最小化的LMS 算法。 3、系统仿真和结果分析 1)、仿真环境和各参量设置 在MATLAB7 上用软件仿真,仿真条件: (1) 高斯白噪声的产生 利用MATLAB 的库函数randn 产生均值为零,方差为1的高斯白噪声。为了观察不同的步长和阶数对系统性能的影响,必要时可以设定“种子值”产生相同的输入序列。 (2) 待辨识系统对输入的期待响应 由待辨识系统的传递函数可以写出它的差分方程形式为

加速步长法

实验报告 实验名称:加速步长法 院(系):机电学院 专业班级:机械制造及其自动化 姓名:赵丹 学号:100710431 2013年5 月3 日

实验一:加速步长法实验日期:2013年5 月3日一、实验目的 了解MATLAB的基本运用 了解MATLB在优化中的使用 二、实验原理 加速步长法是利用试探来确定单谷函数的初始搜索区间。其主要思路是:从一点出发,按照一定的步长,试图确定出函数值呈现“高低高”规律的相邻三点。从一个方向试探搜索,如不成功,则沿反方向探索。如方向正确,则加大步长探索。直至最终三点x1x2x3,满足x1f(x2)

h=-h; x2=x4; f2=f4; else x3=x2; x2=x1; x1=x4; break; end end end left=min(x1,x3); right=x1+x3-left; 四调用执行程序: clc syms t f=t^3-t^2-2*t+1; [left,right]=xiti4_1(f,0,0.1) 执行结果:left = 0.7000 right = 3.1000 实验小结 通过本实验了解了了matlab的基本操作方法,了解加速步长法的原理与基本运用

自适应信号处理最速下降法实验

自适应信号处理最速下降法实验 一 实验目的 考察最速下降法应用于预测器的瞬态特性。通过保持特征值扩散度不变,而改变步长参数,观察过阻尼和欠阻尼两种情况下()1v n 和()2v n 以及)(1n ω和 )(2n ω随n 改变而改变的过程。 二 实验要求 固定特征值扩散度()10R χ=,令步长参数μ分别为0.3和1.0,1 1.1955a =-, 20.95a =,1 1.818λ=,20.182 λ=,2m in 0.0322J σ==,观察()1v n 和()2v n 以及 ()1n ω和()2n ω随n 改变而变化的情况。 三 实验过程 首先让步长参数为0.3,得到过阻尼情况下()1v n 和()2v n 以及()1n ω和()2n ω随n 改变而变化的曲线。如下图所示: 图 1:步长参数0.3μ=过阻尼情况 图中曲线中的同心椭圆从内到外依次对应n=0,1,2,3……的情况,下同。

图 2:步长参数0.3μ=过阻尼情况 再让步长参数为1.0,得到欠阻尼情况下()1v n 和()2v n 以及()1n ω和()2n ω随n 改变而变化的曲线。如下图所示: 图 3:步长参数 1.0μ=欠阻尼情况

图 4:步长参数 1.0μ=欠阻尼情况 四 实验结果和分析 通过观察上述曲线,可得到如下结论: 1 最速下降法的瞬态特性对步长参数的变化是高度敏感的。而且当步长μ较小时,最速下降法的瞬态特性是过阻尼的,即连接点V (0),V (1),V (2)…所组成的轨迹沿着一条连续的路径;当步长μ达到或接近最大值max 2max λμ=时,最 速下降法的瞬态特性是欠阻尼的,即轨迹显现振荡现象。 2上面的实验验证了当max 2 0λμ< <时,根据式k mse k μλτ21,≈ 可得步长参 数μ越小,最速下降法中每一个自然模式的衰减速率越慢。且当max 2max λμ=时,出现欠阻尼现象,如果μ再大,则算法发散。 3 对于固定的()J n ,()()12,v n v n ????随n 变动的轨迹正交于()J n 固定时 ()()12,v n v n ????的轨迹,这也适用于()J n 固定时()()12,n n ωω????的轨迹。

数值分析与算法变步长梯形求积法计算定积分

变步长梯形求积法计算定积分 1.原理: 变步长求积法的主要思想是利用若干小梯形的面积代替原方程的积分,当精度达不到要求时,可以通过增加点数对已有的区间再次划分,达到所需精度时即可;其中由于新的式子中有原来n点中的部分项,故可以省略一些计算,符合了计算机计算存储的思想。 主要公式:T2n=T n/2+(h/2)*Σf(x k+; 2.C++语言实现方式: 通过每次的T n值和新增的函数值点计算T2n,再通过判断|T n-T2n|的大小来判断是否达到精度要求。 3.源程序如下: #include"" #include"" double f(double x)//预先输入的待积分函数 { double s; s=log(x*x); return(s); } double ffts(double a,double b,double eps) { int n,k; double fa,fb,h,t1,p,s,x,t; fa=f(a);

fb=f(b); n=1; h=b-a; t1=h*(fa+fb)/2; p=eps+1; while(p>=eps) { s=0; for(k=0;k<=n-1;k++) { x=a+(k+*h; s=s+f(x); } t=t1/2+h*s/2; p=fabs(t1-t); cout<<"步长n为:"<

自适应信号处理

自适应信号处理-唐正必马长芳科学出版社 赵春晖哈尔滨工程大学出版社 本书全面系统地阐述了自适应信号处理的理论及其应用,包括确定性信号与随机过程(平稳与非平稳信号)滤波检测理论,不用训练序列的本身自适应的盲信号处理理论,从一维到多维、线性到非线性、经典自适应到神经智能自适应等近代信号处理。它将信息论、时间序列分析、系统辨识、谱 估计理论、高阶谱理论、优化理论、进化计算,以及神经网络理论等学科知识综合而成一体。 本书共十章,内容有自适应滤波基本原理、自适应LMS滤波器、自适应RLS滤波器、自适应格型滤波器、自适应递归滤波器、自适应谱线增强与谱估计、自适应噪声干扰抵消器、自适应均衡器、自适应阵列处理与波束形成,以及自适应神经信息处理。对于盲信号处理的理论与方法,将分散在最后三章中论述。 本书取材新颖,内容丰富;叙述深入浅出,系统性强,概念清楚。它总结了自适应信号处理的最新成果,其中包括作者在该领域内所取得的科研成果,是一部理论联系实际的专业理论专著。可作为信息与通信、雷达、声纳、自动控制、生物医学工程等专业的研究生的教材或主要参考书,也可供广大科研人员阅读。 第1章绪论 1.1 自适应滤波的基本概念 1.2 自适应信号处理的发展过程 1.3 自适应信号处理的应用 第2章维纳滤波 2.1 问题的提出 2.2 离散形式维纳滤波器的解 2.3 离散形式维纳滤波器的性质 2.4 横向滤波器的维纳解 第3章最小均方自适应算法 3.1 最陡下降法 3.2 牛顿法 3.3 LMS算法 3.4 LMS牛顿算法 第4章改进型最小均方自适应算法 4.1 归一化LMS算法 4.2 块LMS算法 4.3 快速块LMS算法 第5章最小均方误差线性预测及自适应格型算法 5.1 最小均方误差线性预测 5.2 Lev ins on-Durbi n算法 5.3 格型滤波器 5.4 最小均方误差自适应格型算法 第6章线性最小二乘滤波 6.1 问题的提出 6.2 线性最小二乘滤波的正则方程 6.3 线性最小二乘滤波的性能 6.4 线性最小二乘滤波的向量空间法分析 第7章最小二乘横向滤波自适应算法 7.1 递归最小二乘算法 7.2 R LS算法的收敛性 7.3 R LS算法与LMS算法的比较

自适应信号处理课后题答案

自适应信号处理课后题答案 1.求下列R 的特征值设 (1)?? ?? ? ?????=4202630341R (2)?? ? ???-=2)3/exp(6)3/exp(632ππj j R 解:(1)令λ为R 的特征值,则 (2)令λ为R 的特征值: 0)d e t (=-I R λ 0)d e t (=-I R λ 即: 042 2630 34=---λ λ λ 即: 02) 3/exp(6)3/exp(63=---λ ππλ j j 于是R 1的三个特征值分别为: 于是R 2 的两个特征值为: 1451454321-=,+=,λλλ= 5,021==λλ 2.证明任何两个实数的单输入自适应线性组合器的特征向量矩阵均为: ?? ????-= 111121Q 证明:由已知条件知相关矩阵为R : ? ? ? ???=a b b a R 则R 的特征值为:b a b a -=+=21,λλ 当b a +=1λ时,??? ???--=-b b b b I R λ,则特征向量为:]1,1[11q x = 当b a -=2λ时,? ? ? ???=-b b b b I R λ,则特征向量为:]1,1[22-=q x 则特征向量为: ?? ? ???-=111121Q 3.如图3.1所示,若自适应系统的输入和期待响应分别为:

(1))6/2cos(],6/)1(2sin[),6/2sin(10k d k x k x k k k πππ=-== (2)6/)]5.1(2[]6/)2(2[]6)1(2[1)6/2(04,,2--+-=+==k j k k j k j k k j k e d e e x e x ππππ 试计算最佳权向量和最小均方误差输出,并说明在两种情况下的自适应系统有什么不同? 解:(1)由题中条件知: 5.0][2 0=k x E 5.0][2 1=k x E [] 25.010=* k k x x E []00=k k x d E 4/3][1-=k k x d E 于是输入相关矩阵为: ??????=5.025.025.05.0R ? ?????-=4/30P 则最优权为:?? ? ???-==* -1547.15774.01 P R W opt 最小均方误差为:3889.0][2 min -=-=opt T k W P d E ζ (2)由题中已知条件知: 4][2 0=k x E 6/26/22 12][ππj j k e e x E -++= 6/308][πj k k e x d E =* 6/6/144][ππj j k k e e x d E -*+= 6/46/21022][ππj j k k e e x x E --*+= 6/46 /21122][ππj j k k e e x x E +=* 于是输入相关矩阵为: ??????++++=---6/26/26/46 /26/46/2222224ππππππj j j j j j e e e e e e R ?? ????+=-6/6 /6 /3448πππj j j e e e P R 的逆不存在, 则最优权为: ??? ? ????-=j c c W o p t 3234 最小均方误差为:0][2 min =-=opt T k W P d E ζ

阵列信号处理中的DOA估计算法

阵列信号处理中的DOA估计算法 摘要:本文简要介绍了阵列信号处理的基本知识和其数学模型,并且对阵列信号处理中很重要的来波方向(DOA)估计方法进行了比较,主要包括古典谱估计方法、Capon最小方差法、多重信号分类(MUSIC)算法以及旋转不变因子空间(ESPRIT)算法。通过这些算法的介绍和比较,我们可以很方便地在不同的情况下选择不同的算法去对信号的来波方向进行估计。 关键词:阵列信号处理;来波方向(DOA);MUSIC;自相关矩阵;特征分解;ESPRIT DOA Estimation Algorithms in Array Signal Processing Abstract:In this paper, we have introduced the basic knowledge and data model of array signal processing and have compared many DOA estimation methods in array signal processing,which included classical spectrum estimation method、Capon minimum variance method、MUSIC method and ESPRIT method。Through the introduction and comparison of these algorithms,we can choose different algorithm to estimate the DOA of signal in different situation,conveniently。Key word s:array signal processing;DOA;MUSIC;self-correction matrix;eigendecomposition; ESPRIT 1.引言 近几十年来,阵列信号处理作为信号处理的一个重要分支,在声纳、雷达、通信以及医学诊断等领域得到了相当广泛的应用和发展。阵列信号处理是指在一定大小空间的不同位置去设置传感器,组成传感器阵列,利用传感器阵列去接收空间中的信号并且通过一定的方法对接收的信号进行处理。阵列信号处理的目的是为了增强有用的信号,抑制无用的干扰和噪声,并且从接收的信号中提取出有用信号的特征以及信号所包含的信息。与传统的单个定向传感相比,传感器阵列具有比较高的信号增益、灵活的波束控制、很高的空间分辨率以及极强的干扰抑制能力。阵列信号处理研究的主要问题包括[5]:空间谱估计——对空间信号波达方向进行超分辨估计;零点形成技术——使天线的零点对准干扰方向;波束形成技术——使阵列方向图的主瓣指向所需的方向。其研究的三个主要方向分别在不同的时期进行了不同的主要研究,这三个阶段分别是: 1、20世纪60年代主要集中在波束形成技术方面[1],如自适应相控天线、自适应波束操控天线和自适应聚束天线等,主要目的是使阵列方向图的主瓣指向所需要的方向。 2、20世纪70年代主要集中在零点形成技术方面[2],如自适应置零技术、自适应调零技术、自适应杂波抑制和自适应旁瓣相消等,可以提高信号输出的信噪比(SNR)。 3、20世纪80年代主要集中在空间谱估计方面[3],如最大似然谱估计、最大熵谱估计、子空间谱估计等,它是现代谱估计理论与自适应阵列技术结合的产物,主要是研究在阵列处理带宽内空间信号的波达方向的估计问题,这标志着阵列信号处理研究的重大变化。 信号的波达方向(DOA)估计是阵列信号处理领域的一个非常重要的研究内容。信号的DOA估计算法大多是一种极值搜索法,即首先形成一个包含待估计参数的函数(一般是一个伪谱函数),然后通过对该函数进行峰值搜索,得到的极值就是信号的波达方向。这些算法主要包括:1965年Bartlett基于波束形成的思想提出的DOA估计算法,但是该算法不能分辨出两个空间距离小于波束宽度的信号源。1968年Schweppe首先研究了虽大似然估计算法(ML),但是比较重要的还是后来Capon提出的高进度的ML,该算法对于服从高斯分布的信源估计可以达到克劳—拉美界,但是需要对接收阵列数据的自相关矩阵进行求了逆运算,运算量相当大。1979年Schmidt提出了多重信号分类法[4](Multiple Signal Classification,MUSIC)以及各种改进的MUSIC算法等,它们都需要进行特征值分解运算,可以得到比较高精度的参数估计,但是计算量太大。1985年Roy和Kailath提出了一种借助旋转不变技术的参数估计算法[6](Estimating Signal Via Rotational Invariance Techniques,ESPRIT),它是利用阵列流行的某些特性形成一个可以直接求解的函数,能够比较方便的得到所需要的估计参数。在此之后,人们以MUSIC和ESPRIT为基础,提出了各种各样的算法,例如最小范数法[7]、ROOT-MUSIC[8]、TLS-ESPRIT[9]等。这些不同的算法是基于不同的理论提出的,并且建立在不同的约束条件之下,所以其特性和适用对象也会不同。 2.数据模型 2.1平面波与阵列

二维铸造充型过程数值模拟的特征分数步长法

二维铸造充型过程数值模拟的特征分数步长法? 鲁统超1,葛亮2 1山东大学数学与系统科学学院, (250100) 2 山东大学数学与系统科学学院, (250100) E-mail :lutc@https://www.doczj.com/doc/a015089450.html, 摘 要:铸造充型过程的数学模型是包括连续性方程和动量方程的偏微分方程组。本文利用分数步长法将动量方程分裂成两部分,对第一个方程采用特征差分法进行处理,对第二个方程结合连续性方程进行处理后得到压力的 泊松方程,用迭代法进行求解,给出了收敛性分析和稳定性条件。 关键词:分数步长;特征差分;收敛性;迭代。 1. 引 言 铸造生产的实质就是直接将液态金属浇入铸型并在铸型中凝固和冷却,进而得到铸件。液态金属的充型过程是铸件形成的第一个阶段。许多铸造缺陷(如卷气、夹渣、浇不足、冷隔及砂眼等)都是在充型不利的情况下产生的。因此,了解并控制充型过程是获得优质铸件的重要条件。但是,由于充型过程非常复杂,长期以来人们对充型过程的把握和控制主要是建立在大量实验基础上的经验准则。随着计算机的发展,铸件充型过程数值模拟才得到广泛应用。 充型过程流场数值模拟的主控方程均为非线性方程。其计算使用有限差分或有限元等数值方法求解质量守恒方程(连续性方程)和动量守恒 方程即Navier-Stokes 方程,以得出流体运动规律。在以前的研究中,Chorin(1968)和Temam(1969)分别独立的提出投影法。1972年由Minnesota 大学的Patankar 与Spalding 提出了simple 算法,这是一个压力修正算法,在以后的研究中又有simplec 方法,Raithby 提出的simplex 方法, Sheng 等提出的simplet 算法。 本文中利用分数步长法的思想将动量方程分裂成两部分,对第一个方程采用特征差分法求解,对第二个方程结合连续性方程进行处理后得到压力的 泊松方程,我们用迭代法进行求解,给出了收敛性分析和稳定性条件。 2. 问题的数学模型 铸造充型过程的模型主要由连续性方程和动量方程组成。 (a) 流体的动量方程 1x u p V u g u t x μρρ ??=???++???r " (2.1) ? 本课题得到教育部高等学校博士点基金资助,编号:20030422049 - 1 -

自适应滤波及信号处理

自适应信号处理 自适应信号处理是信号与信息处理领域的重要分支和组成部分,自20世纪五六十年代出现以来,自适应信号处理的理论和技术受到了学术界和许多应用领域的普遍重视。它的研究的内容是以信号与信息自适应处理为主线,包括自适应滤波检测理论和自适应技术应用两大部分。 自适应滤波理论和技术是统计信号处理和非平稳随机信号处理的主要内容,它可以在无需先验知识的条件下,通过自学习适应或跟踪外部环境的非平稳随机变化,并最终逼近维纳滤波和卡尔曼滤波的最佳滤波性能。因而,自适应滤波器不但可以用来检测确定性信号,而且可以检测平稳的或非平稳的随机信号。自适应技术应用包括自适应谱线增强与谱估计方法、自适应噪声干扰抵消技术、自适应均衡技术、自适应阵列处理与波束形成以及自适应神经网络信号处理等内容。 自适应信号处理技术在通信、雷达、声纳、图像处理、地震勘探、工业技术和生物医学等领域有着极其广泛的应用。其中,通信技术的许多最新进展,都与自适应信号处理密切相关,尽管新的信号处理理论和方法层出不穷,但是自适应信号处理仍然以其算法简单、易于实现和无须统计先验知识等独特的优点,成为许多理论与工程实际问题的首选解决方案之一。近年来,随着超大规模集成电路技术和计算机技术的迅速发展,出现了许多性能优异的高速信号处理专用芯片和高性能的通用计算机,为信号处理,特别是自适应滤波器的发展和应用提供了重要的物质基础。另外,信号处理理论和应用的发展,也为自适应滤波理论的进一步发展提供了必要的理论基础。 本章主要介绍目前应用较为广泛的自适应滤波理论与技术,包括维纳滤波、LMS滤波和卡尔曼滤波及其应用。 2.2 维纳滤波 从连续的(或离散的)输入数据中滤除噪声和干扰以提取有用信息的过程称为滤波,而相应的装置称为滤波器。根据滤波器的输出是否为输入的线性函数,可将它分为线性滤波器和非线性滤波器两种。滤波器研究的一个基本课题就是:如何设计和制造最佳的或最优的滤波器。所谓最佳滤波器是指能够根据某一最佳准则进行滤波的滤波器。 20世纪40年代,维纳奠定了关于最佳滤波器研究的基础。即假定线性滤波器的输入为有用信号和噪声之和,两者均为广义平稳过程且知它们的二阶统计特性,维纳根据最小均方误差准则(滤波器的输出信号与需要信号之差的均方值最小),求得了最佳线性滤波器的参数,这种滤波器被称为维纳滤波器。在维纳研究的基础上,人们还根据最大输出信噪比准则、统计检测准则以及其他最佳准则求得的最佳线性滤波器。实际上,在一定条件下,这些最佳滤波器与维纳滤波器是等价的。因而,讨论线性滤波器时,一般均以维纳滤波器作为参考。 维纳滤波理论用于解决最小均方误差下的线性滤波问题。设接收到(或观测到)的信号为随机信号 (7-1) 其中s(t)是未知的实随机信号,n(t)是噪声。要设计的线性滤波器,其冲击响应为h(t, τ), 输入为x(t),输出为,即

自适应信号处理作业

1.自适应滤波如何运用到系统辨识? 自适应滤波理论和技术是统计信号处理和非平稳随机信号处理的主要内容, 它具有维纳滤波和卡尔曼滤波的最佳滤波性能, 但不需要先验知识的初始条件, 它是通过自学习来适应外部自然环境, 因而具有广泛的应用。自适应滤波器( Adaptive filter) 是自设计的,由于其依靠递归算法进行运算, 因此可在有关信号特征的完整知识不能得到的环境下, 圆满的完成滤波运算。由于稳定性问题和IIR 局部最优,所以, 自适应滤波器大多用FIR 来实现。在自适应滤波器应用中一个重要问题是使可调节滤波器参数最优的标准, 以及利用这种标准形成实际上可行的算法。最小均方( LMS, leastmean-square) 算法是现今应用最为广泛的一种线性自适应算法, 它不需要有关的相关函数和矩阵求逆运算, 是一种极为简单的算法. 最小均方误差(LMS,least mean square) 算法于1960年提出后, 因其具有计算量小、易于实现等优点而获得大量应用。典型的应用领域有系统辨识、信号处理和自适应控制等。LMS 算法的基本原理是基于估计梯度的最速下降法, 即沿着权值的梯度估值的负方向进行搜索,以期达到权值最优, 实现均方误差最小意义下的自适应滤波。 系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型,是现代控制理论中的一个分支。对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。系统辨识包括两个方面:结构辨识和参数估计。在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。 2.在系统辨识中,LMS,RLS算法的形式? 2.1 LMS 原理: 设通信系统输出信号为: y(k)=W T X(k) (1) 其中,该系统权向量为: W=[w1, w2,…, w n]T(2) 输入信号为 X(k)=[x(k), x(k-1), …,x(k-m+1)]T(3) 误差信号定义为 e(k)=d(k)-y(k)=d(k)-W T(k)X(k) (4) LMS算法的原理是用e2(k)来估计E(e2(k)),此时有 ▽(k)=-2e*(k)X(k) (5) 这样梯度法的叠代公式变为 W(k+1)=W(k)+2μe*(k)X (k) (6) 其中,*为共扼。 算法步骤: 基本的LMS算法如下: 步骤1 初始化:W(0)=0, 0<μ<1/λmax 步骤2 W(k+1)=W(k)+2μe(k)X*(k) 步骤3 判断是否收敛,如果不收敛,令k=k+1,回步骤2。 2.2 RLS 原理

统计与自适应信号处理

3.NLMS 和LMS 算法区别 LMS 是自适应算法中历史最久,运用最广,最为基础的算法。优点是计算复杂度低,容易实现,缺点是其收敛行为高度依赖于输入信号的功率谱密度分布。NLMS 可看作是不是一种特殊的LMS 算法,可通过设置随时间变化的可变收敛步长因子来控制输入功率变化对自适应算法收敛的影响,可以加快收敛速度,NLMS 将LMS 算法的权值更新方程中)()(n x n e μ项对信号能量)()(n x n x T 进行归一化得到的。 LMS 权值更新方程: )()()(2)()1(n x n e n n w n w μ-=+ NLMS 权值更新方程:)()()()(1 )()1(n x n e n x n x n w n w T +=+ 更常用的: )()()()(?)()1(n x n e n x n x n w n w T ψμ ++=+ NLMS 有更好的稳定性和更快的收敛速度。 4、自适应滤波与维纳滤波的区别。 维纳滤波是对输入信号进行整形,使输出信号与期望信号尽量近似,即误差信号尽可能小,其中误差信号是期望信号和输出信号的差值。当误差最小时,线性估计滤波器就达到最优,即维纳滤波器。但在实际情况中,往往不能预先得到这些认识,就不能预先得出维纳滤波器,这时就需要滤波器能够进行自我调节,同时利用输入信号和输出的误差信号来学习所需的统计特性,从而不断调节逼近并最终收敛到对应的维纳滤波器。自适应滤波器与前区别在于:自适应滤波器可看作滤波器系数可变的线性估计滤波器,它也是让输出信号对期望信号进行最优估计,维纳是滤波器系数固定,自适应滤波器系数是不断更新的,即根据误差信号逼近调节Wiener 滤波器。 5、LMS ,RLS 自适应滤波的算法。 LMS 算法: 1.设计参数 )(n x =n 时刻的输入数据矢量;y(n)=n 时刻的期望响应;n n c =)(时 刻的滤波器系数矢量;M=系数的数目=μ步长参数;∑=<<

信号处理 FFT算法

实验2 基2时域抽选的FFT 程序设计与调试 一、实验目的 掌握信号处理,尤其是数字信号处理的基本原理和方法。要求能通过实验熟练掌握基2时域抽选的快速傅立叶变换算法(FFT )的基本原理,了解二维及多维快速傅立叶变换算法。 二、实验原理 1.复数类型 对于FFT 算法涉及的复数运算,使用自定义的COMPLEX 来定义复数类型,其使用方法与常规类型(如int,float,double )相似。 typedef struct { float real, imag; } COMPLEX; 2.FFT 基本原理 FFT 改进了DFT 的算法,减少了运算量,主要是利用了旋转因子W 的两个性质: (a )W 的周期性:W = W (b) W 的对称性:W =-W FFT 把N 点DFT 运算分解为两组N/2点的DFT 运算,然后求和: )()()(21k X W k X k X k N += 1,,1,0 ),()()2 (2 21-=-=+ N k N k k X W k X N k X 其中, ∑∑∑∑-=-=-=-=+== = = 1 1 2 21 1 112 2 2 2 2 2 2 2 )12()()()2()()(N N N N N N N N r rk r rk r rk r rk W r x W r x k X W r x W r x k X 在计算X 1(k)与X 2(k)时,仍利用上述公式,把它们看成是新的X(k)。如此递归下去,便是FFT 算法。 3.蝶形运算 从基2时域抽选FFT 运算流图可知: ① 蝶形两节点的距离为2m-1,其中,m 表示第m 列,且m =1,… ,L 。 例如N=8=23, 第一级(列)距离为21-1=1, 第二级(列)距离为22-1=2, 第三级(列)距离为23-1=4。 ② 考虑蝶形运算两节点的距离为2m-1,蝶形运算可表为: X m (k)=X m-1(k)+X m-1(k+2m-1) W N r X m (k+2m-1)= X m-1(k)-X m-1(k+2m-1) W N r 由于N 为已知,所以将r 的值确定即可确定W N r 。为此,令k=(n 2n 1n 0)2 ,再将k 左移(L-m)位,右边位置补零,就可得到(r)2 的值,即(r)2 =(k)22L-m 。 例如 N=8=23

自适应信号处理 沈福民 答案

1.求下列R 的特征值设 (1)?? ?? ? ?????=4202630341R (2)?? ? ???-=2)3/exp(6)3/exp(632ππj j R 解:(1)令λ为R 的特征值,则 (2)令λ为R 的特征值: 0)d e t (=-I R λ 0)d e t (=-I R λ 即: 042 2630 34=---λ λ λ 即: 02) 3/exp(6)3/exp(63=---λ ππλ j j 于是R 1的三个特征值分别为: 于是R 2 的两个特征值为: 1451454321-=,+=,λλλ= 5,021==λλ 2.证明任何两个实数的单输入自适应线性组合器的特征向量矩阵均为: ??? ???-=111121Q 证明:由已知条件知相关矩阵为R : ?? ? ???=a b b a R 则R 的特征值为:b a b a -=+=21,λλ 当b a +=1λ时,? ?? ???--=-b b b b I R λ,则特征向量为:]1,1[11q x = 当b a -=2λ时,?? ? ???=-b b b b I R λ,则特征向量为:]1,1[22-=q x 则特征向量为: ?? ????-= 111121Q 3.如图3.1所示,若自适应系统的输入和期待响应分别为: (1))6/2cos(],6/)1(2sin[),6/2sin(10k d k x k x k k k πππ=-== (2)6/)]5.1(2[]6/)2(2[]6)1(2[1)6/2(04,,2--+-=+==k j k k j k j k k j k e d e e x e x ππππ

哈工大-自适应信号处理_RLS自适应平衡器计算机实验

Harbin Institute of Technology RLS自适应平衡器计算机实验 课程名称:自适应信号处理 院系:电子与信息工程学院 姓名: 学号: 授课教师:邹斌 哈尔滨工业大学

目录 一. 实验目的:............................................................................................................. - 1 - 二. 实验内容:............................................................................................................. - 1 - 三. 程序框图................................................................................................................. - 3 - 四. 实验结果及分析..................................................................................................... - 4 - 4.1 高信噪比(信噪比为30dB)情况下特征值扩散度的影响 ....................... - 4 - 4.2 信噪比(信噪比为10dB)情况下特征值扩散度的影响 ........................... - 5 - 五. 实验结论................................................................................................................. - 5 -

wolf-powell算法搜索步长

%利用wolf-powell线性搜索步长 function alpha1=wolfpowell(f,x,x0,d) g=jacobian(f,x); %求函数f的梯度 sigma1=0.25; %给定常数1 sigma2=0.7; %给定常数2 beta1=5; %步长初始值 theta1=0.5; %步长变化比例1 theta2=0.7; %步长变化比例2 %求步长alpha1 if subs(f,x,x0+d)<=subs(f,x,x0)+sigma1*subs(g,x,x0)*d'&&subs(g,x,x0+d)*d'>=sigm a2*subs(g,x,x0)*d' alpha1=1; %满足第一个条件的最大步长 else alpha1=beta1; while subs(f,x,x0+alpha1*d)>subs(f,x,x0)+sigma1*alpha1*subs(g,x,x0)*d' alpha1=theta1*alpha1; end while subs(f,x,x0+alpha1/theta1*d)<=subs(f,x,x0)+sigma1*alpha1/theta1*subs(g,x,x0)*d' alpha1=alpha1/theta1; end end %使步长满足第二个条件 while subs(g,x,x0+alpha1*d)*d'subs(f,x,x0)+sigma1*alpha2*subs(g,x,x0)*d' i=i+1;

相关主题
文本预览
相关文档 最新文档