当前位置:文档之家› 不等式解法举例

不等式解法举例

不等式解法举例
不等式解法举例

典型例题一

例1 解不等式:(1)01522

3

>--x x x ;(2)0)2()5)(4(32<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或

0)(

解:(1)原不等式可化为

0)3)(52(>-+x x x

把方程0)3)(52(=-+x x x 的三个根3,2

5

,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.

∴原不等式解集为?

?????><<-3025x x x 或 (2)原不等式等价于

??

?>-<-≠????>-+≠+?>-++2450)2)(4(0

50

)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}

2455>-<<--

说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或

奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.

典型例题二

例2 解下列分式不等式:

(1)22123+-≤-x x ; (2)12

731

42

2<+-+-x x x x 分析:当分式不等式化为

)0(0)

()

(≤<或x g x f 时,要注意它的等价变形

0)()(0)

()

(

0)()(0)(0)()(0

)(0)()(0)()

(

(1)解:原不等式等价于

???≠-+≥+-+-?≥+-+-?≤+-++-?≤+---+?≤+--?+≤-0

)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0

)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x x x x x x

用“穿根法”

∴原不等式解集为[)[)+∞?-?--∞,62,1)2,(。

(2)解法一:原不等式等价于

02

731

3222>+-+-x x x x 2

12

1

3102730132027301320

)273)(132(222222><<

???<+-<+-?????>+->+-?>+-+-?x x x x x x x x x x x x x x x 或或或 ∴原不等式解集为),2()1,2

1

()31,(+∞??-∞。

解法二:原不等式等价于

0)

2)(13()

1)(12(>----x x x x

0)2()13)(1)(12(>-?---?x x x x

用“穿根法”

∴原不等式解集为),2()1,2

1()31,(+∞??-∞

典型例题三

例3 解不等式242

+<-x x

分析:解此题的关键是去绝对值符号,而去绝对值符号有两种方法:一是根据绝对值的意义?

?

?<-≥=)0()

0(a a a a a

二是根据绝对值的性质:a x a x a x a a x >?<<-?<.,或a x -<,因此本题有如下两种解法.

解法一:原不等式?????+<-<-?????+<-≥-?2

40

424042

2

22x x x x x x 或 即??

?>-<<<-??

?<<--≤≥1

22

2222x x x x x x x 或或或 ∴32<≤x 或21<

故原不等式的解集为{}

31<

解法二:原不等式等价于 24)2(2+<-<+-x x x

即?????+->-+<-)

2(42422x x x x ∴312132<<<-x x x x 故或.

典型例题四

例4 解不等式

04125

62

2<-++-x x x x . 分析:这是一个分式不等式,其左边是两个关于x 二次式的商,由商的符号法则,它等价于下列两个不等式组:

?????>-+<+-041205622x x x x 或?????<-+>+-0

4120

562

2x x x x 所以,原不等式的解集是上面两个不等式级的解集的并集.也可用数轴标根法求解. 解法一:原不等式等价下面两个不等式级的并集:

?????>-+<+-0412,05622x x x x 或?????<-+>+-0

412,

0562

2x x x x ??

?<-+<--?;0)6)(2(,0)5)(1(x x x x 或?

??>-+>--;0)6)(2(,

0)5)(1(x x x x

???<<-<-<><6

,2,

5,1x x x x 或或 ,51<x .

∴原不等式解集是}6512{><<-

解法二:原不等式化为

0)

6)(2()

5)(1(>-+--x x x x .

画数轴,找因式根,分区间,定符号.

)

6)(2()

5)(1(-+--x x x x 符号

∴原不等式解集是}6512{><<-

说明:解法一要注意求两个等价不等式组的解集是求每组两个不等式的交集,再求两组的解的并集,否则会产生误解. 解法二中,“定符号”是关键.当每个因式x 的系数为正值时,最右边区间一定是正值,其他各区间正负相间;也可以先决定含0的区间符号,其他各区间正负相间.在解题时要正确运用.

典型例题五

例5 解不等式

x x x x x <-+-+2

2232

2. 分析:不等式左右两边都是含有x 的代数式,必须先把它们移到一边,使另一边为0再解.

解:移项整理,将原不等式化为0)

1)(3()

1)(2(2>+-++-x x x x x .

由012>++x x 恒成立,知原不等式等价于

0)

1)(3()

2(>+--x x x .

解之,得原不等式的解集为}321{><<-x x x 或.

说明:此题易出现去分母得)23(2222x x x x x -+<-+的错误解法.避免误解的方法是移项使一边为0再解.

另外,在解题过程中,对出现的二项式要注意其是否有实根,以便分析不等式是否有解,从而使求解过程科学合理.

典型例题六

例6 设R m ∈,解关于x 的不等式03222<-+mx x m . 分析:进行分类讨论求解.

解:当0=m 时,因03<-一定成立,故原不等式的解集为R . 当0≠m 时,原不等式化为0)1)(3(<-+mx mx ;

当0>m 时,解得m x m 13<<-

; 当0

x m 3

1-<<.

∴当0>m 时,原不等式的解集为???

???<<-m x m x 13;

当0

???-<

x 31.

说明:解不等式时,由于R m ∈,因此不能完全按一元二次不等式的解法求解.因为当

0=m 时,原不等式化为03<-,此时不等式的解集为R ,所以解题时应分0=m 与0≠m 两种情况来讨论.

在解出03222=-+mx x m 的两根为m x 31-

=,m x 12=后,认为m

m 1

3<-,这也是易出现的错误之处.这时也应分情况来讨论:当0>m 时,m

m 13<-;当0

3>-.

典型例题七

例7 解关于x 的不等式)0(122>->-a x a ax .

分析:先按无理不等式的解法化为两个不等式组,然后分类讨论求解.

解:原不等式???

??->-≥->-?;)1(2,01,

02)1(2

22x a ax x a ax 或???<-≥-.01,02)2(2x a x

由0>a ,得:?

??

????<+++-≤>?;01)1(2,1,2)1(2

2a x a x x a x ?????>≥?.1,

2)2(x a x

由判别式08)1(4)1(422>=+-+=?a a a ,故不等式01)1(222<+++-a x a x 的解是

a a x a a 2121++<<-+.

当20≤

1212

≤-+≤a a a

,121>++a a ,不等式组(1)的解是121≤<-+x a a ,不等式组(2)的解是1>x .

当2>a 时,不等式组(1)无解,(2)的解是2

a x ≥

. 综上可知,当20≤

+∞-+,21a a ;当2>a 时,原不等

式的解集是??

?

???+∞,2a .

说明:本题分类讨论标准“20≤a ”是依据“已知0>a 及(1)中‘2

a

x >,1≤x ’,(2)中‘2

a

x ≥

,1>x ’”确定的.解含有参数的不等式是不等式问题中的难点,也是近几年高考的热点.一般地,分类讨论标准(解不等式)大多数情况下依“不等式组中的各不等式的解所对应的区间的端点”去确定.

本题易误把原不等式等价于不等式)1(22x a ax ->-.纠正错误的办法是熟练掌握无理不等式基本类型的解法.

典型例题八

例8 解不等式331042<--x x .

分析:先去掉绝对值号,再找它的等价组并求各不等式的解,然后取它们的交集即可. 解答:去掉绝对值号得3310432<--<-x x , ∴原不等式等价于不等式组

??????<-->-??????<----<-0

61040

1043310431043222

2x x x x x x x x ???????

<<->

?<+->-.

32

1,2500)12)(3(20)52(2x x x x x x x 或 ∴原不等式的解集为?

?????<<<<-325

021x x x 或.

说明:解含绝对值的不等式,关键是要把它化为不含绝对值的不等式,然后把不等式等

价转化为不等式组,变成求不等式组的解.

典型例题九

例9 解关于x 的不等式0)(322>++-a x a a x .

分析:不等式中含有字母a ,故需分类讨论.但解题思路与一般的一元二次不等式的解法完全一样:求出方程0)(322=++-a x a a x 的根,然后写出不等式的解,但由于方程的根含有字母a ,故需比较两根的大小,从而引出讨论.

解:原不等式可化为0))((2>--a x a x .

(1)当2a a <(即1>a 或0

{}2a x a x x ><或;

(2)当2a a >(即10<

{}

a x a x x

><或2;

(3)当2a a =(即0=a 或1)时,不等式的解集为:

{}a x R x x

≠∈且.

说明:对参数进行的讨论,是根据解题的需要而自然引出的,并非一开始就对参数加以分类、讨论.比如本题,为求不等式的解,需先求出方程的根a x =1,22a x =,因此不等式的解就是x 小于小根或x 大于大根.但a 与2a 两根的大小不能确定,因此需要讨论2a a <,

2a a >,2a a =三种情况.

典型例题十

例10 已知不等式02

>++c bx ax 的解集是{})0(><<αβαx x

.求不等式

02>++a bx cx 的解集.

分析:按照一元二次不等式的一般解法,先确定系数c 的正负,然后求出方程

02=++a bx cx 的两根即可解之.

解:(解法1)由题可判断出α,β是方程02=++c bx ax 的两根, ∴a b -

=β+α,a

c

=β?α. 又02>++c bx ax 的解集是{}

β<<αx x ,说明0

而0>α,0>β000?

>αβ?c a c

, ∴0022<++?>++c

a

x c b x a bx cx .

???????--==--=+-=???????

?=?-=+),

1)(1(1,11βααβ

βααββαβαβαa c c b a c a b ∴02<++c

a

x c b x ,即0)1)(1()11(2<β-α-+β-α-+x x ,

即0)1

)(1(<β

-α-x x .

又β<α<0,∴β

>α1

1,

∴0)1)(1(<β-α-

x x 的解集为?

??

???α<<β11x x . (解法2)由题意可判断出α,β是方程02=++c bx ax 的两根,

∴a

c

=

β?α. 又02>++c bx ax 的解集是{}

β<<αx x ,说明0α,0>β000?

>αβ?c a

c

. 对方程02=++a bx cx 两边同除以2x 得

0)1

()1(2=+?+?c x b x a .

令x

t 1

=,该方程即为

02=++c t b t a ,它的两根为α=1t ,β=2t ,

α=11x ,β=21x .∴α

=1

1x ,β=12x ,

∴方程02=++a bx cx 的两根为α1

,β

1. ∵β<α<0,∴

β

>α11. ∴不等式02>++a bx cx 的解集是???

?

??α<<β11x x .

说明:(1)万变不离其宗,解不等式的核心即是确定首项系数的正负,求出相应的方程的根;(2)结合使用韦达定理,本题中只有α,β是已知量,故所求不等式解集也用α,β表示,不等式系数a ,b ,c 的关系也用α,β表示出来;(3)注意解法2中用“变换”的方法求方程的根.

典型例题十二

例12 若不等式

112

2+--<++-x x b x x x a x 的解为)1()3

1

(∞+-∞,, ,求a 、b 的值. 分析:不等式本身比较复杂,要先对不等式进行同解变形,再根据解集列出关于a 、b 式子.

解:∵043

)21(122>+

+=++x x x ,

04

3

)21(122>+-=+-x x x ,

∴原不等式化为0)()2(2>-++--+b a x b a x b a .

依题意??????

??

?

=-++=-+->-+3

423

1202b a b a b a b

a b a , ∴???

???

?

==2325b a . 说明:解有关一元二次方程的不等式,要注意判断二次项系数的符号,结合韦达定理来解.

典型例题十三

例13 不等式022<-+bx ax 的解集为{}

21<<-x x ,求a 与b 的值.

分析:此题为一元二次不等式逆向思维题,要使解集为{}

21<<-x x ,不等式

022<-+bx ax 需满足条件0>a ,0>?,022=-+bx ax 的两根为11-=x ,22=x .

解法一:设022=-+bx ax 的两根为1x ,2x ,由韦达定理得:

??????

?-=?-=+a x x a

b x x 22121 由题意:????????-=-+-=-2

1221a

a b

∴1=a ,1-=b ,此时满足0>a ,0)2(42>-?-=?a b . 解法二:构造解集为{}

21<<-x x 的一元二次不等式:

0)2)(1(<-+x x ,即022<--x x ,此不等式与原不等式022<-+bx ax 应为同解不等

式,故需满足:

2

2

11--=

-=b a ∴1=a ,1-=b . 说明:本题考查一元二次方程、一元二次不等式解集的关系,同时还考查逆向思维的能力.对有关字母抽象问题,同学往往掌握得不好.

典型例题十四

例14 解关于x 的不等式01)1(2<++-x a ax .

分析:本题考查一元一次不等式与一元二次不等式的解法,因为含有字母系数,所以还考查分类思想.

解:分以下情况讨论

(1)当0=a 时,原不等式变为:01<+-x ,∴1>x (2)当0≠a 时,原不等式变为:0)1)(1(<--x ax ①

①当0--x a x ,∴不等式的解为1>x 或a x 1

<

②当0>a 时,①式变为0)1)(1

(<--x a

x . ②

∵a a a -=-111,∴当10<a ,此时②的解为a

x 11<<.当1=a 时,11=a ,此时②的解为11

<

说明:解本题要注意分类讨论思想的运用,关键是要找到分类的标准,就本题来说有三级分类:

??

??

???

??????

????????>=<<><≠=∈11

100000a a a a a a a R a 分类应做到使所给参数a 的集合的并集为全集,交集为空集,要做到不重不漏.另外,解本题还要注意在讨论0

典型例题十五

例15 解不等式x x x ->--81032.

分析:无理不等式转化为有理不等式,要注意平方的条件和根式有意义的条件,一般情况下,

)()(x g x f ≥可转化为)()(x g x f >或)()(x g x f =,而)()(x g x f >等价于:

??

?<≥0)(0)(x g x f 或?

??

??>≥≥2

)]

([)(0)(0

)(x g x f x g x f .

解:原不等式等价于下面两个不等式组:

①???≥--<-0103082x x x ②?????->--≥--≥-2

22)8(10301030

8x x x x x x

由①得???-≤≥>258

x x x 或,∴8>x

由②得∴???????>-≤≥≤.

1374

258x x x x 或 81374

所以原不等式的解集为??????>≤<881374x x x 或,即为?

?????

>1374x x . 说明:本题也可以转化为

)()(x g x f ≤型的不等式求解,注意: ???

??≤≥≥?≤2)]

([)(0

)(0

)()()(x g x f x g x f x g x f , 这里,设全集}52{}0103{2≥-≤=≥--=x x x x x x U 或,?

?????-≤--=x x x x A 81032,

则所求不等式的解集为A 的补集A ,

由2)8(10301030

881032

222-≤??????-≤--≥--≥-?-≤--x x x x x x x x x x 或1374

5≤

≤x . 即????

??≤≤≤=137452x x x A 或,∴原不等式的解集是

???

?

??>=1374x x A .

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

不等式及其解法练习题

不等式的练习题 一、填空题 1、不等式2654x x +<的解集是 . 2 不等式-4≤x 2-3x <18的整数解为 . 3、如果不等式21x 同时成立,则x 的取值范围是 4.不等式x x ->+512的解集是 5.不等式x x x x ->-11的解是 6.函数x x x y -+= )21 (的定义域是 7.不等式331≤--x x 的解集为 . 13、函数22--=x x y 的定义域 是 . 14.不等式:(1)x x 1 <的解为 . 15、321>++-x x 的解为 .

16.使不等式a x x <-+-34有解的条件是 . 17.已知关于x 的方程ax 2 +bx+c <0的解集为{x |x <-1或x >2}.则不等式ax 2 -bx+c >0的解集为 . 二、解不等式: 1、302x x -≥- 2、21 13 x x ->+ 3、22 32023x x x x -+≤-- 4、221 02x x x --<- 5、()()() 3 22 1603x x x x -++≤+ 6、()2 309x x x -≤- 7、 101x x <-< 8、 . 0)25)(-4-( 2 2<++x x x x

9 、 (2 1x -)(2 68x x -+)≤0 10 、 22 41 1372 x x x x -+≥-+ 11 、 12 、x x x 211322 +>+-

含参不等式解法举例

含参不等式专题(淮阳中学) 编写:孙宜俊 当在一个不等式中含有了字母,则称这一不等式为含参数的不等式,那么此时的参数可以从以下两个方面来影响不等式的求解,首先是对不等式的类型(即是那一种不等式)的影响,其次是字母对这个不等式的解的大小的影响。我们必须通过分类讨论才可解决上述两个问题,同时还要注意是参数的选取确定了不等式的解,而不是不等式的解来区分参数的讨论。解参数不等式一直是高考所考查的重点内容,也是同学们在学习中经常遇到但又难以顺利解决的问题。下面举例说明,以供同学们学习。 解含参的一元二次方程的解法,在具体问题里面,按分类的需要有讨论如下四种情况: (1) 二次项的系数;(2)判别式;(3)不等号方向(4)根的大小。 一、含参数的一元二次不等式的解法: 1.二次项系数为常数(能分解因式先分解因式,不能得先考虑0≥?) 例1、解关于x 的不等式0)1(2>++-a x a x 。 解:0)1)((2>--x a x 1,0)1)((==?=--x a x x a x 令 为方程的两个根 (因为a 与1的大小关系不知,所以要分类讨论) (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 综上所述: (1)当1或 (2)当1>a 时,不等式的解集为}1|{<>x a x x 或 (3)当1=a 时,不等式的解集为}1|{≠x x 变题1、解不等式0)1(2>++-a x a x ; 2、解不等式0)(322>++-a x a a x 。

一元一次不等式解法教学设计说明

一元一次不等式及解法教学设计 教学目标: 1.知识与技能:掌握一元一次不等式的相关概念及其解法,能熟练的解一元一次不等式。 2.过程与方法:学生亲身经历探究一元一次不等式及其解法的过程,学生通过合作、类比等学习方法,加深对化归思想的体会。 3.情感态度与价值观:在增强相互协作的同时,经历成功的体验,激发学习数学的兴趣,培养学生归纳总结知识的能力。 教学重点:掌握解一元一次不等式的步骤. 教学难点:不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向. 教学过程 一、问题导入,出示学习目标 请同学们用不等式表示下列关系 (1)x与7的差大于26 (2)x的3倍小于x的2倍与1和 (3)x的 小于50 (4)x的-4倍大于3 师生活动:学生抢答说出答案。教师由此引出课题,出示学习目标。 设计意图:以抢答的形式说出答案从而激发学生的学习兴趣。 32

二、自学质疑: 自学122页的思考,完成下面的问题 观察思考中的4个不等式,它们有哪些共同特征? (1)每一个不等式都只含有______个未知数 (2)未知数的次数是_______ (3)这4个不等式叫做_______________ 师生活动:学生独立完成这三个问题后小组交流。从而归纳出一元一次不等式的概念。教师点拨一元一次不等式满足的三个条件:①含有一个未知数②次数是1③不等式。 设计意图:培养学生的观察、归纳的能力。 三、探究解法: 问题1:解方程(1)2x-2=6(2)5-5x=10 类比解方程的步骤解(1)2x-2<6 (2)5-5x >10 师生活动:学生完成解题过程。教师让学生对比解方程和解不等式的步骤,找出它们的相同点和不同点?(小组交流展示。)教师从而引出解一元一次不等式可以类比解一元一次方程的步骤。 设计意图:通过让学生对比解方程和解不等式的步骤,找出它们的相同点和不同点从而获得解一元一次不等式可以类比解一元一次方程的步骤。 合作探究

一元一次不等式及其解法常考题型讲解

一元一次不等式及其解法 一、知识点复习 1.一元一次不等式的概念: 只含有一个未知数,且未知数的次数是1且系数不为0的不等式,称为一 元一次不等式。 2.解一元一次不等式的一般步骤: 去分母、去括号、移项、合并同类项、系数化为1. 3. 注意事项: ①去分母时各项都要乘各分母的最小公倍数,去分母后分子是多项式时,分子要加括号。 ②系数化为1时,注意系数的正负情况。 二、经典题型分类讲解 题型1:考察一元一次不等式的概念 1. (2017春昭通期末)下列各式:①5≥-x ;②03<-x y ;③05<+πx ;④ 32≠+x x ; ⑤x x 333≤+;⑥02<+x 是一元一次不等式的有( ) A 、2个 B 、3个 C 、4个 D 、5个 2.(2017春启东市校级月考)下列不等式是一元一次不等式的是( ) A 、 67922-+≥-x x x x B 、01=+x C 、0>+y x D 、092≥++x x 3.(2017春寿光市期中)若03)1(2>-+m x m 是关于x 的一元一次不等式,则m 的值为( ) A 、1± B 、1 C 、1- D 、0 题型2:考察一元一次不等式的解法 4. (2016秋太仓市校级期末)解不等式,并把解集在数轴上表示出来: (1))21(3)35(2x x x --≤+ (2)2 2531-->+ x x

5.解不等式 10 1.0)39.1(10 2.06.035.05.12?->---x x x 。 6.(2016秋相城区期末)若代数式 123-+x 的值不大于6 34+x 的值时,求x 的取值范围。 7. (2017春开江县期末)请阅读求绝对值不等式3x 的解集的过程: 因为3x ,从如图2所示的数轴上看:小于3-的数和大于3的数的绝对值是大于3,所以3>x 的解集是3-x 。 解答下列问题: (1)不等式a x <(0>a )的解集为, 不等式a x >(0>a )的解集为; (2)解不等式42<-x ; (3)解不等式75>-x 。

(完整版)一元一次不等式的概念和解法

一元一次不等式教学设计(第1课时) 安徽省淮南市平圩中学李芬 教学目标: (1)了解一元一次不等式的概念,掌握一元一次不等式的解法,并能在数轴上表示出解集 (2)在依据不等式的性质探究一元一次不等式的解法的过程中,加深对类比和化归思想的体会. 教学重点: 一元一次不等式的解法. 解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐步将不等式化为x>a或x<a的形式,从而确定未知数的取值范围,这一化繁为简的过程,充分体现了化归的思想。 教学难点: 解一元一次不等式步骤的确定 通过前面的学习,学生已掌握一元一次方程概念及解法,对解一元一次方程的化归思想有所体会但还不够深刻.因此,运用化归思想把形式复杂的不等式转化为x>a或x<a的形式,对学生有一定的难度.所以,教师需引导学生类比解一元一次方程的步骤,分析形式复杂的一元一次不等式的结构特征,并与化简目标进行比较,逐步将不等式变形为最简形式. 教学过程设计 (一)引课 课件展示鲁班发明锯子的过程,提出类比思想 温故知新 给“一元一次方程”一个完美的定义 1.什么叫一元一次方程? 答:只含一个未知数、并且未知数的指数是1的方程. 2.一元一次方程是一个等式,请问一元一次方程的(等号)两边都是怎样的式子?答:一元一次方程的(等号)两边都是整式、只含一个未知数,并且未知数的指数是1. 3.一元一次方程的(完美) 定义: 【一元一次方程】“只含一个未知数、并且未知数的指数是1”的整式方程. 知识讲解 观察下列不等式: (1)2x-2.5≥15;(2)x≤8.75; (3)x<4;(4)5+3x>240. 这些不等式有哪些共同特点? 共同特点:这些不等式的两边都是整式,只含一个未知数、并且未知数的(最高)指数是1 . 学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比. 师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一

基本不等式应用-解题技巧归纳

基本不等式应用解题技巧归纳 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。例:求函数2 y = 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈

2.已知01x <<,求函数y = 的最大值.;3.203x <<,求函数y =. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是 . 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且 191x y +=,求x y +的最小值。 变式: (1)若+∈R y x ,且12=+ y x ,求y x 11+的最小值 (2)已知+∈R y x b a ,,,且1=+y b x a ,求y x +的最小值 技巧七、已知x ,y 为正实数,且x 2 +y 22 =1,求x 1+y 2 的最大值. 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab 的最小值. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。 2.若直角三角形周长为1,求它的面积最大值。

不等式的解法及其应用

综合滚动练习:不等式的解法及其应用 一、选择题(每小题3分,共24分) 1.若a >b ,则下列不等式一定成立的是( ) A.b a <1 B.b a >1 C.-a >-b D.a -b >0 2.不等式x 2-x -13 ≤1的解集是( ) A.x ≤4 B.x ≥4 C.x ≤-1 D.x ≥-1 3.关于x 的不等式2x -a ≤-1的解集是x ≤-1,则a 的值是( ) A.0 B.-3 C.-2 D.-1 4.(2017·遵义中考)不等式6-4x ≥3x -8的非负整数解有( ) A.2个 B.3个 C.4个 D.5个 5.要使4x -3 2 的值不大于3x +5的值,则x 的最大值是( ) A.4 B.6.5 C.7 D.不存在 6.用甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C 含量及购买这两种原 现配制这种饮料10千克,要求至少含有4200单位的维生素C.若所需甲种原料的质量为x 千克,则x 应满足的不等式为( ) A.600x +100(10-x )≥4200 B.8x +4(100-x )≤4200 C.600x +100(10-x )≤4200 D.8x +4(100-x )≥4200 7.若关于x 的方程3m (x +1)+1=m (3-x )-5x 的解是负数,则m 的取值范围是( ) A.m >-54 B.m <-54 C.m >54 D.m <5 4 8.某商店老板销售一种商品,他要以不低于进价20%的利润出售,但为了获得更多的利 润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,商店老板让价的最大限度为( ) A.82元 B.100元 C.120元 D.160元 二、填空题(每小题4分,共24分) 9.(2017·海南中考)不等式2x +1>0的解集是 . 10.如果关于x 的不等式2(x -1)

不等式解法举例

不等式解法举例 ?教学重点:不等式求解. ?教学难点:将已知不等式等价转化成合理变形式子. ?教学方法:创造教学法 为使问题得到解决,关键在于合理地将已知不等式变形,变形的过程也是一个创造的过程,只有这一过程完成好,本节课的难点也就突破. ?教学过程: 一、课题导入 1、由一元一次不等式、一元二次不等式、和简单的绝对值不等式式子,导出其不等式 解法. 2、一元二次不等式的解法. 3、数形结合思想运用. 二、新课讲授 例1:解不等式|x2-5x+5|<1 分析:不等式|x|0)的解集是{x|-a-1 解这个不等式组,其解集就是原不等式的解集. 解:原不等式可化为 -1< x2-5x+5<1 即 x2-5x+5< 1 ①

x 2-5x +5>-1 ② 解不等式①由 x 2-5x +5< 1 得 (x -1)(x -4)< 0 解集为{x |1- 1 得 (x -2)(x -3)> 0 解集为{x |x < 2或x >3}. 原不等式的解集是不等式①和不等式②的解集的交集,即 {x|13}={x|10 x2-2x-3<0 或 x2-3x+2<0 x2-2x-3>0 因此,原不等式的解集就是上面两个不等式组的解集的并集. 解:这个不等式的解集是下面个不等组(Ⅰ)、(Ⅱ)的解集的并集: x 2-3x +2>0 ① x 2-2x -3<0 ② x 2-3x +2<0 ③ x 2-2x -3>0 ④ 先解不等式(Ⅰ). 解不等式① x 2-3x +2>0, 得解集 {x |x <1,或x >2} 解不等式② x 2-2x -3<0, 得解集 {x |x <1,或x >2} 因此,不等式组(Ⅰ)的解集是 {x |x <1,或x >2}∩{x |x <1,或x >2}. 不等式解集在数轴上表示如下: 再解不等式(Ⅱ). x 2-3x +2 x 2-2x -3 (Ⅰ) (Ⅱ)

一元一次不等式解法

一元一次不等式解法 一元一次不等式的解法 一、不等式知识回顾 1、不等式定义: 2.不等式的解及解集 (1)__________________________________________ 叫做不等式的解.(2) _________________________________________叫做不等式的解集. 3.不等式的基本性 质用字母表示为: (1)__________________________________________________ . (2) __________________________________________________ . (3) __________________________________________________ . 回顾练习:3.写出不等式x5的5个小数解____________________,5个整数解 ____________________;这个不等式的解得个数为______________________ 4.写出三个 和x5的解集相同的不等式______________ ________ 二、新知识学习 1、一元一次不等式定义:只含有________个未知数并且未知数的次数是________的 不等式叫做一元一次不等式. 例1.判断下列不等式是不是一元一次不等式. (1)16x 5 (2)2y(y9)1y(3)x2 35x (4)y57 2:一元一次不等式解法 解一元一次不等式的一般步骤与解一元一次方程的步骤很相似 (1)去分母(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。 3:比较一元一次不等式的解法与一元一次方程的解的异同解一元一次不等式的步骤与解一元 一次方程类似。 不同之处是,不等式的两边都乘以(或除以)同一个不等于零的数时,必须根据这个 数是正数,还是负数,正确地运用不等式性质2,特别是注意在不等式两边乘以(或除以)同一个负数时,要改变不等号的方向。 4:求一元一次不等式的整数解与求一元一次不等式的解集的异同点 (1)解法步骤类似:去分母,去括号,移项,合并同类项,系数化为1. (2)求一元一次不等式的整数解比求一元一次方程的解集多一个步骤:就是在解集中找出整数解. 5:数学思想 1. 类比法:

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

不等式及解法典型题目

七年级下册不等式专题测练 训练一 不等式及其解集 1.下列式子中,不等式的个数为( ) ①20-<;②34x y +>;③21x +=;④x y +;⑤6a ≠. A 、2个 B 、3个 C 、4个 D 、5个 2.当3x =-时,下列不等式成立的是( ) A 、58x ->- B 、1303 x +> C 、3(3)3x ->- D 、32x x > 3.用不等式表示图1中的不等式的解集,其中正确的是( ) A 、2x >- B 、2x <- C 、22x -<< D 、2x > 4.哥哥今年6岁,弟弟今年4岁,以下说法正确的是( ) A 、比弟弟大的人,一定比哥哥大; B 、比哥哥小的人,一定比弟弟小; C 、比哥哥大的人可能比弟弟小; D 、比弟弟小的人决不会比哥哥大. 5.设“●”、“▲”表示两种不同的物体,现用天平称(如图),若用x 、?y 分别表示“●”、“▲”的重量,写出符合题意的不等式是_________. 6.先根据文字语言列出不等式,并想出不等式的解集,然后再在数轴上表示出其解集. (1)x 减去4-的差是正数; (2)a 的3倍小于6-. 训练二 不等式的性质 1.如果x y >,那么下列结论错误的是( ) A 、33x y ->- B 、44x y > C 、2255 x y > D 、x y ->- 2.若0m n >>,那么下列各式中正确的是( ) A 、mp np > B 、2n mn < C 、 11m n > D 、()()m p n p -->+- 3.如果(3)3a x a +>+的解集为1x <,那么a 必须满足( ) A 、0a < B 、3a > C 、3a >- D 、3a <- 4.设0x y <<,用不等号连接下列各项中的式子:2x - 2 y -, 2x 2y . 5.式子22x -,当x 时,该式子的值是正数;当x 时,该式子的值是负数;当x 时,该式子的值小于2.

一次不等式的解法(数学论文)

一次不等式的解法 摘要:大家已经学过如何解一元一次的方程了,那么不妨来学习研究一下如何解一次不等式,一次不等式的解法与一元一次方程的方法类似. 首先说明什么是不等式:由不等号连结两个代数式,就成为不等式.能够使不等式成立的x 的值,称为不等式的解.全部解组成的集合称为不等式的解集.解不等式的基础是不等式的基本性质.一元一次不等式的一般形式是ax>b(或ax4(x+1)+5 解: 由原不等式,得-5x>11, 两边同除以-5,得x<5 11-. ∴原不等式解集为x<5 11-. 思路:用解一元一次方程的方法将不等式化为一般形式,然后(变号)求解. 例题三:解不等式x x x 34 62331-<-+-. 解: 由原不等式,得 -x>19, 两边同除以-1,得x<-19. ∴原不等式解集为x<-19. 例题四:解关于x 的不等式 2mx+3<3x+n. 解: 由原不等式,得 (2m-3)x

(1)2m-3>0,即m> 23时,解集为3 23--m n x . (3)2m-3=0,即m=23时,又分两种情况. 若n-3>0,即n>3,解集为所有数; 若n-3≤0,即n ≤3,原不等式无解. 思路:和方程一样,不等式中不是未知数的字母称为参数,解含参数的不等式,也应该对参数进行分类讨论.方法与一元一次不等式相同,先将不等式化为一般形式然后求解. 总结:研究了很多解一元一次不等式的例题,发现了其解集的以下规律: 当一元一次不等式化为一般形式b ax <后,解集有 (1)a>0时,解集为a b x < . (2)a<0时,解集为a b x >. (3)a=0时,若b>0,则解集包括所有数;若b ≤0,则这个不等式无解. 当一元一次不等式化为一般形式b ax >后,解集有 (1) a<0时,解集为a b x < . (2) a>0时,解集为a b x >. (3) a=0时,若b<0,则解集包括所有数;若b ≥0,则这个不等式无解. 当一元一次不等式化为一般形式b ax ≤后,解集有 (1)a>0时,解集为a b x ≤ . (2)a<0时,解集为a b x ≥. (3)a=0时,若0≥b ,则解集包括所有数;若b<0,则这个不等式无解. 当一元一次不等式化为一般形式b ax ≥后,解集有 (1)a>0时,解集为a b x ≥. (2)a<0时,解集为a b x ≤. (3)a=0时,若0≤b ,则解集包括所有数;若0>b ,则这个不等式无解. 总之,解一次不等式解法与一元一次方程的解法一样很简单很类似,它们的共同目的都是求出未知数. ——温州外国语学校 七(7)班 周天晴 2011年1月31日

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

不等式及其解法

一元二次不等式及其解法(文科学案) 编者:赵学磊审核:刘丽娟 【教学目标】 1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力; 2.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神。 【教学重点】 从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。 【教学难点】 理解二次函数、一元二次方程与一元二次不等式解集的关系。 【教学过程】 1.一元二次不等式的概念 形如ax2+bx+c>0(≥0)或ax2+bx+c<0(≤0)(其中a≠0)的不等式叫做一元二次不等式,用文字语言表述为:,叫做一元二次不等式.2.一元二次不等式与一元二次方程、二次函数的联系 (1)将原不等式化为一般式. ax2+bx+c≥0与ax2+bx+c≤0(a>0) (2)判断?的符号. (3)求方程的根. (4)根据图象写不等式的解集. 写不等式解集的规律是:大于零取小于零取。

三、典型讲解: 题型一、解一元二次不等式 例1、求下列不等式的解集. (1)2230x x -+-> (2)2 4410x x -+> (3)x 2+28≥11x; (4)x 20; (2)3x 2+5x -2>0; (3) x 2-4x +5>0.; (4)9x 2-6x +1>0; 题型二、含有参数一元二次不等式的解法 例2解下列含有参数的一元二次不等式:2x 2 +ax+2>0 变式2、 x 2-(a+a 2)x+a 3>0

高二数学课件-《不等式的解法举例》

高二数学课件:《不等式的解法举例》 过去的一切会离你越来越远,直到淡出人们的视野,而空白却会越放越大,直至铺成一段苍白的人生。下面为您推荐高二数学课件:《不等式的解法举例》。 (1)能熟练运用不等式的基本性质来解不等式; (2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的解法基础上,掌握分式不等式、高次不等式的解法; (3)能将较复杂的绝对值不等式转化为简单的绝对值不等式、一元二次不等式(组)来解; (4)通过解不等式,要向学生渗透转化、数形结合、换元、分类讨论等数学思想; (5)通过解各种类型的不等式,培养学生的观察、比较及概括能力,培养学生的勇于探索、敢于创新的精神,培养学生的学习兴趣.【教学建议】一、知识结构 本节内容是在高一研究了一元一次不等式,一元二次不等式,简单的绝对值不等式及分式不等式的解法基础上,进一步深入研究较为复杂的绝对值不等式及分式不等式的解法.求解的基本思路是运用不等式的性质和有关定理、法则,将这些不等式等价转化为一次不等式(组)或二次不等式的求解,具体地说就是含有绝对值符号的不等式去掉绝对值符号,无理不等式有理化,分式不等式整式化,高次不等式一次化.其基本模式为: ; ; ;

二、重点、难点分析 本节的重点和一个难点是不等式的等价转化.解不等式与解方程有类似之处,但其二者的区别更要加以重视.解方程所产生的增根是可以通过检验加以排除的,由于不等式的解集一般都是无限集,如果产生了增根却是无法检验加以排除的,所以解不等式的过程一定要保证同解,所涉及的变换一定是等价变换.在学生学习过程中另一个难点是不等式的求解.这个不等式其实是一个不等式组的简化形式,当为一元一次式时,可直接解这个不等式组,但当为一元二次式时,就必须将其改写成两个一元二次不等式的形式,分别求解在求交集. 三、教学建议 (1)在学习新课之前一定要复习旧知识,包括一元二次不等式的解法,简单的绝对值不等式的解法,简单的分式不等式的解法,不等式的性质,实数运算的符号法则等.特别是对于基础比较差的学生,这一环节不可忽视. (2)在研究不等式的解法之前,应先复习解不等式组的基本思路以及不等式的解法,然后提出如何求不等式的解集,启发学生运用换元思想将替换成,从而转化一元二次不等式组的求解. (3)在教学中一定让学生充分讨论,明确不等式组中的两个不等式的解集间的交并关系,两个不等式的解集间的交并关系. (4)建议表述解不等式的过程中运用符号 . (5)建议在研究分式不等式的解法之前,先研究简单高次不等式(一端为0,另一端是若干个一次因式乘积形式的整式)的解法.可由学生讨论不同解法,师生共同比较诸法的优劣,最后落实到区间法. (6)分式不等式与高次不等式的等价原因,可以认为是不等式两端同乘

不等式解题技巧

不等式解题技巧 【基本知识】 1、若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取 “=”) 2、(1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈, 则ab b a 2≥+(当且仅当b a =时取“=”) 3、0x >若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 4、, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a =b =c 时,“=”号成立; )(333 3 + ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号 成立. 5、若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可 以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)熟悉一个重要的不等式链: b a 2 +2 a b +≤≤2 2 2b a + 【技巧讲解】 技巧一:凑项(增减项)与凑系数(利用均值不等式做题时,条件不满足时关键在于构造条件。通常要通过乘以或除以常数、拆因式、平方等方式进行构造) 1、 已知5 4x < ,求函数14245 y x x =-+-的最大值。 2、当04x <<时,求(82)y x x =-的最大值。

二元一次不等式及解法

3.2《一元二次不等式及其解法》教案(第1课时) 【教学目标】 1.知识与技能:理解一元二次方程、一元二次不等式与二次函数的关系,掌握图象法解一元二次不等式的方法;培养数形结合的能力,培养分类讨论的思想方法,培养抽象概括能力和逻辑思维能力; 2.过程与方法:经历从实际情境中抽象出一元二次不等式模型的过程和通过函数图象探究一元二次不等式与相应函数、方程的联系,获得一元二次不等式的解法; 3.情态与价值:激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。 【教学重点及难点】 教学重点:从实际情境中抽象出一元二次不等式模型;一元二次不等式的解法。 教学难点:理解二次函数、一元二次方程与一元二次不等式解集的关系。 【教学过程】 一.课题导入 从实际情境中抽象出一元二次不等式模型: 教材P84互联网的收费问题 教师引导学生分析问题、解决问题,最后得到一元二次不等式模型:2 50x x -<…………………………(1) 二.讲授新课 1)一元二次不等式的定义 象2 50x x -<这样,只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式 2)探究一元二次不等式250x x -<的解集 怎样求不等式(1)的解集呢? 探究: (1)二次方程的根与二次函数的零点的关系 容易知道:二次方程的有两个实数根:120,5x x == 二次函数有两个零点:120,5x x == 于是,我们得到:二次方程的根就是二次函数的零点。 (2)观察图象,获得解集 画出二次函数2 5y x x =-的图象,如图,观察函数图象,可知: 当 x<0,或x>5时,函数图象位于x 轴上方,此时,y>0,即2 50x x ->;

专题27 应用基本不等式求最值的求解策略高中数学黄金解题模板

【高考地位】 基本不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。应用基本不等式求最值时,要把握基本不等式成立的三个条件“一正二定三相等”,忽略理任何一个条件,就会导致解题失败,因此熟练掌握基本不等式求解一些函数的最值问题的解题策略是至关重要的。【方法点评】 方法一凑项法 使用情景:某一类函数的最值问题 解题模板:第一步根据观察已知函数的表达式,通常不符合基本不等式成立的三个条件“一正二定三相等”,将其配凑(凑项、凑系数等)成符合其条件; 第二步使用基本不等式对其进行求解即可; 第三步得出结论. 例1已知 5 4 x<,求函数1 42 45 y x x =-+ - 的最大值。 【答案】 max 1 y=. 第三步,得出结论:

故当1x =时,max 1y =。学#科网 点评:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 【变式演练1】【江苏省盐城市阜宁中学2017-2018学年高二上学期第一次学情调研数学(文)试题】函数 4 2(0)y x x x =-->的最大值为________. 【答案】-2 【解析】4422242y x x x x ?? =---+≤-- ??? =2=, 当且仅当4 x x = ,即x =2时,“=”成立 【变式演练2】【2018届山西高三上期中数学(理)试卷】当1x >时,不等式1 1 x a x + ≥-恒成立,则实数a 的取值范围是( ) A .(,2]-∞ B .[2,)+∞ C .[3,)+∞ D .(,3]-∞ 【答案】D 【解析】 考点:均值不等式. 方法二 分离法 使用情景:某一类函数的最值问题 解题模板:第一步 首先观察已知函数的表达式的特征,如分子(或分母)是二次形式且分母(或分子)是一次形式; 第二步 把分母或分子的一次形式当成一个整体,并将分子或分母的二次形式配凑成一次形式的二次函数形式; 第三步 将其化简即可得到基本不等式的形式,并运用基本不等式对其进行求解即可得出所求的结果.

高中数学不等式的分类、解法讲解学习

高中数学不等式的分 类、解法

精品文档 收集于网络,如有侵权请联系管理员删除 高中数学简单不等式的分类、解法 一、知识点回顾 1.简单不等式类型:一元一次、二次不等式, 分式不等式,高次不等式,指数、对数不等 式,三角不等式,含参不等式,函数不等式, 绝对值不等式。 2.一元二次不等式的解法 解二次不等式时,将二次不等式整理成首 项系数大于0的一般形式,再求根、结合图像 写出解集 3三个二次之间的关系: 二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系(见复习教材P228) 二次函数的零点---对应二次方程的实根----对应二次不等式解集区间的端点 4.分式不等式的解法 法一:转化为不等式组;法二:化为整式不等式;法三:数轴标根法 5.高次不等式解法 法一:转化为不等式组;法二:数轴标根法 6.指数与对数不等式解法 a>1时)()()()(x g x f a a x g x f >?>; 0)()()(log )(log >>?>x g x f x g x f a a 0; ) ()(0)(log )(log x g x f x g x f a a < 7.三角不等式解法 利用三角函数线或用三角函数的图像求解 8.含参不等式解法 根据解题需要,对参数进行分类讨论 9.函数不等式解法 利用函数的单调性求解,化为基本不等式 (有时还会结合奇偶性) 10.绝对值不等式解法(后面详细讨论) 二、练习: (1)23440x x -++>解集为 (2 23x -<< )(一化二算三写) (2)213 022 x x ++>解集为 (R ) (变为≤,则得?)(无实根则配方) 三、例题与练习 例1已知函数)()1()(b x ax x f +?-= ,若不等式0)(>x f 的解集为)3,1(-,则不等式 0)2(<-x f 的解集为 ),2 1 ()23,(+∞--∞Y 解法一:由根与系数关系求出3,1-=-=b a ,得32)(2++-=x x x f ,再得出新不等式,求解

相关主题
文本预览
相关文档 最新文档