当前位置:文档之家› 信号时域采样 频谱分析(matlab)

信号时域采样 频谱分析(matlab)

信号时域采样 频谱分析(matlab)
信号时域采样 频谱分析(matlab)

基于matlab 的时域信号采样及频谱分析

一:主要设计方法与步骤:

1. 画出连续时间信号0sin()()t u t Ω-at x(t)=Ae 的时域波形及其幅频特性曲线,其中,幅度

因子444.128A =,衰减因子222.144a =,模拟角频率0222.144Ω=;

2. 对信号()x t 进行采样,得到采样序列0()sin()()ant x n Ae nT u n -=Ω,050n ≤≤,其中,

1

s

T f =

为采样间隔,通过改变采样频率可改变T ,画出采样频率分别为200H z ,500Hz ,1000Hz 时的采样序列波形;

3. 对不同采样频率下的采样序列进行频谱分析,绘制其幅频和相频曲线,对各频率下采样

序列()x n 和()x t 的幅频曲线有无差别,如有差别说明原因;

4. 设系统单位抽样响应为5()()h n R n =,求解当输入为()x n 时的系统响应()y n ,画出

()x n ,()h n ,()y n 的时域波形及幅频特性曲线,并利用结果验证卷积定理的正确性(此

内容将参数设置为444.128A =,222.144a =,0222.144W =,1000fs =); 5. 用FFT 对信号()x n ,()h n ,()y n 进行频谱分析,观察与4中结果有无差别; 6. 由采样序列()x n 恢复出连续时间信号1()x t ,画出其时域波形,对比1()x t 与原来的连续

时间信号()x t 的时域波形,计算并记录两者最大误差。 二:详细程序及仿真波形分析

1.连续时间信号()x t 及其200/500/1000Hz Hz Hz 频率抽样信号函数()x n % 绘制信号x(n)的幅度谱和相位谱 clc

clear all close all

n=0:50 % 定义序列的长度是50

A=input('请入A 的值A:') % 设置信号的有关参数 a=input('请入a 的值a:')

w0=input('请入w0的值w0:') T1=0.005 T2=0.002 T3=0.001 T0=0.001

x=A*exp(-a*n*T0).*sin(w0*n*T0) y1=A*exp(-a*n*T1).*sin(w0*n*T1) y2=A*exp(-a*n*T2).*sin(w0*n*T2) y3=A*exp(-a*n*T3).*sin(w0*n*T3) close all

subplot(2,1,1)

stem(n,x) % 绘制x(n)的图形 grid on

title('离散时间信号') subplot(2,1,2) plot(n,x) grid on

title('连续时间信号')

05101520253035404550

离散时间信号

5

10

15

20

25

30

35

40

45

50

-50050100150连续时间信号

figure(2)

subplot(3,1,1) stem(n,y1) grid on

title('200Hz 理想采样信号序列') subplot(3,1,2) stem(n,y2) grid on

title('500Hz 连续时间信号') subplot(3,1,3) stem(n,y3)

grid on

title('1000Hz 连续时间信号')

5

10

15

20

25

30

35

40

45

50

200Hz 理想采样信号序列

051015202530354045

50

500Hz 连续时间信号

051015202530354045

50

1000Hz 连续时间信号

k=-25:25

W=(pi/12.5)*k w=W/pi

Y1=y1*exp(-j*pi/12.5).^(n'*k) figure (3) subplot(2,1,1) plot(w,abs(Y1)) grid

xlabel('w') ylabel('幅度')

title('200Hz 理想采样信号序列的幅度谱') axis([-2 2 0 1000]) subplot(2,1,2) plot(w,angle(Y1)) grid

xlabel('w') ylabel('幅角')

title('200Hz 理想采样信号序列的相位谱')

-2

-1.5-1

-0.500.51 1.52

0500

1000

w

幅度

-2.5

-2

-1.5

-1

-0.5

0.5

1

1.5

2

-4-202

4w

幅角

200Hz 理想采样信号序列的相位谱

Y2=y2*(exp(-j*pi/12.5)).^(n'*k) figure (4) subplot(2,1,1) plot(w,abs(Y2)) grid

xlabel('w') ylabel('幅度')

title('500Hz 理想采样信号序列的幅度谱') axis([-2 2 0 1000]) subplot(2,1,2) plot(w,angle(Y2)) grid

xlabel('w') ylabel('幅角')

title('500Hz 理想采样信号序列的相位谱')

-2

-1.5-1

-0.500.51 1.52

0500

1000

w

幅度

-2.5

-2

-1.5

-1

-0.5

0.5

1

1.5

2

-4-202

4w

幅角

500Hz 理想采样信号序列的相位谱

Y3=y3*(exp(-j*pi/12.5)).^(n'*k) figure (5) subplot(2,1,1) plot(w,abs(Y3)) grid

xlabel('w') ylabel('幅度')

title('1000Hz 理想采样信号序列的幅度谱') axis([-2 2 0 1000]) subplot(2,1,2) plot(w,angle(Y3)) grid

xlabel('w') ylabel('幅角')

title('1000Hz 理想采样信号序列的相位谱')

-2

-1.5

-1-0.500.51 1.52

0500

1000

w

幅度

-2.5

-2

-1.5

-1

-0.5

0.5

1

1.5

2

-4-202

4w

幅角

1000Hz 理想采样信号序列的相位谱

分析:采样频率为1000Hz 时没有失真,500Hz 时有横线,产生失真,200Hz 时横线加长,失真加大。说明采样频率越大,失真越小。

2.设系统单位抽样响应5h()()n R n =,求解当输入为()x n 时的系统响应()y n ,画出()x n ,

()h n ,()y n 的时域波形及幅频特性曲线,并利用结果验证卷积定理的正确性(此内容将参

数设置为444.128A =,222.144a =,0222.144W =,1000fs =)。 clc clear all close all

n=1:50 % 定义序列的长度是50

hb=zeros(1,50) % 注意:matlab 中数组下标从1开始 hb(1)=1 hb(2)=1 hb(3)=1 hb(4)=1 hb(5)=1 close all

subplot(3,1,1) stem(hb)

title('系统hb[n]')

m=1:50 % 设定序列和长度值 T=1 % 设定序列的采样率

A=1 a=0.4 T=1

w0=2.0734

x=A*exp(-a*m*T).*sin(w0*m*T) subplot(3,1,2) stem(x)

title('输入序列x[n]') y=conv(x,hb) subplot(3,1,3) stem(y)

title('输出信号y[n]')

00.51系统hb[n]

05101520253035404550

-101输入序列x[n]

0102030405060708090100

-1

1输出信号y[n]

figure (2) subplot(3,1,1) plot(n,hb) grid on

title('矩形序列的时域波形') subplot(3,1,2) plot(x) grid on

title('输入信号x[n]的时域波形') subplot(3,1,3) plot(y) grid on

title('输出信号y[n]的时域波形')

05101520253035404550

00.5

1矩形序列的时域波形

05101520253035404550

-10

1输入信号x[n]的时域波形

0102030405060708090100

-1

1输出信号y[n]的时域波形

分析:有数字信号处理中经常要进行卷积运算,conv 可以用来计算两个有限长序列的卷积,该函数计算的两个序列都是从0n 开始。

3.用FFT 对信号()x n ,()h n ,()y n 进行谱分析,观察与4中结果有无差别。 clc

clear all close all n=1:50

hb=zeros(1,50) hb(1)=1 hb(2)=1 hb(3)=1 hb(4)=1 hb(5)=1 close all

subplot(3,1,1) m=1:50 T=1 A=1 a=0.4 T=1

w0=2.0734

x=A*exp(-a*m*T).*sin(w0*m*T)

y=conv(x,hb) subplot(3,1,1) plot(n,abs(fft(hb))) title('h(n)的FFT') subplot(3,1,2) plot(abs(fft(x))) title('x(n)的FFT') subplot(3,1,3) plot(abs(fft(y))) title('y(n)的FFT')

5

10

15

20

2530

35

40

45

50

024

6h(n)的FFT

05101520253035404550

01

2x(n)的FFT

0102030405060708090100

01

2y(n)的FFT

分析:matlab 中,计算矢量x 的DFT 及其逆变换的函数分别为fft 和ifft ,这两个函数采用了混合算法,当N 为质数时,采用的是原始的DFT 算法。如果x 为一个矩阵时,则调用后计算出每列的N 点FFT 。

4.由采样序列()x n 恢复出连续时间信号1()x t ,画出其时域波形,对比1()x t 与原连续时间信号()x t 的时域波形,计算并记录两者最大误差。 % 设置信号的有关参数 clc clear all close all

A=input('please input the A:') a=input('please input the a:') W0=input('please input the W0:')

fs=input('please input the fs:')

n=0:49

T=1/fs

t0=10/a

Dt=1/(5*a)

t=0:Dt:t0

xa=A*exp(-a*t).*sin(W0*t)

K1=50

k1=0:1:K1

W1max=2*pi*500

W1=W1max*k1/K1

w1=W1/pi

Xa=xa*exp(-j*t'*W1)

x=A*exp(-a*n*T).*sin(W0*n*T) figure (1)

subplot(4,1,1)

plot(t*1000,xa)

title('连续时间信号x(t)')

axis([0 t0*1000 -50 150])

grid

xlabel('t:毫秒')

ylabel('x(t)')

subplot(4,1,2)

plot(w1,abs(Xa))

title('连续时间信号频谱Xa(w1)') axis([0 1000 0 1200])

subplot(4,1,3)

stem(x)

grid

xlabel('n')

ylabel('x(n)')

title('采样序列x(n)')

axis([0 50 -15 160])

x1=spline(n*T,x,t)

grid

xlabel('t:毫秒')

ylabel('x(t)')

subplot(4,1,4)

plot(t*1000,x1)

axis([0 t0*1000 0 200])

title('由x(n)恢复x1(t)')

grid

xlabel('t:毫秒')

ylabel('x1(t)')

axis([0 45 -20 160])

0510

15202530354045

-50

050100

150连续时间信号x(t)

t:毫秒

x (t )

100

200

300

400500600700

800

900

1000

0500

1000连续时间信号频谱X a(w1)

50100

150t:毫秒

x (t )采样序列x(n)

5

10

15

202530

35

40

45

50100150由x(n)恢复x1(t)

t:毫秒

x 1(t )

error=max(abs(x1-xa)) k2=-25:25

W2=(pi/12.5)*k2 w2=W2/pi

X=x*(exp(-j*pi/12.5)).^(n'*k2) % 序列的付里叶变换函数 figure (2) subplot(2,1,1) plot(w2,abs(X)) grid

xlabel('w2') ylabel('幅度')

title('输入信号幅度谱') axis([-2 2 0 1000]) subplot(2,1,2) plot(w2,angle(X)) grid

xlabel('w2') ylabel('幅角')

title('输入信号相位谱') axis([-2 2 -5 5])

-2

-1.5-1-0.5

00.51 1.52

0500

1000

w2

幅度

输入信号幅度谱

-2

-1.5-1-0.5

00.51 1.52

-50

5

w2

幅角

输入信号相位谱

分析:恢复曲线与原信号曲线相同,说明恢复误差很小,如果采样频率减小,误差增大,采样频率增大,则恢复误差更小。采样频率就遵循乃奎斯特定理。

时域采样与频域采样 实验报告

实验二 时域采样与频域采样 学校:西南大学 班级:通信工程班 一、实验目的 时域采样理论与频域采样理论就是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理 时域采样定理的要点就是采样频率s Ω必须大于等于模拟信号最高频率的两倍以上, 才 能使采样信号的频谱不产生频谱混叠。 频域采样定理的要点就是: a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到 2()() , 0,1,2,,1j N k N X k X e k N ωπω===- 则N 点IDFT[()N X k ]得到的序列就就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为 ()IDFT[()][ ()]()N N N N i x n X k x n iN R n ∞=-∞==+∑ b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就就是原序列x(n),即()N x n =x(n)。如果N>M,()N x n 比原序列尾部多N-M 个零点;如果N

连续时间信号的抽样及频谱分析-时域抽样信号的频谱--信号与系统课设

1 引言 随着科学技术的迅猛发展,电子设备和技术向集成化、数字化和高速化方向发展,而在学校特别是大学中,要想紧跟技术的发展,就要不断更新教学和实验设备。传统仪器下的高校实验教学,已严重滞后于信息时代和工程实际的需要。仪器设备很大部分陈 旧,而先进的数字仪器(如数字存储示波器)价格昂贵不可能大量采购,同时其功能较为单一,与此相对应的是大学学科分类越来越细,每一专业都需要专用的测量仪器,因此仪器设备不能实现资源共享,造成了浪费。虚拟仪器正是解决这一矛盾的最佳方案。基于PC 平台的虚拟仪器,可以充分利用学校的微机资源,完成多种仪器功能,可以组合成功能强大的专用测试系统,还可以通过软件进行升级。在通用计算机平台上,根据测试任务的需要来定义和设计仪器的测试功能,充分利用计算机来实现和扩展传统仪器功能,开发结构简单、操作方便、费用低的虚拟实验仪器,包括数字示波器、频谱分析仪、函数发生器等,既可以减少实验设备资金的投入,又为学生做创新性实验、掌握现代仪器技术提供了条件。 信号的时域分析主要是测量测试信号经滤波处理后的特征值,这些特征值以一个数值表示信号的某些时域特征,是对测试信号最简单直观的时域描述。将测试信号采集到计算机后,在测试VI 中进行信号特征值处理,并在测试VI 前面板上直观地表示出信号的特征值,可以给测试VI 的使用者提供一个了解测试信号变化的快速途径。信号的特征值分为幅值特征值、时间特征值和相位特征值。 尽管测量时采集到的信号是一个时域波形,但是由于时域分析工具较少,所以往往把问题转换到频域来处理。信号的频域分析就是根据信号的频域描述来估计和分析信号的组成和特征量。频域分析包括频谱分析、功率谱分析、相干函数分析以及频率响应函数分析。 信号在时域被抽样后,他的频谱X(j )是连续信号频谱X(j )的形状以抽样频率为间隔周期重复而得到,在重复过程中幅度被p(t)的傅里叶级数Pn加权。因为Pn只是n的函数,所以X(j )在重复的过程中不会使其形状发生变化。假定信号x(t)的频谱限制在- m~+ m的范围内, 若以间隔Ts对xa(t)进行抽样,可知抽样信号X^(t)的频谱X^(j )是以s为周期重复。显然,若在抽样的过程中s<2 m,则X^(j )将发生频谱混叠现象,只有在抽样的过程中满足s>=2 m条件,X^(j )才不会产生频谱的混叠,接收端完全可以由x^(t)恢复原连续信号xa(t),这就是低通信号抽样定理的核心内容。

时域抽样与频域抽样

实验三时域抽样与频域抽样 一、实验目的 1.加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理(奈奎斯特采样定理)的基本内容。 2.加深对时域取样后信号频谱变化的认识。掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。 3.加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。 二、实验原理 1.时域抽样。 时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:信号抽样频率f s 大于等于2倍的信号最高频率f m,即f s≥ 2f m。时域抽样先把连续信号x(t)变成适合数字系统处理的离散信号x[k];然后根据抽样后的离散信号x[k]恢复原始连续时间信号x(t)完成信号重建。信号时域抽样(离散化)导致信号频谱的周期化,因此需要足够的抽样频率保证各周期之间不发生混叠;否则频谱的混叠将会造成信号失真,使原始时域信号无法准确恢复。 2.频域抽样。 非周期离散信号的频谱是连续的周期谱,计算机在分析离散信号的频谱时,必须将其连续频谱离散化。频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件:频域采样点数N 大于等于序列长度M,即N≥M。频域抽样把非周期离散信号x(n)的连续谱X(e jω)变成适合数字系统处理的离散谱X(k);要求可由频域采样序列X(k)变换到时域后能够不失真地恢复原信号x(n)。

三、实验内容 1.已知模拟信号,分别以T s =0.01s 、0.05s 、0.1s 的采样间隔采样得到x (n )。 (1)当T=0.01s 时,采样得到x(n),所用程序为: %产生连续信号x (t ) t=0:0.001:1; x=sin(20*pi*t); subplot(4,1,1) plot(t,x,'r') hold on title('原信号及抽样信号') %信号最高频率fm 为10 Hz %按100 Hz 抽样得到序列 fs=100; n=0:1/fs:1; y=sin(20*pi*n); subplot(4,1,2) stem(n,y) 对应的图形为: ()sin(20),01a x t t t =π≤≤

实验3-采样的时频域分析

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号:2010103080 指导教师: 一、实验室名称:数字信号处理实验室 二、实验项目名称:采样的时域及频域分析 三、实验原理: 1、采样的概念:采样是将连续信号变化为离散信号的过程。 1. A 、理想采样:即将被采样信号与周期脉冲信号相乘 B 、实际采样:将被采样信号与周期门信号相乘,当周期门信号的宽度很小,可近似为周期脉冲串。 根据傅里叶变换性质 00 0()() ()() ??()()()()()()(()) FT FT a a T n n FT a a T a T a a n n x t X j T j x t x t T x nT t nT X j X j n ωδωδδδω=+∞ =+∞=-∞ =-∞ ←?→Ω←?→Ω==-←?→Ω=Ω-Ω∑ ∑ 式中T 代表采样间隔,01T Ω= ) (t T δ^ ()T p t ^)t

由上式可知:采样后信号的频谱是原信号频谱以0Ω为周期的搬移叠加 结论:时域离散化,频域周期化;频谱周期化可能造成频谱混迭。 C 、低通采样和Nyquist 采样定理 设()()a a x t X j ?Ω且()0,2a M M X j f πΩ=Ω>Ω=当, 即为带限信号。则当采样频率满足2/22s M M f f π≥Ω=时,可以从采样后的 ^ ()()()a a s s n x t x n T t n T δ∞ =-∞ = -∑ 信号无失真地恢复()a x t 。称2M f 为奈奎斯特频率, 12 N M T f =为奈奎斯特间隔。 注意: 实际应用中,被采信号的频谱是未知的,可以在ADC 前加一个滤波器(防混迭滤波器)。 2、低通采样中的临界采样、欠采样、过采样的时域及频域变化情况。 低通采样中的临界采样是指在低通采样时采样频率2s M f f = 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≤ 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≥ 设一带限信号的频谱如下: )() a G j Ω0 m -ΩΩ m Ω

对正弦信号的采样频谱分析.doc

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计 课程名称:课程设计2 设计题目:对正弦信号的抽样频谱分析院系:电子与信息工程学院 班级:0805203 设计者:褚天琦 学号:1080520314 指导教师:郑薇 设计时间:2011-10-15 哈尔滨工业大学

一、题目要求: 给定采样频率fs,两个正弦信号相加,两信号幅度不同、频率不同。要求给定正弦信号频率的选择与采样频率成整数关系和非整数关系两种情况,信号持续时间选择多种情况分别进行频谱分析。 二、题目原理与分析: 本题目要对正弦信号进行抽样,并使用fft对采样信号进行频谱分析。因此首先对连续正弦信号进行离散处理。实际操作中通过对连续信号间隔相同的抽样周期取值来达到离散化的目的。根据抽样定理,如果信号带宽小于奈奎斯特频率(即采样频率的二分之一),那么此时这些离散的采样点能够完全表示原信号。高于或处于奈奎斯特频率的频率分量会导致混叠现象。设抽样周期为TS(抽样角频率为ωS),则 可见抽样后的频谱是原信号频谱的周期性重复,当信号带宽小于奈奎斯特频率的二分之一时不会产生频谱混叠现象。 因此,我们对采样频率的选择采取fs>2fo,fs=2fo,fs<2fo三种情况进行分析。对信号采样后,使用fft函数对其进行频谱分析。为了使频谱图像更加清楚,更能准确反映实际情况并接近理想情况,我们采用512点fft。取512点fft不仅可以加快计算速度,而且可以使频谱图更加精确。若取的点数较少,则会造成频谱较大的失真。 三、实验程序: 本实验采用matlab编写程序,实验中取原信号为 ft=sin(2πfXt)+2sin(10πfXt),取频率f=1kHz,实验程序如下: f=1000;fs=20000;Um=1; N=512;T=1/fs; t=0:1/fs:0.01; ft=Um*sin(2*pi*f*t)+2*Um*sin(10*pi*f*t); subplot(3,1,1); plot(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft'); title('抽样信号的连续形式'); subplot(3,1,2); stem(t,ft);grid on; axis([0 0.01 1.1*min(ft) 1.1*max(ft)]); xlabel('t'),ylabel('ft');

实验报告:时域采样与频域采样

实验二:时域采样与频域采样1、时域采样理论的验证 (1)程序如下: Fs=1000;Tp=64/1000; A=444.128; a=50*2^0.5; w=50*2^0.5; n=0:63; T=1/Fs; x=A*exp(-1*a*n*T).*sin(w*n*T); w=0:0.1:4*pi; [X,w]=freqz(x,1,w); subplot(3,1,1);plot(w/pi,abs(X)); Fs=300;Tp=64/1000; A=444.128; a=50*2^0.5; w=50*2^0.5; n=0:19.2; T=1/Fs; x=A*exp(-1*a*n*T).*sin(w*n*T); w=0:0.1:4*pi; [X,w]=freqz(x,1,w); subplot(3,1,2);plot(w/pi,abs(X)); Fs=200; p=64/1000; A=444.128; a=50*2^0.5; w=50*2^0.5; n=0:12.8; T=1/Fs; x=A*exp(-1*a*n*T).*sin(w*n*T); w=0:0.1:4*pi; [X,w]=freqz(x,1,w); subplot(3,1,3);plot(w/pi,abs(X)) (2)运行结果如下: 2频域采样理论的验证(1)程序如下:

M=26;N=32;n=0:1:M; xa=0:M/2;xb=ceil(M/2)-1:-1:0; x=[xa,xb]; w=0:2*pi/1024:2*pi; X=freqz(x,1,w); subplot(321); plot(w/pi,abs(X)); subplot(322); n=0:26; stem(n,x); m=floor(length(X)/16) n1=1:16; X1=X(m*n1-63) subplot(323); n1=0:15 stem(n1,abs(X1)) x16=ifft(X1,16) subplot(324); stem(n1,x16) m=floor(length(X)/32) n2=1:32; X2=X(m*n2-31) subplot(325); n2=0:31 stem(n2,abs(X2)) x32=ifft(X2,32) subplot(326); stem(n2,x32); (2)运行结果如下:

数字信号处理实验二-时域采样和频域采样

实验二-时域采样和频域采样 一、实验目的 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理及方法 1、时域采样定理的要点: a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓 b)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 2、频域采样定理的要点: a)对信号x(n)的频谱函数X(ej ω)在[0,2π]上等间隔采样N 点 则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列。 三、实验内容及步骤 1、时域采样理论的验证 程序: clear;clc A=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi; Tp=50/1000;F1=1000;F2=300;F3=200; T1=1/F1;T2=1/F2;T3=1/F3; n1=0:Tp*F1-1;n2=0:Tp*F2-1;n3=0:Tp*F3-1; x1=A*exp(-a*n1*T1).*sin(w0*n1*T1); x2=A*exp(-a*n2*T2).*sin(w0*n2*T2); x3=A*exp(-a*n3*T3).*sin(w0*n3*T3); f1=fft(x1,length(n1)); f2=fft(x2,length(n2)); % f3=fft(x3,length(n3)); % k1=0:length(f1)-1; fk1=k1/Tp; %

(完整版)实验一采样率对信号频谱的影响

实验一 采样率对信号频谱的影响 1.实验目的 (1)理解采样定理; (2)掌握采样频率确定方法; (3)理解频谱的概念; (4)理解三种频率之间的关系。 2.实验原理 理想采样过程是连续信号x a (t )与冲激函数串M (t )的乘积的过程 ∑∞ -∞=-= k s kT t t M )()(δ (7-13) )()()(?t M t x t x a a = (7-14) 式中T s 为采样间隔。因此,理想采样过程可以看作是脉冲调制过程,调制信号是连续信号x a (t ),载波信号是冲激函数串M (t )。显然 )()()()()(?s k s a k s a a kT t kT x kT t t x t x -=-=∑∑∞-∞=∞-∞=δδ (7-15) 所以,)(?t x a 实际上是x a (t )在离散时间kT s 上的取值的集合,即)(?s a kT x 。 对信号采样我们最关心的问题是,信号经过采样后是否会丢失信息,或者说能否不失真 地恢复原来的模拟信号。下面从频域出发,根据理想采样信号的频谱)(?Ωj X a 和原来模拟信号的频谱)(Ωj X 之间的关系,来讨论采样不失真的条件 ∑∞-∞=Ω-Ω=Ωk s s a kj j X T j X )(1)(? (7-16) 上式表明,一个连续信号经过理想采样后,其频谱将以采样频率Ωs =2π/T s 为间隔周期延拓,其频谱的幅度与原模拟信号频谱的幅度相差一个常数因子1/T s 。只要各延拓分量与原频谱分量之间不发生频率上的交叠,则可以完全恢复原来的模拟信号。根据式(7-16)可知,要保证各延拓分量与原频谱分量之间不发生频率上的交叠,则必须满足Ωs ≥2Ω。这就是奈奎斯特采样定理:要想连续信号采样后能够不失真地还原原信号,采样频率必须大于或等于被采样信号最高频率的两倍 h s Ω≥Ω2,或者h s f f 2≥,或者2 h s T T ≤ (7-17) 即对于最高频率的信号一个周期内至少要采样两点,式中Ωh 、f s 、T h 分别为被采样模拟信号的最高角频率、频率和最小周期。 在对正弦信号采样时,采样频率要大于这一最低的采样频率,或小于这一最大的采样间

实验二时域采样与频域采样

实验二:时域采样与频域采样 一 实验目的 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用 二 实验原理 1 时域采样定理 对模拟信号()a x t 以T 进行时域等间隔采样,形成的采样信号的频谱?()a X j W 会以采样角频率2()s s T p W W =为周期进行周期延拓,公式为: 1??()[()]()a a a s n X j FT x t X j jn T +?=-? W==W -W ? 利用计算机计算上式并不容易,下面导出另外一个公式。 理想采样信号?()a x t 和模拟信号()a x t 之间的关系为: ?()()()a a n x t x t t nT d +? =-?=-? 对上式进行傅里叶变换,得到: ?()[()()()()j t j t a a a n n X j x t t nT e dt x t t nT e dt d d +??+??-W -W -??=-?-?W=-=-蝌邋 在上式的积分号内只有当t nT =时,才有非零值,因此: ?()()jn T a a n X j x nT e +?-W =-?W=? 上式中,在数值上()()a x nT x n =,再将T w =W 代入,得到: ?()()() jn j a a T T n X j x n e X e w w w w +?-=W =W =-?W==?

上式说明采样信号的傅里叶变换可用相应序列的傅里叶变换得到,只要将自变量ω用T Ω代替即可。 2 频域采样定理 对信号()x n 的频谱函数()j X e ω在[0,2π]上等间隔采样N 点,得到 2()()j k N X k X e w p w == 0,1,2,,1k N =-L 则有: ()[()][()]()N N N i x n IDFT X k x n iN R n +?=-? ==+? 即N 点[()]IDFT X k 得到的序列就是原序列()x n 以N 为周期进行周期延拓后的 主值序列, 因此,频率域采样要使时域不发生混叠,则频域采样点数N 必须大于等于时域离散信号的长度M (即N M 3)。在满足频率域采样定理的条件下,()N x n 就是原序列()x n 。如果N M >,则()N x n 比原序列()x n 尾部多N M -个零点,反之,时域发生混叠,()N x n 与()x n 不等。 对比时域采样定理与频域采样定理,可以得到这样的结论:两个定理具有对偶性,即“时域采样,频谱周期延拓;频域采样,时域信号周期延拓”。在数字信号处理中,都必须服从这二个定理。 三 实验内容 1. 时域采样实验: %时域采样实验 A=444.128;a=50*sqrt(2)*pi;w0=50*sqrt(2)*pi; Tp=64/1000;F1=1000;F2=300;F3=200; %观察时间,Tp=64ms T1=1/F1;T2=1/F2;T3=1/F3; %不同的采样频率

时域采样与频域采样

实验二:时域采样与频域采样 一、实验目的: 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理与方法: 1、时域采样定理的要点: 1)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱 )(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。公式为: )](?[)(?t x FT j X a a =Ω )(1∑∞ -∞ =Ω-Ω=n s a jn j X T 2)采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。 利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 理想采样信号)(?t x a 和模拟信号)(t x a 之间的关系为 ∑∞ -∞=-=n a a nT t t x t x )()()(?δ 对上式进行傅立叶变换,得到: dt e nT t t x j X t j n a a Ω-∞∞ -∞ -∞=?∑-=Ω])()([)(?δ

dt e nT t t x t j n a Ω-∞ -∞ =∞ ∞ -∑ ? -)()( δ= 在上式的积分号只有当nT t =时,才有非零值,因此 ∑∞ -∞ =Ω-=Ωn nT j a a e nT x j X )()(? 上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到: ∑∞ -∞ =-=Ωn n j a e n x j X ω)()(? 上式的右边就是序列的傅立叶变换)(ωj e X ,即 T j a e X j X Ω==Ωωω)()(? 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只 要将自变量ω用T Ω代替即可。 2、频域采样定理的要点: a) 对信号x(n)的频谱函数X(e j ω)在[0,2π]上等间隔采样N 点,得到 2()() , 0,1,2,,1j N k N X k X e k N ωπω===- 则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为: ()IDFT[()][()]()N N N N i x n X k x n iN R n ∞ =-∞==+∑ b) 由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。如果N>M ,()N x n 比原序列尾部多N-M 零点;如果N

常用信号的频谱分析及时域采样定理

常用信号的频谱分析及时域采样定理

开课学期 2016-2017 学年第 2 学期 实验课程信号与系统仿真实验 实验项目常用信号的频谱分析及时域采样定理 班级学号学生姓名 实验时间实验台号A11 操作成绩报告成绩 一、实验目的 1.掌握常用信号的频域分析方法; 2.掌握时域采样定理; 3.掌握时域采样信号恢复为原来连续信号的方法及过程。 二、实验性质 验证性 三、预习内容 1.时域采样定理的内容及信号时域采样过程; 2.连续信号经时域采样后,信号的频谱发生的变化; 3.时域采样信号恢复为原来连续信号的方法及过程。 四、实验内容(编写程序,绘制实验结果) 1.实现周期信号的频谱 f(t)=sin( 2*80t) 程序: fa='sin(2.*pi.*80.*t)';%原信号 fs0=10000; %采样频率 tp=0.1;%时间范围 t=[-tp:1/fs0:tp];%信号持续时间范围 k1=0:999;k2=-999:-1; m1=length(k1);m2=length(k2); f=[fs0*k2/m2,fs0*k1/m1];%信号频率范围 w=[-2*pi*k2/m2,2*pi*k1/m1]; fx1=eval(fa);%把文本fa赋值给信号fx1 FX1=fx1*exp(-j*[1:length(fx1)]'*w);%进行傅立叶变换 figure subplot(2,1,1),plot(t,fx1,'r'); title('原信号');xlabel('时间t(s)');%原信号的时域波形图 axis([min(t),max(t),min(fx1),max(fx1)]); subplot(212),plot(f,abs(FX1),'r'); title('原信号频谱');xlabel ('频率f(Hz)');%频域波形图 axis([-100,100,0,max(abs(FX1))+5]);

时域采样理论与频域采样定理验证

实验4时域采样理论与频域采样定理验证 一 一、实验目的 1时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 二、实验原理及方法 时域采样定理的要点是: (a)对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的频谱)(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。公 式为: )](?[)(?t x FT j X a a =Ω )(1∑∞ -∞ =Ω-Ω=n s a jn j X T (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的 频谱不产生频谱混叠。 利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。 理想采样信号)(?t x a 和模拟信号)(t x a 之间的关系为: ∑∞ -∞ =-=n a a nT t t x t x )()()(?δ 对上式进行傅立叶变换,得到: dt e nT t t x j X t j n a a Ω-∞∞ -∞ -∞ =?∑ -=Ω])()([)(?δ dt e nT t t x t j n a Ω-∞ -∞ =∞ ∞ -∑? -)()( δ= 在上式的积分号内只有当nT t =时,才有非零值,因此: 课程名称 实验成绩 指导教师 实 验 报 告 院系 班级 学号 姓名 日期

∑∞ -∞ =Ω-=Ωn nT j a a e nT x j X )()(? 上式中,在数值上)(nT x a =)(n x ,再将T Ω=ω代入,得到: ∑ ∞ -∞ =-=Ωn n j a e n x j X ω)()(? 上式的右边就是序列的傅立叶变换)(ωj e X ,即 T j a e X j X Ω==Ωωω)()(? 上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变 量ω用T Ω代替即可。 频域采样定理的要点是: a) 对信号x(n)的频谱函数X(e j ω )在[0,2π]上等间隔采样N 点,得到 2()() , 0,1,2,,1j N k N X k X e k N ωπω===- 则N 点IDFT[()N X k ]得到的序列就是原序列x(n)以N 为周期进行周期延拓后的主值区序列,公式为: ()IDFT[()][ ()]()N N N N i x n X k x n iN R n ∞ =-∞ ==+∑ (b)由上式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点IDFT[()N X k ]得到的序列()N x n 就是原序列x(n),即()N x n =x(n)。如果N>M ,()N x n 比原序列尾部多N-M 个零点;如果N

用快速傅里叶变换对信号进行频谱分析

实验二 用快速傅里叶变换对信号进行频谱分析 一、实验目的 1.理解离散傅里叶变换的意义; 2.掌握时域采样率的确定方法; 3.掌握频域采样点数的确定方法; 4.掌握离散频率与模拟频率之间的关系; 5.掌握离散傅里叶变换进行频谱分析时,各参数的影响。 二、实验原理 序列的傅里叶变换结果为序列的频率响应,但是序列的傅里叶变换是频率的连续函数,而且在采用计算机计算时,序列的长度不能无限长,为了便于计算机处理,作如下要求:序列x (n )为有限长,n 从0~N -1,再对频率ω在0~2π范围内等间隔采样,采样点数为N ,采样间隔为2π/N 。第k 个采样点对应的频率值为2πk /N 。可得离散傅里叶变换及其逆变换的定义为 ∑-=-=1 02)()(N n n N k j e n x k X π (1) ∑-==1 02)(1)(N k k N n j e k X N n x π (2) 如果把一个有限长序列看作是周期序列的一个周期,则离散傅里叶变换就是傅里叶级数。离散傅里叶变换也是周期的,周期为N 。 数字频率与模拟频率之间的关系为 s f f /2πω=,即s s T f f πωπω22== (3) 则第k 个频率点对应的模拟频率为 N kf NT k T N k f s s s k ==?=ππ212 (4) 在用快速傅里叶变换进行频谱分析时,要确定两个重要参数:采样率和频域采样点数,采样率可按奈奎斯特采样定理来确定,采样点数可根据序列长度或频率分辨率△f 来确定 f N f s ?≤,则f f N s ?≥ (5) 用快速傅里叶变换分析连续信号的频谱其步骤可总结如下: (1)根据信号的最高频率,按照采样定理的要求确定合适的采样频率f s ; (2)根据频谱分辨率的要求确定频域采样点数N ,如没有明确要求频率分辨率,则根据实际需要确定频率分辨率; (3)进行N 点的快速傅里叶变换,最好将纵坐标根据帕塞瓦尔关系式用功率来表示,

频谱分析与采样定理

数字信号处理实验报告实验一:频谱分析与采样定理 班级:10051041 姓名: 学号:

一实验目的 1.观察模拟信号经理想采样后的频谱变化关系。 2.验证采样定理,观察欠采样时产生的频谱混叠现象 3.加深对DFT算法原理和基本性质的理解 4.熟悉FFT算法原理和FFT的应用 二、实验原理 根据采样定理,对给定信号确定采样频率,观察信号的频谱 奈奎斯特抽样定律:为了避免发生混叠现象,能从抽样信号无失真的恢复出原信号,抽样频率必须大于或等于信号频谱最高频率的2倍。 三、实验内容 在给定信号为: 1.x(t)=cos(100*π*at) 2.x(t)=exp(-at) 3.x(t)=exp(-at)cos(100*π*at) 其中a为实验者的学号,记录上述各信号的频谱,表明采样条件,分析比较上述信号频谱的区别。 四、实验步骤 1.复习采样理论、DFT的定义、性质和用DFT作谱分析的有关内容。 2.复习FFT算法原理和基本思想。 3.确定实验给定信号的采样频率,编制对采样后信号进行频谱分析的程序五、实验设备 计算机、Matlab软件 六、实验程序和结果 1、学号为57,原信号频率为2850Hz,根据抽样定理,取采样频率大于2倍的原最大频率,即大于5700Hz,采样间隔小于0.00018s,取T=0.0002s进行抽样,程序为: %实验一:频谱分析与采样定理 %褚耀欣 T=0.00001; %采样间隔T=0.00001 F=1/T; %采样频率为F=1/T L=0.001 %记录长度L=0.001 N=L/T; t=0:T:L; a=57; f1=0:F/N:F; f2=-F/2:F/N:F/2; %%%%%%%%%%%%%%%%%%%%%%%%%

实验二:时域采样与频域采样

实验二:时域采样与频域采样 1. 实验目的 时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。 2. 实验原理与方法 ? 对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号的 频谱)(?Ωj X 是原模拟信号频谱()a X j Ω以采样角频率s Ω(T s /2π=Ω)为周期进行周期延拓。公式为: )](?[)(?t x FT j X a a =Ω )(1∑∞ -∞ =Ω-Ω=n s a jn j X T ? 采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信 号的频谱不产生频谱混叠。 3. 实验内容及步骤 %物联一班 胡洪 201313060110 %2015年10月24日

%实验二:程序1 Tp=64/1000; Fs=1000;T=1/Fs;M=ceil(Tp*Fs);n=0:M-1; A=444.128;a=pi*50*2^0.5;w=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(w*n*T); Xk=fft(xnt,M); subplot(3,2,1); stem(n,xnt,'.');axis([1,65,-5,150]); title('图1 Fs=1000Hz'); subplot(3,2,2);plot(n/Tp,abs(Xk));title('图2 Fs=1000Hz幅度'); Fs=300;T=1/Fs; M=ceil(Tp*Fs);n=0:M-1; A=444.128;a=pi*50*2^0.5;w=pi*50*2^0.5; xnt=A*exp(-a*n*T).*sin(w*n*T); Xk=fft(xnt,M); subplot(3,2,3);

时域采样与频域采样

备注:(1)、按照要求独立完成实验内容。 (2)、实验结束后,把电子版实验报告按要求格式改名(例:09号_张三_实验七.doc )后, 实验室统一刻盘留档。 实验四 时域采样与频域采样 一、实验目的 时域采样理论与频域采样理论是数字信号处理中的重要理论。掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样前后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对采样点数选择的指导作用。 二、实验原理 在数字信号处理的应用中,只要涉及时域或者频域采样,都必须服从这两个采样理论的要点。时域采样原理和频域采样原理,得到一个有用的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。因此放在一起进行实验。 三、实验内容(包括代码与产生的图形及结果分析) 1. 给定模拟信号如下: xa(t)=Ae -αt sin(Ω0t)u(t) 式中, A=444.128,α =50 π, Ω0=50 π rad/s ,将这些参数带入上式中,对x a (t 进行傅里叶变换,它的幅频特性曲线如图1所示。 现用DFT(FFT)求该模拟信号的幅频特性,以验证时 域采样理论。 按照xa(t)的幅频特性曲线,选取三种采样频率,即 Fs=1 kHz ,300 Hz ,200 Hz 。观测时间选Tp=64 ms 。 要求: 编写实验程序,计算x 1(n)、 x 2(n)和x 3(n)的幅度特性,并绘图显示。观察分析频谱混叠失真。 close all;clear all;clc; 22图1 x a (t)的幅频特性曲线

Tp=64/1000; %观察时间Tp=64毫秒 %产生M长采样序列x(n) % Fs=1000;T=1/Fs; Fs=1000;T=1/Fs; M=Tp*Fs;n=0:M-1; A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5; xnt=A*exp(-alph*n*T).*sin(omega*n*T); Xk=T*fft(xnt,M); %M点FFT[xnt)] subplot(3,2,1); n=0:length(xnt)-1; stem(n,xnt,'.'); xlabel('n');ylabel('yn'); axis([0,n(end),min(xnt),1.2*max(xnt)]);%绘图 box on; title('(a) Fs=1000Hz'); k=0:M-1;fk=k/Tp; subplot(3,2,2);plot(fk,abs(Xk));title('(a) T*FT[xa(nT)],Fs=1000Hz'); xlabel('f(Hz)');ylabel('幅度');axis([0,Fs,0,1.2*max(abs(Xk))]) %======================== % Fs=300Hz;T=1/Fs; Fs=300;T=1/Fs; M=Tp*Fs;n=0:M-1; A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5; xnt=A*exp(-alph*n*T).*sin(omega*n*T); Xk=T*fft(xnt,M); %M点FFT[xnt)] subplot(3,2,3); n=0:length(xnt)-1; stem(n,xnt,'.'); xlabel('n');ylabel('yn');

时域采样与频域分析报告

实验二:时域采样与频域分析 一、实验原理与方法 1、时域采样定理: (a )对模拟信号)(t x a 以间隔T 进行时域等间隔理想采样,形成的采样信号 的频谱)(Ωj X )是原模拟信号频谱)(ωj X a 以采样角频率)2(T s s π=ΩΩ为周期进行 周期延拓。公式为:[]∑∞-∞ =Ω-Ω==Ωn s a a a jn j X T t x FT j X )(1)()()) (b )采样频率s Ω必须大于等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。 2、频域采样定理: 公式为:[])()()()(n R iN n x k X IDFT n x N i N N N ?? ????+==∑∞-∞=。由公式可知,频域采样点数N 必须大于等于时域离散信号的长度M(即N ≥M),才能使时域不产生混叠,则N 点[])(k X IDFT N 得到的序列()N x n 就是原序列)(n x ,即)()(n x n x N =。 二、实验内容 1、时域采样理论的验证。给定模拟信号 )()sin()(0t u t Ae t x t a Ω=-α 式中A =444.128,α=502π,0Ω=502πrad/s ,它的幅频特性曲线如图2.1

图2.1 )(t x a 的幅频特性曲线 现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。 按照)(t x a 的幅频特性曲线,选取三种采样频率,即s F =1k Hz ,300Hz ,200Hz 。观测时间选ms T p 50=。 为使用DFT ,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用)(1n x ,)(2n x ,)(3n x 表示。 )()sin()()(0nT u nT Ae nT x n x nT a Ω==-α 因为采样频率不同,得到的)(1n x ,)(2n x ,)(3n x 的长度不同, 长度(点数) 用公式s p F T N ?=计算。选FFT 的变换点数为M=64,序列长度不够64的尾部加零。 [])()(n x FFT k X = 1,,3,2,1,0-=M k Λ 式中k 代表的频率为 k M k πω2=。 要求:编写实验程序,计算)(1n x 、)(2n x 和)(3n x 的幅度特性,并绘图显示。 观察分析频谱混叠失真。程序见附录2.1、实验结果见图2.2。 2、频域采样理论的验证。给定信号如下:

语音信号采样和频谱分析

语音信号采样和频谱分析 一.实验目的 (1)掌握傅里叶变换的物理意义,深刻理解傅里叶变换的内涵; (2)了解MATLAB 对声音信号的处理指令; (3)了解计算机存储信号的方式及语音信号的特点; (4)加深对采样定理的理解; (5)加深学生对信号分析工程应用的理解,拓展学生在信号分析领域的综合应用能力。 二.实验内容 本实验利用MATLAB 指令录制一段语音信号,观察其时域波形并进行傅里叶变换,观察其频域的频谱。根据该信号的频谱构成,选择三种不同的采样频率重新录制该语音信号,并试听回放效果,进行比较,以验证采样定理,并了解MATLAB 对声音信号的处理指令,加深对采样定理的理解。 关键词:傅里叶变换 信号采样 三、实验原理 语音信号是一种连续变化的模拟信号,而计算机只能处理和记录二进制的数字信号,因此,由自然音而得的音频信号必须用计算机的声音编辑工具,先进行语音采样,然后利用了计算机上的A/D 转换器,将模拟的声音信号变成离散的量化了的数字信号量化和编码,变成二进制数据后才能送到计算机进行再编辑和存储。语音信号输出时,量化了的数字信号又通过D/A 转换器,把保存起来的数字数据恢复成原来的模拟的语音信号。 (1)应用MATLAB 进行声音的录制 (2)应用MATLAB 进行声音的播放 (3)语音信号的频谱分析 。傅里叶变换建立了信号频谱的概念。所谓傅里叶分析即分析信号的频谱(频率构成)、频带宽度等。对语音信号的分析也不例外,也必须采用傅里叶变换这一工具。 对于连续时间信号)(t f ,其傅里叶变换)(ωF 为:?∞ ∞--=dt e t f F t j ωω)()( 四、实验任务 (1)应用MATLAB 进行声音的录制 在MATLAB 命令窗口中键入“y=wavrecord(8000,8000,1)”,并按回车键,此时刻以后的1(8000/8000)秒时段内的声音信号将以y 为文件名,以数字声音信号.wav 格式存储在MATLAB 的工作空间里。纪录长度为80000,采样频率为8000Hz ,声道数为1。图为录制的语音:“信号与系统”。 (2)应用MATLAB 进行声音的播放 在MATLAB 命令窗口中键入“sound(y,Fs)”,按下回车键就能听到回放的声音。当Fs=8000时,听到的是原来未失真的声音;当Fs=6000时,听到的声音比较低沉;当Fs=10000时,听到的声音很尖锐。 (3)语音信号的频谱分析 在MATLAB 命令窗口中键入“p=fft(y);plot(abs(p))”按下回车键后出现如图所示图形:

相关主题
文本预览
相关文档 最新文档